
 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 01– Issue 02, November 2012

www.ijcit.com 120

DB2’s SQL Compatibility Features:
An alternative approach to traditional migration

Maria N. Schwenger

Database professional

Las Vegas, USA

Kamen N. Tsvetkov

Las Vegas Academy

Las Vegas, USA

Abstract-In today's highly competitive marketplace, many

relational database management system (RDBMS) vendors are

constantly competing for a bigger share of the market by both

attracting new customers (new sales), and by pursuing

competitive "win-backs" or, simply said, migrations to their own

RDBMS. When advancing such migration opportunities most

vendors face strong client demands to prove low cost, effort, and

risk of the migration process. The abundance of commonly

available “migration tools” has not been able to reduce cost and

risks. This paper discusses the unique way of migration to IBM®

DB2® for Linux, UNIX and Windows (DB2 LUW) introduced

with the SQL compatibility features of DB2 LUW. By retaining

the other RDBMS’ specific features, this new migration concept

(often called simply “enablement”) allows an easy, less costly and

nearly risk free migration process. This paper outlines the

capabilities of the Oracle compatibility feature in offering native

execution and support for the proprietary Oracle SQL and

PL/SQL syntax. Secondly, the paper outlines the DB2 SQL SKIN

feature for applications written in Sybase ASE (Sybase

compatibility) by using compatibility emulation. Although each

of these features provides a different approach, they both aim to

achieve higher compatibility and thus to diminish the migration

efforts.

Keywords-database migration, database conversion, SQL

dialects, enablement, multi language support, SQL database

extensions, procedural language, SQL, SQL compatibility

I. INTRODUCTION

Although most of the RDBMS vendors today support the
bulk of the international standards for database definitions and
language processing, almost every vendor aims to provide
more robust functionality by offering a large number of non-
standard language and interfaces extensions. If we attempt to
move an application that was coded to utilize these extensions
to a new database platform, a number of those extensions
would need to be changed or replaced to preserve the desired
functionality. This process of moving an application from one
database to another is called a database migration. The higher
the number of proprietary features there are, the lower the
portability (or compatibility) of the code. This “locked in”
model usually leads to a higher cost and risk of the migration
process and, in many cases, prevents the clients to attempt
migrations. Traditionally, the vendors attempted to solve this
issue by offering a variety of migration tools, which can
facilitate low cost and mitigate the risk of the migration process
by providing automated ways of conversion, deployment and
testing, however, even with automation and tooling, the

migrations are still expensive, time consuming, and present risk
to the business. With version 9.7, DB2 LUW offers a new
unique alternative to the traditional migration approach. This
version introduced an extended support for SQL and
procedural syntax (Oracle's PL/SQL, Sybase’s T-SQL, other
unsupported by DB2 SQL), which allow the usage of these no
longer proprietary language extensions straight against the
DB2 LUW engine. This paper discusses the two different SQL
compatibility features of DB2 9.7 and the unique way each one
addresses the compatibility issues compared to the traditional
migration processes.

The rest of the paper is organized as follows: Section 2
gives a background overview of the database compatibility and
its role in the traditional migration process; Section 3 describes
the DB2 LUW SQL compatibility of Oracle’s SQL, PL/SQL,
administrative views, and application interfaces; Section 4
outlines DB2 LUW SQL Compatibility with SQL Skin for
Sybase ASE emulation as an alternative to the traditional
migration approach, and finally, Section 5 concludes the paper
with a brief summary of the business and technical values
delivered by the two SQL compatibility features offered by
DB2 LUW: native language support for Oracle’s SQL and
PL/SQL and SQL Skin for Sybase ASE emulation.

II. BACKGROUND

A. Background on SQL Standards

As soon as the concepts of the modern RDBMS and
Structure Query Language (SQL) standards were established in
the late 70s (first relational model by E.F. Codd at IBM [4],
first specification of SEQUEL by Donald D Chamberlin and
Raymond F. Boyce [2], and others [3]), the early RDBMS
vendors started adding proprietary language extensions.
Initially, these extensions were related to the SQL Data
Definition Language (DDL) and SQL Data Manipulation
Language (DML) [8] statements for leveraging storage
capabilities, new data types, and optimized declarations and
hints for faster data retrieval. Later on, the emphasis was put
on developing more procedural language extensions. By
nature, SQL is rather declarative than procedural and adding
procedural logic inside of the queries provided more power to
encapsulate the business logic closer to the data, minimize
context switches between the SQL interpreter/compiler and the
storage runtime, reducing network round trips to applications.
These extensions included control-flow structures ((begin-end,
if-then-else) and 3G-like languages statements (local variables,

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 01– Issue 02, November 2012

www.ijcit.com 121

temporary tables, etc.). There were three major requirements
that drove the evolution of the relational databases - the need
for management of larger data volumes, performance
improvements, and reduction in query response time.

Initially, the absence of SQL standards did not appear to be
ambiguous. Each vendor was looking for more optimal means
of data processing and no one was actively seeking
standardization. Although it may sounds strange, some vendors
today still considered this a winning strategy and many
businesses are currently locked in proprietary functionality.
Other RDBMS vendors (i.e. DB2 LUW) who strictly followed
the standardization rules, have been perceived as lacking
functionality only because for a long time they were staying
close to the established SQL and procedural standards.

Neither the establishing of standards for stored procedures
(ISO Persistent Stored modules (SQL/PSM) [10]), or the
multiple efforts for SQL standardization (SQL-86, SQL-89,
SQL-92/SQL2, and SQL-99/SQL3 [6]) stopped the RDBMS
vendors from enhancing their own independent versions of
DDL, DML and procedural extensions. And, although most
vendors today support the bulk of the ISO SQL standards, there
are many cross platform incompatibilities such as data types,
procedural logic and control-of-flow statements, locking and
transaction handling, recursive queries, triggers, XML and
XQuery (SQL/XML [9]), and many others.

Figure 1 shows a diagram that symbolizes how the SQL
standards are only a part of the functionality supported by the
different RDBMS vendors.

Figure 1. SQL Standards and Language Specifics

B. Traditional Migration Approach and SQL Compatibility

In this article we use a simplified definition of the usually
widely defined term “migration”. A migration or conversion
process includes all activities directed to move an application
instance and its underlined database infrastructures to a new
setup based on a new application and/or database support. The
searched outcome is to obtain the same traversal and
performance capabilities as the former application and
database.

Traditionally, all migrations or conversions are manual or
semi manual processes starting with an evaluation of the risk
and amount of efforts for converting the application and
database code, testing cycles needed, and redeployment on the

new systems. In many cases the cost of such a migration is
prohibitive.

SQL compatibility is a special feature of DB2 LUW that
allows us to execute previously proprietary syntax
constructions directly against a DB2 LUW database. The goal
of these compatibility features is to simplify the migration
processes making them straightforward, faster and less risky to
the business. The compatibility level measures the number (or
percent) of the syntax constructions that are recognized by
DB2 LUW and could be executed immediately and with no
changes onto DB2 LUW.

The relation between the migration processes and the level
of compatibility of the migrated code is usually in an opposite
proportion, i.e. the higher the compatibility level is- the lower
the migration effort. In this context a high compatibility level
means higher application and database portability, less manual
work, faster migration time to value, simplified testing, etc.
However, we have to note that in some rare cases a high
compatibility does not necessary mean a lower migration cost
or less work. For example, it is possible to have a
compatibility level of 98% and still spend a few months on the
remaining 2% - it all depends on the features included in the
2% bracket. This brings up the importance of accurate initial
evaluation, which is examined in detail later.

A traditional migration approach normally includes several
phases starting with the assessment of the application(s) and
database portability, actual code migration for database and
applications, testing, and production roll out. Each of them
presents its own requirements and possible implications to the
overall migration process. The SQL compatibility features of
DB2 LUW and some new tooling developed to assist with the
migration process, greatly simplify the traditional migration
efforts on each of these phases. More details on these tools and
the role of the compatibility are provided in each section
below:

 Assessment phase – Every migration usually starts
with evaluation of the application(s) and the source and
target database systems. The main goal is to evaluate
and determine the essential steps and tools necessary
for successful migration of the existing application(s)
and the underlined database management system to the
new setup. The initial evaluation and the consequent
planning for a migration should provide answers to
important questions such as what is the portability
level of application(s) and databases, when is the best
time for the migration to occur, what are the internal
and external dependencies (as part of the impact
analysis), is there a potential risk for business users,
what are the base requirements for the upgrade, etc.
Many companies today offer comprehensive
evaluation questionnaires and some automated or semi-
automated tools to aid the evaluation process and to
asses the risk for the business. Both DB2 LUW
compatibility features utilize a special automated
evaluation tool called MEET (Migration Enablement
Evaluation Tool for DB2). MEET for DB2 LUW
processes the syntax constructions and reports back not

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 01– Issue 02, November 2012

www.ijcit.com 122

only the total compatibility percent, but also every
unrecognized syntax structure. It will also suggest a
possible work around for it. This includes evaluation
of the Data Definition language (DDL) of the database
objects, Data Manipulation Language (DML)
constructs, as well as the procedural code. MEET for
DB2 provides an easy/automated and reliable way to
asses what percent of the objects will compile without
changes and how much time will be needed to make
the changes to the objects that have no direct support.

 Code migration phase – This is the next logical phase
in the migration process that includes two stages -
database migration and a migration of the application
code. The conversion of the database usually precedes
the application conversion for which a fully
functioning database is required. Many tools on the
market today offer migration automation for
converting from one RDBMS to another. [12, 14] IBM
Data Movement Tool (IDMT) is a development tool
freely available for download from IBM [11]. IDMT
uses a series of Java programs and shell scripts (both
Windows and UNIX) to access the source of various
databases and generate database scripts necessary to
recreate the objects in DB2 LUW. It also extracts the
data from the source database tables using a multi-
threaded technique and generates scripts to populate
the corresponding DB2 tables with the extracted data
using the DB2 Load Utility. [11] The IDMT can also
be used for the interactive deployment of PL/SQL or
T-SQL objects such as triggers, functions, procedures
and packages. The PL/SQL or T-SQL source code is
extracted as part of the Extract DDL/Data operation
when the DDL check box is selected. Once the Extract
DDL operation is complete, the extracted DDL and
PL/SQL or T-SQL could be deployed to DB2 LUW
from the Interactive Deploy panel of the tool.
Beginning with DB2 LUW V9.7, the IBM Migration
Toolkit (MTK) [7] is no longer recommended for
migrating applications from Oracle and Sybase to DB2
LUW.

Another tool, IBM® Data Studio, provides to database
developers and database administrators an integrated,
eclipse-based environment for managing,
administration and development in heterogeneous
database environments. The tool also supports the DB2
LUW compatibility features. A great example is the
"drag & drop" (or "copy & paste") functionality, which
lets developers select an object such as a table,
sequence, procedure, trigger, etc. from an Oracle
database and drop it straight into a DB2 LUW
database. The objects will be converted and created
automatically in the database with DB2 supported
syntax. If there are any exceptions, they will be
displayed to the user. If a table contains data, the data
could be also transferred automatically. IBM® Data
Studio also provides a great development environment
for creating, debugging, troubleshooting and

performance tuning of procedural code, including the
compatibility mode.

The migration of the application code usually follows
the database/environment migration. Not too many
tools are available to help with the evaluation or the
automated conversion of the applications code and
usually this is a manual process. To facilitate limited
to no application code changes, the Oracle
compatibility feature of DB2 LUW provides enhanced
drivers and libraries support. The Sybase Compatibility
feature provides a way for the applications to send calls
to the new DB2 databases, which will be passed
through or converted to DB2 recognizable syntax if
they are not compatible. This will allow to the Sybase
applications to work against DB2 with limited changes
or, in many cases, without recompilation at all.

 The testing phase will also benefit from the DB2 LUW
compatibility features. A high compatibility would
allow a reduced testing effort, since the existing test
cases and scripts are expected to continue to work as
before because there are no (or only limited) changes
to the calls from the application, to the results set
coming from the database, or to the output coming
back to the application, etc. The Oracle compatibility
feature in DB2 LUW provides a tool called CLPPlus -
a specialized equivalent to Oracle’s SQL*Plus.
Analogically to the name, the CLPPlus could be used
as a command line to access DB2 LUW databases with
functionality and syntax equivalent to the Oracle tool.
That guarantees all testing scripts commonly written
for Oracle’s SQL*Plus could be reused and executed
straight against DB2 LUW.

Figure 2 CLPPlus Window in DB2 LUW running SQL*Plus commands

With the Sybase compatibility feature, the result sets
returned to the application will be translated to T-SQL
code if they are not directly supported by DB2 engines,
which guarantee compatible results.

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 01– Issue 02, November 2012

www.ijcit.com 123

 Production roll-out phase: The reduction in efforts here
is minimal as this is usually a standard process defined
by the application and database specifics and it will
have similar phases on any RDBMS. However, due to
the tooling and automation provided for objects
creation and data movement to DB2, this process is
also simplified and more secure. Some of the tasks
like tuning the new database and application before the
cut off phase could be setup and completely left to the
DB2 LUW autonomics. Knowing that only minimal
changes have been made to the application and
database structures also give a higher level of
confidence in this phase.

III. ORACLE COMPATIBILITY FEATURE IN DB2 LUW

DB2 LUW 9.7 includes extensive native support for the
previously proprietary PL/SQL procedural language, new data
types, scalar functions, improved concurrency, implicit casting
and type resolution, built-in packages, OCI libraries, SQL*Plus
functionality, and more. These features dramatically improve
the ease of developing applications that run on both DB2 and
Oracle, and simplify the process of moving applications from
Oracle to DB2 LUW.

A. Setting up the Oracle comaptibility vector

In order for us to utilize the benefits of the Oracle
Compatibility feature, we need to set the compatibility flag to
indicate which compiler option should be used. Fig. 3 shows a
set of commands that allows a setup of the Oracle compatibility
feature in a UNIX environment. As you may notice, there is an
important sequence of the operations. We first have to setup
the registry variable and the compatibility flag, secondly -
restart the database engine, and, lastly - create the database.
The two last commands set some additional compatibility
parameters at the database level such as adjusting the rounding
behavior to match that of Oracle or allow deploying objects out
of dependency order by setting the revalidation semantics to
“DEFERRED_FORCE”.

B. Review of Oracle compatibility feature functionality

The goal of the Oracle compatibility feature is to provide
high compatibility eliminating the need for manual changes to
the application code and database objects. However, this

includes many different levels such as proprietary SQL
language dialect and PL/SQL procedural language, built in
packages, JDBC and OCI client functionality, scripts, and
more. In this section we only highlight the most widely used
new features provided by DB2 LUW version 9.7 and this is by
no means a complete list.

One of the very first implications of the migration process
is the differences in the data types supported by the different
RDBMS. Oracle has many proprietary non-standard basic
types in all categories - numerics, strings, and dates, all
together with some complex types commonly used in Oracle's
proprietary procedural language - PL/SQL. To address this,
DB2 LUW 9.7 introduced new data types support such as
NUMBER, VARCHAR2, NCHAR, NVARCHAR2, NCLOB,
Oracle DATE format and TIMESTAMP(n), as well as support
for BOOLEAN, VARRAY, ROW TYPE, Ref Cursor type,
INDEX BY, etc. DB2 LUW and Oracle also exhibit different
behavior when comparing, assigning and operating with
different data types. A feature called implicit casting (also
knows as weak typing) was added to DB2 9.7 to allow more
flexible data type manipulation, including some more
flexibility in the usage of the un-typed NULL. Extending the
topic of data types manipulation come the new extended built-
in functions, which DB2 LUW added to its own set of
functions enfolding areas like conversion and casting functions
(TO_DATE, TO_CHAR, TO_CLOB, TO_NUMBER, etc.),
date calculation (ADD_MONTHS, MONTHS_BETWEEN,
NEXT_DAY, etc.), string manipulation (LPAD/RPAD,
INSTR, INITCAP, several proprietary extensions to SUBSTR,
etc.), as well as some unique only to Oracle functions like
NVL/NVL2, LEAST/GREATEST, DECODE, HEXTOROW,
etc. Even with this limited list of examples, it is clear how rich
the built-in functions library of DB2 LUW is.

Oracle SQL dialect is widely proprietary. DB2 LUW
started to address some of these features in a earlier release
(DB2 9.5 FP2). It started with just a few constructs and kept
adding more - today we have support for important syntax like
pseudo columns (ROWNUM, ROWID), DUAL table, (+) join
syntax, recursion (CONNECT BY, ROWNUM), TRUNCATE
table statement, MINUS SQL operator, etc. DB2 LUW 9.7
also adds more mobility in creating objects with "CREATE OR
REPLACE" object statement, public synonyms, CREATE
TEMPORARY TABLE, etc.

Compiling natively PL/SQL code is another very important
area of the Oracle Compatibility feature. To guarantee native
execution, the DB2 LUW engine now has its own PL/SQL
compiler. This fact is important for several different reasons.
No translation or emulation means native execution with great
performance, similar to DB2 LUW monitoring and debugging,
etc. It also allows the users to mix and match database objects
created with different syntax and compiled by the different
compilers. For example, a "DB2 style" SQL/PL procedure
could call an "Oracle style" PL/SQL procedure and vice versa.
It will also allow to the PL/SQL developers to continue to write
PL/SQL code against DB2 LUW and apply their skills against
a different RDBMS. The easiest way to sum the PL/SQL
support is to look at the PL/SQL packages in DB2 LUW 9.7.
We see the full syntax support from CREATE [OR REPLACE]

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 01– Issue 02, November 2012

www.ijcit.com 124

PACKAGE/PACKAGE BODY and the typical objects
definitions (local/global variables and constants with %TYPE
and %ROWTYPE anchoring, cursors, procedures and
functions, types’ declarations, etc.) to the exception handling
and PRAGMA AUTONOMOUS, synonym creations, and
others. Have to note also many special constructs of the
PL/SQL syntax support not available in DB2 LUW before such
as assignments (:=), WHILE loops and IF-THEN-ELSE logic,
FORALL/BULK COLLECT, IN and OUT parameters on
procedures and functions with parameter association and
defaulting, and many others.

In addition to the custom created packages, Oracle provides
some proprietary libraries, knows as built-in packages. DB2
LUW 9.7 supports some of the most widely used built-in
packages like DBMS_OUTPUT, DBMS_SQL, UTL_FILE,
UTL_MAIL,UTL_SMTP, DBMS_UTILITY, DBMS_ALERT,
DBMS_PIPE, DBMS_JOB, DBMS_LOB, DBMS_DDL, etc.

Anonymous blocks are also supported and could be
executed from an editor window or from the command line
using either CLP or CLPPlus.

Prior to DB2 LUW version 9.7, there were considerable
differences in the concurrency control between Oracle and
DB2 LUW. Today, DB2 has a new concurrency control called
Currently Committed that provides a concurrency behavior
identical to that of Oracle. The name comes from the design
model, in which DB2 actually reads the last, currently
committed version of the changed row. Effective version 9.7,
this is the default behavior of DB2 LUW for all DB2 databases
as well.

Since general availability, with every new Fix Pack, DB2
LUW introduced more comprehensive compatibility features.
For example, Fix Pack 5 introduced support for NVL2,
SUBSTR2, and HEXTORAW functions, Pro*C, support for
BOOLEAN in ROW and ARRAY types, nested ROW and
ARRAY support for PL/SQL and JDBC support for them, and
others. We are expecting the upcoming Fix Packs or releases of
DB2 LUW to keep increasing the Oracle compatibility levels.

IV. SYBASE COMPATIBILITY FEATURE IN DB2 LUW

The Sybase compatibility feature (often also abbreviated as
IBM DB2 SSacSA) targets another proprietary SQL dialect -
Transact SQL (or T-SQL), most of which syntax is also not
supported by DB2 LUW and/or does not have an equivalent in
the native for DB2 SQL/PL. However, the approach taken by
DB2 development and its partner, ANTS Software INC. in
implementing the Sybase Compatibility feature is quite
different compared to the implementation of the Oracle
compatibility. Instead of building a native compiler like in the
Oracle compatibility feature, the Sybase Compatibility is
implemented as a wrapper that will handle both external
application calls and server side precompiled objects. To
minimize the amount of manual rewrites on both the
application and database side, IBM’s Sybase compatibility
feature utilizes the so called Compatibility Service, which runs
on the database server. This service has a dual function. On
one side, if the T-SQL syntax is recognized by DB2, the

service will simply pass it to the database. The T-SQL syntax
that is not immediately recognized by DB2 will be converted to
an equivalent call that DB2 can understand. A built in
intelligence ensures that the output sent back to the application
is formatted the way the application expects it based on the T-
SQL syntax that was issued originally.

A. Installing Sybase Comaptibility feature

The installation of the Sybase compatibility feature is a
little bit more complex compared to the setup of the Oracle
compatibility feature. It requires creation of DB2 metadata
repository database for storing compatibility/mapping
information, installation of the server and client components,
and configuration of the client drivers, server side (DB2 and
Sybase environmental parameters), and IBM DB2 SSacSA
Central utility. The configuration of the IBM DB2 SSacSA
Central utility is needed in order to be able to move the Sybase
metadata from a source Sybase database to the target IBM DB2
SSacSA metadata repository created at the first step of the
installation process. After the three configuration steps are
completed, the metadata could be loaded using IBM DB2
SSacSA Central.

B. Review of Sybase compatibility feature architecture

The objective of the Sybase compatibility feature (IBM
DB2 SSacSA) is to provide a seamless way of running the
existing Sybase applications against DB2 LUW by
transparently replacing the Sybase ASE components and the T-
SQL language features that are not directly supported on DB2
LUW. The solution utilizes a compatibility service (IBM DB2
SSacSA) preserving the original application architecture as
much as possible. This allows the actual application code to
remain mostly, if not entirely, unchanged. Several architectural
compatibility service components are needed to support this
design as follow:

 IBM DB2 SSacSA metadata catalog - a catalog of
metadata (mapping data) maintained by the IBM DB2
SSacSA and stored in DB2 LUW tables. It consists of
information on how to map objects (schemas, tables,
procedures, views, data types, column names, etc.)
from the Sybase source to the DB2 LUW target and the
associated with them Sybase security model
(privileges, authorities, etc.). The metadata also
includes information required to convert DB2 SQL
error codes into equivalent Sybase codes expected by
the application. Some Support Functions that are
accessed by the application stored procedures during
their execution are also stored in the metadata catalog
as well as some information used to emulate Sybase
system tables. This catalog is accessed by the IBM
DB2 SSacSA translation routines during the process of
translation.
The IBM DB2 SSacSA metadata catalog is managed
by a tool (graphical user interface) called IBM DB2
SSacSA Metadata Manager. An administrator could
monitor which DB2 objects (stored procedures,
functions, tables, views) are exposed as Sybase objects
and could modify the existing mapping information

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 01– Issue 02, November 2012

www.ijcit.com 125

about database objects, data types, arguments of
procedures and functions, etc. It could also manage the
user logins emulated by IBM DB2 SSacSA.

 T-SQL Sybase translation routines – the role of the
translation routines is to provide managed
(compatibility) calls where there is no straight analog
in the functionality between Sybase and DB2 LUW.
For example, in some cases the T-SQL calls cannot be
converted directly to specific DB2 functions. In others,
the expected input or output to/from the call might be
different than what DB2 provides. In most cases, we
need a translation of the DB2 SQL return/error codes
expected by the application. In all these cases the IBM
DB2 SSacSA uses compatibility (managed) routines
usually built as an external C++ DB2 UDF. This
allows calls to the DB2 servers that closely emulate the
original Sybase calls.

 Native and Managed Stored Procedures – Depending
on the compatibility level, when moved to DB2, some
Sybase stored procedures can be converted to either
native stored procedures, or managed stored
procedures.

Managed Stored Procedures – the managed stored
procedures usually require translation of the T-SQL
code or of their input/output parameters to emulate the
exact input/output that the application expects. When
IBM DB2 SSacSA receives a CREATE PROCEDURE
DDL statement, it creates a managed stored procedure
automatically converting the Sybase T-SQL stored
procedure into an IBM DB2 SSacSA DB2 managed
procedure. After the translation is done, these stored
procedures are called by IBM DB2 SSacSA in the
same fashion as native procedures with the limitation
that the managed stored procedures can be only used
by the IBM DB2 SSacSA.

Native stored procedures - the IBM DB2 SSacSA can
be also configured to utilize in application calls native
to DB2 LUW stored procedures created directly onto
Db2 or migrated manually from Sybase (for example,
with IBM Data Movement Tool).

 IBM DB2 SSacSA Client Driver - IBM DB2 SSacSA
provides a replacement library for all major client
drivers such as Open Client CT-Library, Open Client
DB-Library, ODBC, JDBC, ADO.NET, etc and
mimics the original APIs utilized by the application to
communicate with the DB2 database.

Figure 3 illustrates the main components of the IBM
DB2 SSacSA architecture outlining the usage of
compatibility managed (translated) and native to DB2
LUW objects. This is the unique approach in providing
high application and database compatibility taken by
IBM and their business partner ANTs Software, Inc.

Figure 5. The main components of the IBM DB2 SSacSA architecture

V. MIGRATION SCENARIO

As outlined, DB2 LUW’s approach for multi language
support challenges the traditional concepts of application
migration in several different directions: easily port custom
applications to DB2 LUW, maintain single source across
packaged application, re-use existing skills with not preference
of the dialect, etc. However, where is the bigger bang for the
buck coming from? Let’s take a look at a sample migration
scenario for moving a custom application named TUM from
Oracle to DB2. TUM is a Java application written by the
author of this article for his final project in Computer Science
class. The application provides information tracking and
reporting about employees, attendance, activities, and
assignments of multiple departments and companies. The
project included 12,500 lines of code and was performed solely
by a person with no prior migration experience. The second
author of the article provided only limited guidelines and
supervision.

 The first step of every migration process is to evaluate how
much migration work needs to be done. This step includes
evaluating a variety of information related to multiple levels,
but mainly to the database side (DDL, DML, and procedural
code) and application/middle tier layer (APIs, embedded SQL,
etc.). Some additional information such as interactions with
other systems, performance requirements, auditing, security,
etc. are also important to be evaluated.

The evaluation of TUM was simple. The conversion
assessment was completed in a few hours and showed that the
application is highly compatible with DB2 LUW. According
to the initial MEET report, 99.1% of the statements and 97.6%
of the objects were immediately transferable to DB2 LUW v
9.7 Fix Pack 1.

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 01– Issue 02, November 2012

www.ijcit.com 126

Figure 4. Initial MEET Report estimating the compatibility level against DB2
9.7 FP1

This compatibility percent was even higher when the code
was evaluated against a later version of DB2 LUW - version
9.7 Fix Pack 4. These percents grew up to 99.8% compatibility
for statements and 99.6% - for objects. The graph below shows
how the percent of compatibility grows with each new fix pack
of DB2 LUW, continually facilitating the migration process.
(Note: The testing was started on DB2 9.7 FP1 and completed
on FP4. However, the most recent version of DB2 LUW at the
time of the publication is DB2 LUW v10.1). For the TUM
application, we only had to change a few data type precisions, a
few view definitions, and two pipelined functions.

Figure 5. Increased compatibility levels with each Fix pack of DB2 9.7

On the applications side, the conversion questionnaire
estimated changes to the connection properties of the
applications as well as changes in the way the data was loaded
because originally SQL*Loader was employed to load daily the
data in the Oracle database. The testing proved that all
embedded into the application SQL statements (standard
CRUD) were executed without changes against the DB2 LUW
engine.

The file with DDL, DML, and procedural code we
evaluated with MEET was created with IDMT. The blue arrow

on Figure 6 (right down corner) points to a button called
“Create Input File for MEET”. By clicking on this button after
the Oracle connection was established, IDMT created a file
extracting all objects from the original Oracle catalog.

IDMT was utilized also to move the code (DDL and
PL/SQL) from the Oracle database to DB2 LUW with the
exception of the two pipelined functions. It is interesting to
note that in the conversion process IDMT automatically
corrected the syntax of the views and the data types and
precisions. No manual work was required.

Figure 6 presents the part of the screen of the IDMT for
connecting to the Oracle database and schemas. Similar
information was entered for connecting to DB2 in the second
part of the screen (not shown). The migration selection
included only the DDL and Objects check boxes. The data was
not moved via IDMT as a specific setup and testing of DB2
load utility was in plans for the second part of the project. The
extraction of the objects was run by clicking on the “Extract
DDL/Data” button. Similarly, the import was invoked by
selecting “Import DDL/Data” button located underneath the
DB2 selection part of the screen.

Figure 6. Left side of IDMT window showing the connection to the Oracle
database and the migration selections made for the TUM project

Although IDMT has a very sophisticated Interactive
Deploy window, IBM Data Studio was used to modify and
compile the PL/SQL code, which did not compiled
immediately with IDMT. The goal was to also explore the
integration options between the IBM Data Studio and the
possibilities it provides to collaborate with some popular
development tools (i.e. Rational Application developer).
Debugging of the procedural code was performed with
educational and testing purposes from Data Studio as well.

As the conversion work was very limited, the testing cycle
was short mainly concentrating on the modules where the
changes occurred.

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 01– Issue 02, November 2012

www.ijcit.com 127

The last part of the conversion project was to load the data
and setup the daily load routines. The SQL*Loader
functionality was replaced by DB2 Load Utility. Although the
initial expectations were that this process with take a few days,
due to the similarities in the two tools, this process took only a
few hours although it was performed by a person who had no
prior experience with the DB2 Load utility.

Functional verification and performance testing concluded
the testing cycle and the project on the next day. This part of
the project took about 2 hours, all spent to guarantee an exact,
on-to-one, comparison between the two running versions of the
application – one against Oracle, and one – against DB2.

The general observations are that although relatively
simple, the TUM application was specifically written for
Oracle with proprietary data types/precision, SQL and PL/SQL
statements and objects. The fact that the assessment and the
conversion were executed for about one day and by a person
with no prior migration experience is really remarkable proof
for the high level of simplification provided by the SQL
Compatibility Features of DB2 LUW.

VI. CONCLUSION

This paper provides an overview of the SQL compatibility
technologies provided by DB2 LUW v. 9.7. This functionality
has been proven as key in win-backs and competitive
migrations because it significantly reduces the time required
for performing database migration from a disparate platform to
DB2 LUW by affecting all stages of the conversion life cycle.
Previously, the migration was a manual or semi-automated
process, which required extensive efforts by professionals with
multi-platform skills. By offering two different alternative
solutions to the migration process (native support when moving
from Oracle and emulation - from Sybase), DB2 LUW
facilitates the enablement of applications written for other
RDBMS vendors to DB2 by requiring far less resources than
the traditional migration path including, but not limited to,
avoiding source code modification and application rewrite,
reducing testing complexity and time, offering phased
deployment versus single big conversion deployment, and
others. This new approach is called “enablement” [13] (rather
than migration before) and it is not limited only to the database
definitions and database procedural logic, but it also extends to
the application layers, such as those written in Java or C++.
Certainly, the SQL compatibility features could not provide
100 percent coverage for all proprietary SQL extensions, but
there is support for the most often seen features. The
effectiveness of the solution is currently limited to only two of
the big RDBMS vendors – Oracle and Sybase. Philip Howard,
Research Director of Bloor Research evaluates the
compatibility features of DB2 LUW “as a significant step
forward” and expects “to see more of this sort of capability
introduced in the future.” [1]

ACKNOWLEDGMENT

The authors would like to acknowledge a number of
colleagues and teachers who helped them build their

knowledge and understanding of the RDBMS technology and
the software products described here.

DISCLAIMER

The views and opinions expressed in this article are solely
of the authors: they are not necessarily those of IBM or any
other company or institution mentioned in this paper. All
examples and sample code are provided "AS IS", only for
illustrative purposes. The authors grant you a nonexclusive
copyright license to use all programming code examples from
which you can generate similar function tailored to your own
specific needs.

TRADEMARKS

IBM, the IBM logo, ibm.com, and DB2 are trademarks or
registered trademarks of International Business Machines
Corporation in the United States, other countries, or both. If
these and other IBM trademarked terms are marked on their
first occurrence in this information with a trademark symbol (®
or ™), these symbols indicate U.S. registered or common law
trademarks owned by IBM at the time this information was
published. Such trademarks may also be registered or common
law trademarks in other countries. A current list of IBM
trademarks is available on the Web at “Copyright and
trademark information” at www.ibm.com/legal/copytrade.
shtml.

Oracle® is a registered trademark, PL/SQL, and SQL*Plus
are trademarks or registered trademarks of Oracle Corporation.

Sybase trademarks can be viewed at the Sybase trademarks
page at http://www.sybase.com/detail?id=101 1207. Sybase
and the marks listed are trademarks of Sybase, Inc. ®

Other names may be trademarks of their respective owners.
(i.e. Microsoft, Oracle, Teradata, etc)

REFERENCES

[1] ANTS Software. IBM® DB2® SQL Skin for applications compatible
with Sybase ASE (IBM DB2 SSacSA). Retrieved December 19, 2011,
from http://www.ants.com/ants.com/index.php/ssacsa.

[2] J. R. F. Boyce and D. D. Chamberlin. Using a structured English query
language as a data definition facility. IBM Research Report, RJ1318,
1973.

[3] D. D. Chamberlin and R. F. Boyce. Sequel: A structured English query
language. In FIDET '74: Proceedings of the 1974 ACM SIGFIDET (now
SIGMOD) workshop on Data description, access and control, pages
249{264, New York, NY, USA, 1974. ACM..

[4] E. F. Codd. A relational model of data for large shared data banks.
Commun. ACM, 13(6):377{387, 1970.

[5] T. A. Corbi. Program understanding: Challenge for the 1990s. IBM
System Journal, 28(2):294{306, 1989.

[6] A. Eisenberg and J. Melton. Sql: 1999, formerly known as sql3.
SIGMOD Rec., 28(1):131{138, 1999.

[7] IBM. IBM Migration Toolkit user's guide and reference, 2008.

[8] ISO/IEC 9075-1:2008. Information technology {Database languages {
SQL { Part 1: Framework (SQL/Framework). ISO, Geneva,
Switzerland.

[9] ISO/IEC 9075-14:2008. Information technology {Database languages {
SQL { Part 14: XML-Related Specifications (SQL/XML). ISO, Geneva,
Switzerland.

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 01– Issue 02, November 2012

www.ijcit.com 128

[10] ISO/IEC 9075-4:2008. Information technology {Database languages {
SQL { Part 4: Persistent Stored Modules (SQL/PSM). ISO, Geneva,
Switzerland.

[11] IBM. Khatri, V. (Published 2009, June 19). IBM Data Movement Tool:
Move data from source databases to DB2 in an easy way. Retrieved
December 19, 2011, From
http://www.ibm.com/developerworks/data/library/techarticle/dm-
0906datamovement/.

[12] IBM. DB2® Information Center. Retrieved December 19, 2011, from
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp.

[13] IBM. Redbooks, Oracle to DB2 Conversion Guide. City: Vervante,
2009.

[14] Microsoft. Microsoft SQL server migration assistant for oracle,
facilitating database migration, 2005.

http://www.ibm.com/developerworks/data/library/techarticle/dm-0906datamovement/
http://www.ibm.com/developerworks/data/library/techarticle/dm-0906datamovement/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp

