
 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 02– Issue 01, January 2013

www.ijcit.com 29

Generating operations specification from domain
class diagram using transition state diagram

BOUSETTA Brahim*, EL BEGGAR Omar, GADI Taoufiq
Veille pour les Technologies Emergentes Laboratory

 Faculty of Science and Technology, Hassan 1st University
Settat, Morocco

* ibbousetta@gmail.com

Abstract—UML is nowadays the standard for modeling computer
systems and used in software engineering to describe and model
the different phases of software life’s cycle from requirements
specification phase to the implementation of the code. Among the
UML diagrams or models essential to produce this code is the
design class diagram that determines the various business objects
and their behavior or dynamic part, i.e. methods. These methods
may be derived in a contemplative way from interaction models
made in the preliminary phases of software modeling, such as:
Sequence diagram of system’s internal behavior, collaboration
diagram and state transition diagram. In 2000, the model driven
architecture (MDA) approach proposed by the OMG promotes
the usage of models throughout the entire development process.
Starting from a so-called Computation Independent Model
(CIM), different kinds of transformations lead to Platform
Specific Models (PSMs). These PSMs can be used later to
generate code for a specific platform.

Within this context, this paper aims to facilitate the achievement
of the implementation phase by providing an automatic
transformation for generating the signatures of the different
methods of the system’s complex classes through their
transition’s state diagram. For this, we propose a model-to-model
transformation taking as source models: the domain class
diagram and transition’s state diagram, and then we generate the
target model: the design class diagram using Atlas
transformation Language (ATL).

Keywords-component; MDE, State transition, ATL, Model
transformation, Meata-modeling, Domain Class diagram;

I. INTRODUCTION

A. Context

UML is nowadays the standard for modeling computer
systems [1], [2] and used in software engineering to describe
the different phases of manufacturing software, from
requirements specification phase to the implementation of the
code. Different models are used during the development
process and can be deduced from each other. The last phase of
this process is performed largely on the design class diagram
for determining the various business objects and their behavior,
i.e. the treatment they carry out. These treatments or methods

may be derived from other steps made in the earlier stages of
modeling, such as sequence diagram of system’s internal
behavior and state transition diagram for complex classes. Such
modeling process can be improved by using model driven
engineering (MDE) that promotes the usage of models
throughout the entire development process.

The Model Driven Architecture (MDA) is an
implementation of the MDE initiated in 2000 by the OMG [1],
[2]. Developing with this new approach starts from a so-called
Computation Independent Model (CIM), different kinds of
transformations lead to Platform Specific Models (PSMs).
These PSMs can be used to apply a set of model-to-model or
model-to-text transformation to derive automatically the final
implementation of the system.

The present paper subscribes in this area of research. We
present an approach to automatically generate the methods
signatures of system’s complex class through their transition’s
state diagram. Thus, we propose a model-to-model
transformation taking as source models, the analysis class
diagram and transition’s state diagram, and then generate the
design class diagram using Atlas transformation Language
(ATL). The choice of ATL as transformation language comes
from the fact that it extends the OCL (Object Constraint
Language) [3] which remains a standard independent of models
engineering development’s platform, Also, because the ATL is
integrated within the eclipse/EMOF platform, that we used to
implement the approach. In addition to that, the ATL offers the
possibility of using several meta-model sources, while QVT
takes only a meta-model of input processing. We also used the
Eclipse’s ECORE meta-model that implements the Meta-
Object Facility- MOF [6] to represent the different meta-
models used in this approach.

To illustrate our approach, an example of soda machine
distributor system will be presented at the different steps of the
approach with different models and their meta-models as well
as the transformation performed.

The remaining of the paper is structured as following: In
the next section, we present the source models of this
transformation and their meta-models (state transition
diagram’s meta-model and the domain class diagram’s meta-

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 02– Issue 01, January 2013

www.ijcit.com 30

model). Then, Section III is devoted to the target meta-model,
design class diagram. While the next section shows the
different transformation rules. In the end, we conclude this
work with few prospects.

B. Model Driven Engineering (MDE) : principles

The model driven engineering (MDE) is a new approach of
software development that gives more attention to modeling
rather than programming. Indeed, it promotes the uses of
models at different phases of software development and
provides a variety of new paradigms: The model
transformation (Model-to-model (M2M) and Model-to-text
(M2T)) to automatically generate some or all of the software. It
aims to up the abstraction by focusing on meta-modeling to
define language for model’s expression (Domain Specific
Modeling Languages – DSML) and validation. The main
concept of this approach is the model that can be defined as an
abstraction of a system that can provide answers to questions
on it [4], [5]. The language used to create this model is called
meta-model that is also in the form of a model known as
modeling language [6]. During processing, the meta-models
will validate instances of the source models and output model.
A meta-meta-model is a model that describes a meta-modeling
language, i.e. necessary model’s elements for defining
modeling languages. It has also the ability to describe itself.

The Model Driven Architecture – MDA is an
implementation of MDE proposed by the OMG in 2001 [8]
which is based on the UML standard [1], [2]. Software
development in the MDA is principally based on with a
Platform-Independent Model (PIM) of an application's
business functionality and behavior, constructed using a
modeling language based on OMG's Meta Object Facility
(MOF) [6]. This model remains stable as technology evolves,
extending and thereby maximizing software return on
investment-ROI. Indeed, the MDA defines three levels of
model’s abstraction [7]:

• A requirement view represented by the Computational
Independent Model (CIM) describing the situation in
which the system will be used and that is sometimes
called a domain model or a business model;

• An analysis and design view represented by the
platform Independent Model (PIM) presenting the
business domain system without considering the
architecture of the platform that will be used for the
implementation of the code,

• And a code view represented by the platform Specific
Model (PSM) that combines the view requirement
specifications with a platform of execution used by the
system [8].

The main objective of MDA is to develop sustainable
models (PIM), independent of the technical details of the
execution platforms (JEE, .Net, PHP, etc.), to allow the
automatic code generation from Model (PSM) and to obtain a
significant gain in productivity. This transition from PIM to
PSM involves mechanisms for model transformation and
model description of the platform (Platform Description Model

- PDM). This is, therefore, organized according to a
development cycle "Y" introduced by the Model Driven
Development - MDD. This new Architecture proposes a
pyramidal form of abstraction’s organization. We find at the
base of the pyramid the real world, and in the level M1 models
representing this world. Meta-models for the definition of these
models are the level M2. Finally, the meta-meta-model, unique
and meta-circular, is shown at the top of the pyramid (level
M3). However, many meta-models have emerged to provide
their specific features of particular domain. To escape the
threat to emerge independently and inconsistently this wide
variety of meta-models, there was an urgent need to provide a
general framework for their description. The logical answer
was therefore to provide a language for defining meta-models
which itself took the form of a model: it was the meta-meta-
model MOF (Meta-Object Facility) [6]. The Figure 1 below
shows this pyramidal architecture of MDA.

Furthermore, MDA is based on UML that can be
specialized or extended to express the required detailed models.
This extension or specialization of UML can be performed by
using the UML Profile, a standardized set of extensions
(consisting of stereotypes and tagged values) defines a UML
environment tailored to a particular use, such as modeling in a
specific environment or on a specific platform. PIMs will be
modeled using the profile for Enterprise Distributed Object
Computing (EDOC) or Enterprise Application Integration
(EAI), both near the end of their successful adoption processes.
The UML profile for CORBA completed adoption by OMG in
2000; profiles for other platforms are in process.

Regarding the transformation languages, we quote Query /
View / Transformation (QVT) [9] which may be considered as
one of the most appropriate model’s transformation language
proposed by the OMG, and is now considered as a standard
supported by several parties interested in the transformation of
models [10]. Another model’s transformation language that is
based on OCL and extends the QVT language and has become
increasingly used is the ATL (Atlas Transformation Language
[11], [12], [13], [14], [15]).

Figure 1: Pyramidal architecture of abstraction levels proposed by the

OMG

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 02– Issue 01, January 2013

www.ijcit.com 31

C. Related works

This paper subscribes in global approach that aims to
automate the software engineering process by covering all the
phases of the development starting from the requirement
specification to code implementation. In [18] we presented a
software engineering process based on UML for leading an IT
project by specifying new artifacts and practices. The next
work [19] introduced the model driven engineering approach
and our proposed MDA approach to automate the software
development process presented in [18] with different possible
metamodels and transformation for the mapping between them.
However, that paper focuses only on generating one of the
most important PIMs increments of the analysis phase, the
Sequence diagram of system’s internal behavior by a model
transformation from the external one. This PIM is then used in
[20] to generate automatically the code for a specific platform
by a model to text transformation. In that paper a structured
PSM model for the java platform was automatically generated
and extended to support EJB capabilities using UML profiles
technology. Finally, an executable implementation of the
system for the JAVA platform was generated.

The present paper completes our previous works for the
automation of the entire proposed software development
process by allowing generating the operation of complex
classes through their state chart. This approach is especially
efficient when modeling systems with classes that know an
excessive change of their state more than interacting with other
objects like soda machine distributor, cashier, some robots…

II. INPUT META-MODELS:

A. Transition state diagram’s meta-model:

State Transition Diagram (TSD) has been used right from
the beginning in object-oriented modeling. The basic idea is to
define a machine that has a number of states (hence the term
finite state machine) which define a set of values to attributes
of the object at any given time. The machine receives events
from the outside world, and each event can cause the machine
to transition from one state to another. Thus this machine
represents the class’s life cycle which is essential for
representing and shaping the dynamics of the system and
giving a formal definition of system’s behavior.

Moreover, it is recommended to trace state diagram only
for complex classes that have states excessively variables and
are often coveted by other classes. In this case, it is appropriate
to create a state diagram of these classes in order to study their
state variation rather than study their interactions with other
ones. Finally analyze its "unstable" behavior improves our
understanding of the problem and allows furthermore detecting
some object’s methods. So the state diagram allows us to
complete the design class diagrams with methods that
correspond to different actions and activities of the state
diagram.

The transition state diagram shows the dynamic of the class
by presenting its different states and transitions between them.
This transition between states is activated by receiving an event
that is composed of parameters, condition and it executes one

action or activity. A state has a limited time and can be simple
or complex. A Complex state is composed of at least two other
states. The transition from one state to another is performed by
an external event. A class can also have an internal transition
without change of state trigged by an internal event. Some of
those internal events are predefined (entry, do, on event, after
and exit). Event performs actions or activities that are
transformed into operations or class methods.

In some cases, computer systems have more operations
outcomes from events rather than operations outcomes from
the interaction between objects. In this case, transition states
diagrams are best placed to find these operations than other
interaction diagrams (collaboration diagram, sequence diagram
of system’s internal behavior ...) such as Cash machine,
Drink’s Distributor, Robot systems and classes under workflow
process...

The example of soda machines is among the interesting
example which shows the importance of using the state
transition diagram (Figure 2).

Therefore, In Figure 3 we present the TSD metamodel based
on the OMG’s MOF specifications [6]. In this metamodel, the
StateMachine element start with a particular simple state the
initialState and it includes a set of abstract state class which are
two kinds: SimpleState and ComposanteState, this latter is
composed by at least two other nested states. The transition
between them is represented by the mean of a Transition meta-
class that represents transition between two states (oldState and
newState). A transition may be trigged when a condition was
satisfied by an event that may contain parameters, the trigger
event can be internal InternalEvent, represented by the default
events: entry, do, exit, after or other events; or external
ExternalEvent. Finally, an event performs action which will
then be transformed to methods.

Figure 2: soda machine’s transition state diagram

Wait coins
Do/displayHello

(loop)

Insertion coins
Entry/displayAmount

Exit/displayTotal

Wait Drink
After(5min)/destructCons

Delivery Drink
do/displayThanks

(loop)

Startup distributor

arrival coin(num,datec)/CreateCons

abandon /destructCons

end insertion

abandon /destructCons

Arrival drink /returnCoin

Retreive drink /addCons

Stop distributor

New coin/checkCoin

Old State
-entry/action
-do /activity

-on event/action
-exit/action

New
State Event (parameters)

[condition]/activity

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 02– Issue 01, January 2013

www.ijcit.com 32

B. Domain class diagram’s meta-model:

A class diagram is one of the leading diagrams in a UML
modeling. It allows you to dissect the system by showing its
components (classes) then allowing a true object-oriented
modeling. It provides a static view of the modeled system.
Sometimes it is used for modeling the vocabulary of the
system. This implies a decision that is based on which concepts
or entities are part of the system and which concepts or entities
are outside its boundaries. Class diagram is also used to build
domain models, where all of the concepts that are present in the
application domain are shown in the diagram, including the
relationships between them. They can also be used to model
collaborations among a set of classes, which work together to
provide a collaborative behavior, or even to represent a
database schema.

It is possible to build class diagram at different abstraction
levels and with different degrees of detail. For instance,
analysis models, which are typically used in the first phase of
the development process, have no implementation details,
while design class diagrams would have implementation
details.

A domain model, is often referred as an analysis model, and
might be represented by a particular kind of UML class
diagram. It explains the structure of the application domain
rather than the application structure itself. It focuses on the

domain concepts, rather than on the software entities. While
most of the elements will be present in the design model later
on, new ones could even appear.

UML class diagrams that commonly consist only of classes
and their relationships can represent this kind of model. The
classes, which represent the identified concepts in the domain,
have only some attributes. Operations should not be present.
Here, the most frequent relationship among classes is the
association, which may have several adornments attached to its
ends. An adornment may be a role name called also owned end
or a multiplicity.

In our meta-model presented in Figure 4 below, we have
shown that the classes with their attributes and relationships.
The methods will not be presented, and we will call it analysis
class diagram. The element AssociationEnd refers to a role in
an association accompanied with its multiplicity.

III. TARGET META-MODEL: DESIGN CLASS DIAGRAM.

While conceptual models are problem-oriented, design
class diagrams reflect a solution-oriented structure. Indeed,
while conceptual models are concerned with the entities and
the relationships that are present in the problem domain, the
design class diagrams focus on the way in which the solution is
given. It contains full method’s signature.

Figure 3: Transition state’s meta-model.

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 02– Issue 01, January 2013

www.ijcit.com 33

Figure 4: Meta-model of domain class diagram

Figure 5: Meta-model of design class diagram.

superclass 0..*

ownedattributes

Enumeration

PrimitiveType

classifier

type

0..1

0..1
*

name : EString

Parameter

 name : EString
modifier: EString
Visibility :EString

Operation

Parameters
0..*

operations
0..*

return
0..1

type
1

superclass 0..*

ownedattributes

Enumeration

PrimitiveType

classifier

type

0..1

0..1

*

Class

-isAbstract : EBoolean
-isController :EBoolean

ownedEnds 2..*

1..1

Propoerty

-name : EString
-isDerived: EBoolean
-default: EString

Classifier

-name : EString
Association

-name : EString

DataType

1..*

1..1 association

ownedEnds 2..*
Propoerty

-name : EString
-isDerived: EBoolean
-default: EString

Classifier

-name : EString

Class

-isAbstract : EBoolean
-isController :EBoolean

Association

-name : EString

DataType

1..*

1..1

1..1

association

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 02– Issue 01, January 2013

www.ijcit.com 34

A design class diagram can be obtained following an
analysis of interaction and collaboration between objects.
Besides, the structural elements present in domain models,
design class diagrams have other details that can be expressed
in UML (such as all of the methods identified in the
collaboration diagrams, navigation in the association ends,
scope and type of the attributes and operations, and even new
associations discovered during the design phase). Not all of the
classes present in the conceptual model will be part of the
design diagram of the system. Only those that participate in the
object interactions in order to achieve the functionality required
for the software system are included. Furthermore, other
classes can be added to those existing ones in domain model
such as the distributor class called also the system controllers.

The Figure 5 presents the metamodel of the design class
diagram. We can see that it contains the same element as the
domain one and it is enriched with new elements such as
operations.

IV. GENERATING OPERATIONS SIGNATURES BY MODEL

TRANSFORMATION

A. Principe

The MDA approach is based largely on creating a platform
Independent Models (PIM) that can be mapped later to a
platform specific model (PSM) and generate later the code for
the suited platform. Transformation methods are indispensable
to change the level of abstraction (vertical transformation)
when transforming a PIM to a PSM or a PSM to PIM, or to
keep the same level of abstraction (horizontal transformation)
when transforming a PIM to PIM or a PSM to PSM.

The transformation is an MDE approach of mapping or
conversion from a source model to a target model according to
their meta-models. If both source and target models conform to
the same meta-model transformation, then, it is called
endogenous. Otherwise it is exogenous. The Figure 6 illustrates
these two types of transformation.

In this paper, we proposed an exogenous transformation
that accepts two separate meta-model sources. The first source
meta-model is the transition state diagram which is a PIM
describing the dynamic of some complex classes. The second
input meta-model is the domain class diagram representing the
business domain and system’s structure. The target meta-model
is a design class diagram representing the implementation of
the solution. The main objective of this transformation is to
generate the methods signature from the transition state based
on the event that activate the transition between them and feed
the domain class diagram with this operations specification to
get the design class diagram.

B. Transofrmation Language:

There are many languages for model transformation. We
find generalist languages that are based directly on an abstract
model representation. Application Programming Interface
(API) of EMF is an example of this kind which is coupled with
JAVA and allows manipulating the model as a graph.

Figure 6: Different types of transformation

Therefore the programmer should search the information in the
model and gives an explicit order of the rules and manage the
resulted objects.

In purpose to make an abstraction of defining model
transformation and make transparent the implementation
details, a DSML was dedicated for model transformation. This
approach requires defining a metamodel dedicated to
transforming models and a tool allowing executing these model
transformations. ATLAS Transformation Language (ATL) [16]
is an example of this kind which will be used along this paper.
It is a hybrid language (declarative and imperative) that allows
defining a model to model transformation (called Module) in
the form of a set of mapped rules. It allows also defining model
to text transformation (called Query). The transformation takes
one or many source models (defined with an Ecore
metamodels). ATL is based on the main idea that the models
are first-class entities. Therefore, and since everything is
model, the transformations are also considered models. We can
therefore apply their transformations, and it is one of the other
important points about ATL. Indeed, it provides the means to
achieve higher-order transformations (HOT). That is to say
which changes the source and / or targets are themselves
transformations.

The OMG has defined the standard QVT
(Query/View/Transformation) [17] for model transformation.
The metamodel of the QVT is conforming to MOF and OCL
and is used to navigate in the models. This metamodel is
presented in tree sub-languages for model transformation
characterized by the paradigm of implementation for
transformation definition (declarative, imperative, hybrid).

 Endogenous Transformation

Transformation

Conforme To

 Meta-model

 Target

model
 Source

model

Conforme To

 Exogenous Transformation

Transformation

Source Meta-

model

 Target

model

 Source

model

Conforme To

Target Meta-

model

Conforme To

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 02– Issue 01, January 2013

www.ijcit.com 35

C. Transformations performed:

In this section, we present the main rules of the
transformation performed to generate the design class diagram
with the different classes and association deduced from the
domain class diagram and using the transition state diagram to
generate the method’s specification.

Main Transformation rules (Figure 8):

From the Domain class diagram meta-model, all the present
elements with their instance will be mapped to the
corresponding elements in design one. Thereby, an analysis
class is transformed into a design class keeping its attributes,
modifiers and its associations.

However, the meta-model of the transition state diagram
allows us to transform the activities to methods that will feed
into the corresponding design classes of the target diagram. In
fact, the transition state diagram presents the object state
change when receiving an event. When this event occurs, the
object will execute an activity to respond. Supplement
information and data needed to accomplish this task will be
given as parameters of this event. Therefore, we have all the
necessary elements to generate clearly and correctly the
method signature. Thus, for each transition between two states,
we will map the activity to an operation in the corresponding
domain class. To complete the specification of the operation
we will look for the parameters and returned values from the
event that has activated the transition.

Figure 7: principal function used in the transformation.

Figure 8: principal mapped rules used in the transformation.

Principal Functions used in the transformation (Figure 7):

To perform the model transformation for the running
example we have written a several function in ATL that are
called helper.

So, to transform each attribute of the domain class diagram
into a target attribute we developed the method or helper
toStringProperty (), which provides visibility, type, and
modifier of an attribute i.e. its full code declaration. Example
of this helper return: " public final code : int ".

helper context ACD!Property def : toStringProperty():
String =
 if self.visibility.oclIsUndefined() and
self.modifier.oclIsUndefined() then
 self.name+':'+self.type.name

 else if self.visibility.oclIsUndefined()then
 self.modifier+' '+
self.name+':'+self.type.name
 else self.visibility + ' '+
self.name+':'+self.type.name
 endif
 endif;

helper context TSD!Action def : getSignature(): String =
if self.return.oclIsUndefined() and
 self.visibility.oclIsUndefined() then
 self.name+'('+self.getParametres()+'):void'
else
 if self.return.oclIsUndefined() then

self.visibility+''+self.name+'('+self.getParametres()+'):void'
 else

self.name+'('+self.getParametres()+'):'+self.return.name
 endif
endif;

rule ACDClass2DCDClass{
from s:ACD1!Class
to t: DCD!Class (

name <- s.name,
superClass <- s.superClass,
ownedEnds <- s. ownedEnds
)

}

rule ACDProperty2DCDProperty{
from s:ACD!Property
to t: DCD!Attribut (

declaration <- c.toStringProperty(),
name <- s.name,
type <- s.type,
visibility <- s.visibility,
modifier <- s.modifier,
anclass <- s.class
)

}

rule ACDAssociation2DCDAssociation{
from s:ACD!Association
to t:DCD!Association(

name<-c.name
)
}

rule TSDActivity2DCDOperation{
from s:TSD!Activity
to t: DCD!Operation (

declaration <- s.getSignature(),
name <- s.name,

 classe <- DCD!Classe.allInstances()-> select(d | d.name =
c.transition.oldstate.statemachine.classe.name).first(),

return <- s.return,
visibility<-s.visibility
)

}

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 02– Issue 01, January 2013

www.ijcit.com 36

Figure 9: the resulting design class diagram model.

For each method, we get its signature using the method
getSignature (). This helper explore the entire transition
diagram and look for every activity and transform it to a
method in the corresponding class including parameters that
was gathered from the event parameter as well as the returnd
value. An example of this kind: public checkCoin() : boolean

The resulting design class diagram for the running example
obtained by the performed model transformation is represented
in the Figure 9 above.

V. CONCLUSION AND PERSPECTIVES:

In this paper, we introduced the Model Driven Engineering
(MDE) approach and its implementation in Model Driven
Architecture – MDA that was proposed by the OMG and its
utility in relation with the partial or total automation of the
methods and the process applied in software engineering.

 Our work falls into this category of research and in this
way; we have presented in this paper an example of an
exogenous and vertical models transformation using a Diagram
of transition states, a domain class diagram to obtain the target
model design class diagram. The main idea of this paper is to
use the transition state diagram to enrich the domain class
diagram to obtain the design one by transforming the activities
triggered in recipient of an event into a method. Allowing thus
to obtain full and complete signature of different methods. This
approach is very useful in the case of a system that knows more
interaction that comes from events rather than those comes
from interaction with other objects as in soda distributor or an
ATM…Thus, the present paper complete our previous ones
that aims to automate the entire software development process.

Also, this work opens the new perspectives like others
passages that can be proposed to automate the entire software
development process such as: UP, RAD, 2TUP, XP… by
presenting a set of transformations between their increments.

REFERENCES
[1] Object Management Group, Inc. Unified Modeling Language (UML)

2.1.2 Infrastructure, November 2007. Final Adopted Specification.

[2] Object Management Group, Inc. Unified Modeling Language (UML)
2.1.2 Superstructure, November 2007. Final Adopted Specification.

[3] OMG, « Object Constraint Language (OCL) Specification, version 2.0 »,
2006. http ://www.omg.org/spec/OCL/2.0/.

[4] Jean Bézivin and Olivier Gerbé. Towards a Precise Definition of the
OMG/MDA Framework. In Proceedings of the 16th IEEE international
conference on Automated Software Engineering (ASE), page 273, San
Diego, USA, 2001. IEEE computer Society Press.

[5] Ed Seidewitz. What models mean. IEEE Software, 20(5) :26–32, 2003.

[6] Object Management Group, Inc. Meta Object Facility (MOF) 2.0 Core
Specification, 2004

[7] P. Harmon, The OMG’s model driven architecture and BPM, Business
ProcessTrends 2 (5) (2004).

[8] Object Management Group, MDA Guide Version 1.0.1, 2003.

[9] Object Management Group, Meta Object Facility (MOF) 2.0
Query/View/Transformation specification, OMG Adopted Specification
ptc/05-11-01, 2005,

[10] I. Kurtev, State of the art of QVT: a model transformation language
standard,in: Applications of Graph Transformations with Industrial
Relevance, ThirdInternational Symposium (AGTIVE), Kassel,
Germany, 2007.

[11] ATL - a model transformation technology, http://www.eclipse.org/atl/

[12] Freddy Allilaire , Jean Bézivin , Frédéric Jouault , Ivan Kurtev, ATL –
Eclipse Support for Model Transformation (2006) : Proc. of the Eclipse
Technology eXchange Workshop (eTX) at ECOOP

[13] Jean Bézivin , Erwan Breton , Grégoire Dupé , Patrick Valduriez ,-The
ATL Transformation-based Model (2003) , Management Framework,
Research Report, Atlas Group, INRIA and IRIN

[14] Ivan Kurtev , Atlas Group , Rule-based Modularization in Model
Transformation Languages illustrated with ATL (2006) : 21st Annual
ACM Symposium on Applied Computing (SAC2006)

[15] Jean Bézivin, Grégoire Dupé, Frédéric Jouault, Gilles Pitette, Jamal
Eddine Rougui , First experiments with the ATL model transformation
language:Transforming XSLT into XQuery— 2003 — 2nd OOPSLA
Workshop on Generative Techniques in the context of Model Driven
Architecture

[16] J. Miller and J. Mukerji, MDA Guide, Object Management Group, Inc.,
jun 2003, version 1.0.1. [Online]. Available:
http://www.omg.org/docs/omg/03-06-01.pdf

[17] Request for Proposal: MOF 2.0 Query / Views / Transformations RFP,
Object Management Group, Inc., apr 2002. [Online]. Available:
http://www.omg.org/docs/ad/02-04-10.pdf 2006. Final Adopted
Specification.

[18] BOUSETTA Brahim, EL BEGGAR Omar, GADI Taoufiq. UML
modeling guide, ISBN 978-9954-580-39-9. Itc-learning edition 2011.

[19] BOUSETTA Brahim, EL BEGGAR Omar, GADI Taoufiq. Automating
software development process: Analysis-PIMs to Design-PIM model
transformation. Under review.

[20] EL BEGGAR Omar, BOUSETTA Brahim, GADI Taoufiq. Automatic
code generation by model transformation from sequence diagram of
system’s internal behavior. International Journal of Computer and
Information Technology (IJCIT) December 2012 Volume 1, Issue: 2.
p129-146.

