International Journal of Computer and Informatioachnology (ISSN: 2279 — 0764)

Volume 02— Issue 01, January 2013

Generating operations specification from domain
class diagram using transition state diagram

BOUSETTA Brahim*, EL BEGGAR Omar, GADI Taoufiq

Veille pour les Technologies Emergentes Laboratory
Faculty of Science and Technology, Hassatdiversity
Settat, Morocco
* ibbousetta@gmail.com

Abstract—UML is nowadays the standard for modeling computer
systems and used in software engineering to desceitand model
the different phases of software life’'s cycle fronrequirements
specification phase to the implementation of the ci®. Among the
UML diagrams or models essential to produce this de is the
design class diagram that determines the various kiness objects
and their behavior or dynamic part, i.e. methods. Tiese methods
may be derived in a contemplative way from interagon models
made in the preliminary phases of software modelingsuch as:
Sequence diagram of system’s internal behavior, daboration
diagram and state transition diagram. In 2000, themodel driven
architecture (MDA) approach proposed by the OMG pramotes
the usage of models throughout the entire developme process.
Starting from a so-called Computation Independent Mdel
(CIM), different kinds of transformations lead to Platform
Specific Models (PSMs). These PSMs can be used lates
generate code for a specific platform.

Within this context, this paper aims to facilitatethe achievement
of the implementation phase by providing an automact

transformation for generating the signatures of thedifferent

methods of the system’'s complex classes through the
transition’s state diagram. For this, we propose anodel-to-model

transformation taking as source models: the domainclass

diagram and transition’s state diagram, and then wegenerate the
target model: the design class diagram using Atlas
transformation Language (ATL).

Keywords-component; MDE, State transition, ATL, Model
transformation, Meata-modeling, Domain Class diagram;

. INTRODUCTION

A. Context

may be derived from other steps made in the eastages of
modeling, such as sequence diagram of system’snaite
behavior and state transition diagram for complagses. Such
modeling process can be improved by using modeledri
engineering (MDE) that promotes the usage of models
throughout the entire development process.

The Model Driven Architecture (MDA) is an
implementation of the MDE initiated in 2000 by &G [1],
[2]. Developing with this new approach starts frarso-called
Computation Independent Model (CIM), different lsnef
transformations lead to Platform Specific ModelsSB).
These PSMs can be used to apply a set of modebtt@imor
model-to-text transformation to derive automaticdhe final
implementation of the system.

The present paper subscribes in this area of &@sedre
present an approach to automatically generate tbthaus
signatures of system’s complex class through theirsition’s
state diagram. Thus, we propose a model-to-model
transformation taking as source models, the arsmlgtiss
diagram and transition’s state diagram, and theregde the
design class diagram using Atlas transformation guage
(ATL). The choice of ATL as transformation languagemes
from the fact that it extends the OCL (Object Coaist
Language) [3] which remains a standard indepenafembdels
engineering development’s platform, Also, becab&eATL is
integrated within the eclipse/EMOF platform, that wsed to
implement the approach. In addition to that, thd_Affers the
possibility of using several meta-model sourcesilev@VT
takes only a meta-model of input processing. We afed the
Eclipse’s ECORE meta-model that implements the Meta
Object Facility- MOF [6] to represent the differenteta-
models used in this approach.

UML is nowadays the standard for modeling computer

systems [1], [2] and used in software engineermgld@scribe
the different phases of manufacturing software, mfro
requirements specification phase to the implemiomtaif the
code. Different models are used during the devetogm
process and can be deduced from each other. Tihehlase of
this process is performed largely on the desigasctiiagram
for determining the various business objects arit tiehavior,
i.e. the treatment they carry out. These treatmentsethods

www.ijcit.com

To illustrate our approach, an example of soda mach
distributor system will be presented at the différgteps of the
approach with different models and their meta-medeal well
as the transformation performed.

The remaining of the paper is structured as folhgwiln
the next section, we present the source modelshf t
transformation and their meta-models (state tramsit
diagram’s meta-model and the domain class diagran@ta-

29

International Journal of Computer and Informatioachnology (ISSN: 2279 — 0764)

model). Then, Section Il is devoted to the tangeta-model,
design class diagram. While the next section shomes
different transformation rules. In the end, we dode this
work with few prospects.

B. Model Driven Engineering (MDE) : principles

The model driven engineering (MDE) is a new appioaic
software development that gives more attention tweting
rather than programming. Indeed, it promotes thes usf
models at different phases of software developnemd
provides a variety of new paradigms: The model
transformation (Model-to-model (M2M) and Model-txt
(M2T)) to automatically generate some or all of software. It
aims to up the abstraction by focusing on meta-niagi¢o
define language for model's expression (Domain Hipec
Modeling Languages — DSML) and validation. The main
concept of this approach is the model that candfimed as an
abstraction of a system that can provide answergiéstions
on it [4], [5]. The language used to create thidelads called
meta-model that is also in the form of a model knoas
modeling language [6]. During processing, the nmetalels
will validate instances of the source models anghutumodel.

A meta-meta-model is a model that describes a meteling
language, i.e. necessary model's elements for idgfin
modeling languages. It has also the ability to disdtself.

The Model Driven Architecture MDA is an
implementation of MDE proposed by the OMG in 20@] [
which is based on the UML standard [1], [2]. Softwa
development in the MDA is principally based on with
Platform-Independent Model (PIM) of an applicatson'
business functionality and behavior, constructedngusa
modeling language based on OMG's Meta Object Bacili
(MOF) [6]. This model remains stable as technolegylves,
extending and thereby maximizing software
investment-ROI. Indeed, the MDA defines three Isvef
model’s abstraction [7]:

A requirement view represented by the Computation
Independent Model (CIM) describing the situation i
which the system will be used and that is sometime
called a domain model or a business model;

platform Independent Model (PIM) presenting the

business domain system without considering the

architecture of the platform that will be used foe
implementation of the code,

And a code view represented by the platform Sjeecif
Model (PSM) that combines the view requirement
specifications with a platform of execution usedtty
system [8].

The main objective of MDA is to develop sustainable
models (PIM), independent of the technical detafsthe
execution platforms (JEE, .Net, PHP, etc.), to vallthe
automatic code generation from Model (PSM) anditaio a
significant gain in productivity. This transitiomofn PIM to
PSM involves mechanisms for model transformatiord an
model description of the platform (Platform Destidp Model

www.ijcit.com

i

An analysis and design view represented by thg

Volume 02— Issue 01, January 2013
- PDM). This is, therefore, organized according @0
development cycle "Y" introduced by the Model Drive
Development - MDD. This new Architecture proposes a
pyramidal form of abstraction’s organization. Wadfiat the
base of the pyramid the real world, and in thelld® models
representing this world. Meta-models for the déifini of these
models are the level M2. Finally, the meta-meta-ehoahique
and meta-circular, is shown at the top of the pyda(tevel
M3). However, many meta-models have emerged toigeov
their specific features of particular domain. Tacage the
threat to emerge independently and inconsistetily wide
variety of meta-models, there was an urgent negitdeide a
general framework for their description. The logjiemswer
was therefore to provide a language for definingaameodels
which itself took the form of a model: it was thestarmeta-
model MOF (Meta-Object Facility) [6]. The Figurehklow
shows this pyramidal architecture of MDA.

Furthermore, MDA is based on UML that can be
specialized or extended to express the requiregle@tmodels.
This extension or specialization of UML can be perfed by
using the UML Profile, a standardized set of extams
(consisting of stereotypes and tagged values) elefan UML
environment tailored to a particular use, such adating in a
specific environment or on a specific platform. BIMill be
modeled using the profile for Enterprise Distriltit®bject
Computing (EDOC) or Enterprise Application Integvat
(EAI), both near the end of their successful adwpprocesses.
The UML profile for CORBA completed adoption by OMG
2000; profiles for other platforms are in process.

Regarding the transformation languages, we quoenQu
View / Transformation (QVT) [9] which may be considd as
one of the most appropriate model's transformatamguage
proposed by the OMG, and is now considered as ralatd

return orsupported by several parties interested in thesoamation of

models [10]. Another model’'s transformation langudlat is
based on OCL and extends the QVT language andduasriz
increasingly used is the ATL (Atlas Transformaticenguage
11], [12], [13], [14], [15]).

S

Figure 1: Pyramidal architecture of abstractioreleyroposed by the
OoMG

30

International Journal of Computer and Informatioachnology (ISSN: 2279 — 0764)

C. Related works

This paper subscribes in global approach that aions
automate the software engineering process by cuyeti the
phases of the development starting from the remrg
specification to code implementation. In [18] weegented a
software engineering process based on UML for fepdin IT
project by specifying new artifacts and practicEhe next
work [19] introduced the model driven engineerimpm@ach
and our proposed MDA approach to automate the softw
development process presented in [18] with diffepmssible
metamodels and transformation for the mapping betvieem.
However, that paper focuses only on generating anthe
most important PIMs increments of the analysis phdke
Sequence diagram of system’s internal behavior byodel
transformation from the external one. This PIMhisrt used in
[20] to generate automatically the code for a dmeplatform
by a model to text transformation. In that papestraictured
PSM model for the java platform was automaticaliyerated
and extended to support EJB capabilities using Ubvifiles
technology. Finally, an executable implementatioh tioe
system for the JAVA platform was generated.

The present paper completes our previous worksher
automation of the entire proposed software devetopm
process by allowing generating the operation of mem
classes through their state chart. This approadspecially
efficient when modeling systems with classes thatvk an
excessive change of their state more than inteaetith other
objects like soda machine distributor, cashier,esoobots...

. INPUT META-MODELS:

A. Transition state diagram’s meta-model:

State Transition Diagram (TSD) has been used figim
the beginning in object-oriented modeling. The badéa is to
define a machine that has a number of states (héecterm
finite state machine) which define a set of valtesattributes
of the object at any given time. The machine rezgigvents
from the outside world, and each event can cawsentchine
to transition from one state to another. Thus thigchine
represents the class’s life cycle which is essenfia
representing and shaping the dynamics of the sysach
giving a formal definition of system’s behavior.

Moreover, it is recommended to trace state diagoaiy
for complex classes that have states excessiveigblas and
are often coveted by other classes. In this cageappropriate
to create a state diagram of these classes in trdgudy their
state variation rather than study their interadiovith other
ones. Finally analyze its "unstable" behavior inwes our
understanding of the problem and allows furtherna@tecting
some object's methods. So the state diagram allesvgo

complete the design class diagrams with methodg thi

correspond to different actions and activities bé tstate
diagram.

The transition state diagram shows the dynamib®fttass
by presenting its different states and transitioasveen them.
This transition between states is activated byivawpan event
that is composed of parameters, condition andéatetes one

www.ijcit.com

Volume 02— Issue 01, January 2013

action or activity. A state has a limited time ai@h be simple
or complex. A Complex state is composed of at leastother
states. The transition from one state to anothpeiformed by
an external event. A class can also have an intéanasition
without change of state trigged by an internal eévB8ome of
those internal events are predefined (entry, dogvant, after
and exit). Event performs actions or activities tthae
transformed into operations or class methods.

Old State
-entry/action
-do /activity
-on event/actio
-exit/action

New

Event (parameters) State

ondition|/actvity

In some cases, computer systems have more operation

outcomes from events rather than operations outsdinoen
the interaction between objects. In this case,stian states
diagrams are best placed to find these operatioas other
interaction diagrams (collaboration diagram, seqaatiagram
of system’s internal behavior ..) such as Cash hinac
Drink’s Distributor, Robot systems and classes umd@kflow
process...

The example of soda machines is among the integesti
example which shows the importance of using thdesta
transition diagram (Figure 2).

Therefore, In Figure 3 we present the TSD metambdskd
on the OMG’s MOF specifications [6]. In this metated the
StateMachineelement start with a particular simple state the
initialStateand it includes a set of abstract state classhndie
two kinds: SimpleStateand ComposanteStatethis latter is
composed by at least two other nested states. rnsition
between them is represented by the meanTohasitionmeta-
class that represents transition between two stali@Stateand
newState A transition may be trigged when a condition was
satisfied by an event that may contain parametbestrigger
event can be internéthternalEventrepresented by the default
events entry, do, exit, after or other events; or external
ExternalEvent Finally, an event performs action which will
then be transformed to methods.

New coin/checkCoin
arrival coin(num,datec)/CreateCons

Insertion coins
Entry/displayAmount
ns Exit/displayTotal

Wait coins
Dol/displayHello
(loop)

Startup distributo

abandon /destructCo

'»

abandon /destructCons

Rejreive drink /addCons end insertion

Wait Drink
After(5min)/destructCons

Delivery Drink
do/displayThanks
(loop)

Arrival drink /returnCoin

Figure 2: soda machine’s transition state diagram

31

International Journal of Computer and Informatioachnology (ISSN: 2279 — 0764)

B. Domain class diagram’s meta-model:

A class diagram is one of the leading diagrams WiViL
modeling. It allows you to dissect the system bgveihg its
components (classes) then allowing a true objeettmd
modeling. It provides a static view of the modelgtem.
Sometimes it is used for modeling the vocabulary trod
system. This implies a decision that is based oistwtoncepts
or entities are part of the system and which cotscepentities
are outside its boundaries. Class diagram is asd to build
domain models, where all of the concepts that egsgmt in the
application domain are shown in the diagram, inicigdthe
relationships between them. They can also be usedodel
collaborations among a set of classes, which woglether to
provide a collaborative behavior, or even to repnésa
database schema.

It is possible to build class diagram at differabstraction
levels and with different degrees of detail. Fostamce,
analysis models, which are typically used in thstfphase of
the development process, have no implementatioilslet
while design class diagrams would have implemesmati
details.

A domain model, is often referred as an analysideh@and
might be represented by a particular kind of UMlassl
diagram. It explains the structure of the applaatdomain
rather than the application structure itself. ltdses on the

Volume 02— Issue 01, January 2013

domain concepts, rather than on the software esititiVhile
most of the elements will be present in the desigrdel later
on, new ones could even appear.

UML class diagrams that commonly consist only afsks
and their relationships can represent this kindnoflel. The
classes, which represent the identified concepteardomain,
have only some attributes. Operations should nopresent.
Here, the most frequent relationship among classethe
association, which may have several adornmentsheitito its
ends. An adornment may be a role name called alsed end
or a multiplicity.

In our meta-model presented in Figure 4 below, aeeh
shown that the classes with their attributes amatiomships.
The methods will not be presented, and we will itadihalysis
class diagram. The element AssociationEnd refees role in
an association accompanied with its multiplicity.

. TARGET META-MODEL: DESIGN CLASS DIAGRAM

While conceptual models are problem-oriented, dhesig
class diagrams reflect a solution-oriented strectundeed,
while conceptual models are concerned with thetiestand
the relationships that are present in the problemain, the
design class diagrams focus on the way in whiclstihation is
given. It contains full method'’s signature.

1

condition
g state - newstate H Transition e = B condition

T name (ESWIng | 1 % order : EInt 0.1 @ guard : EString
states oldstate
1.* states| 2. *

ransitions §1,.*
]
H SimpleState H CompositeState
initialState T'1
b 1 | event parameters
=V
H stateMachine | H Event - L] =] F‘arameter
T name : ESTing | events | T name @ EString
B 1.

A

[]
1, #@ctions 0.1 action H InternalEvent H ExternalEvent
H Action 2 name : EString
T name : ESfring a\
H do H exit H entry H after H other
T name : EString
Figure 3: Transition state’s meta-model.

www.ijcit.com

32

International Journal of Computer and Informatioachnology (ISSN: 2279 — 0764)
Volume 02— Issue 01, January 2013

Classifier G
o1 Association
-name : EString W
ssifier -name : EString
PrimitiveType /]
1..1\ association
DataType
5 % ownedEnds
* Propoerty
Enumeration
0.1 type -name : EString
Class -isDerived: EBoolean
i1 1.+| -default: EString
-isAbstract : EBoolean [P simsdamboe
-isController :EBoolean
0-* superclass
Figure 4: Meta-model of domain class diagram
Classifier
fim;” Association
e -name : EString 0.1 :
4 classifier -name : EString
JAN
PrimitiveType ;
1..1| association
DataType
: o ownedEnds
Enumeration N
0.1 type Class Propoerty
11 .| -name : EString
-isAbstract : EBoolean | L1 _isDerived: EBoolean
e — Op%ralions -isController :EBoolean ownedattribute] -d€fault: EString
name : EString Operation
name : EString
F’afg":ete’t . modifier: EString 0-* superclass
Visibility :EString

Figure 5: Meta-model of design class diagram.

www.ijcit.com 33

International Journal of Computer and Informatioachnology (ISSN: 2279 — 0764)

A design class diagram can be obtained following af

analysis of interaction and collaboration betwedrneats.
Besides, the structural elements present in domaidels,
design class diagrams have other details that eagxpressed
in UML (such as all of the methods identified ineth
collaboration diagrams, navigation in the asscmmtends,
scope and type of the attributes and operatiors,eaen new
associations discovered during the design phass)alNof the
classes present in the conceptual model will bé phathe
design diagram of the system. Only those thatgpaie in the
object interactions in order to achieve the funwidy required
for the software system are included. Furthermarther
classes can be added to those existing ones inidamadel
such as the distributor class called also the systmntrollers.

The Figure 5 presents the metamodel of the dedags c
diagram. We can see that it contains the same ateasethe
domain one and it is enriched with new elementsh sas
operations.

IV. GENERATING OPERATIONS SIGNATURES BY MODEL
TRANSFORMATION

A. Principe

The MDA approach is based largely on creating Hpia
Independent Models (PIM) that can be mapped late@a t
platform specific model (PSM) and generate laterabde for
the suited platform. Transformation methods aréspehsable
to change the level of abstraction (vertical transftion)
when transforming a PIM to a PSM or a PSM to PIMi®
keep the same level of abstraction (horizontalsfiemmation)
when transforming a PIM to PIM or a PSM to PSM.

Volume 02— Issue 01, January 2013

Endogenous Transformation

—————

/’
. Meta-model)
~ -

Conforme Tg~ *. Conforme To
4 N

4 A Y
/ N
/z’—‘\\) /’——-\\
¢+~ Source \‘Transformatlon /" Target |
\
_ model .7/ .. s _ model 7/
S~ -- i S -~

- -~

+“Target Meta- "«
\ /
~._model __-
==
]
Conflbrme To

N —— -

)
Conforime To
]
~ . TS
e ~ Transformation - N
[Source \————»/ Target

Vi " __?Q
N\ - /
< _model_. e . _Mmodel .

- —_—-

Figure 6: Different types of transformation

Therefore the programmer should search the infoomén the
model and gives an explicit order of the rules erhage the
resulted objects.

In purpose to make an abstraction of defining model
transformation and make transparent the implementat

The transformation is an MDE approach of mapping odetails, a DSML was dedicated for model transfoiomatT his

conversion from a source model to a target modadraling to
their meta-models. If both source and target mociatgorm to
the same meta-model transformation, then, it isledal
endogenous. Otherwise it is exogenous. The Figilhestrates
these two types of transformation.

In this paper, we proposed an exogenous transfarmat
that accepts two separate meta-model sources.irBhadurce
meta-model is the transition state diagram whicha i®IM
describing the dynamic of some complex classes. sEeend
input meta-model is the domain class diagram repteyy the
business domain and system’s structure. The targtt-model
is a design class diagram representing the impleatien of
the solution. The main objective of this transfotioma is to
generate the methods signature from the transdfiate based
on the event that activate the transition betwéemtand feed
the domain class diagram with this operations $jgation to
get the design class diagram.

B. Transofrmation Language:

There are many languages for model transformatidge.
find generalist languages that are based directlgro abstract
model representation. Application Programming [fiaiee
(API) of EMF is an example of this kind which isupded with
JAVA and allows manipulating the model as a graph.

www.ijcit.com

approach requires defining a metamodel dedicated to
transforming models and a tool allowing executimgse model
transformations. ATLAS Transformation Language (AT16]

is an example of this kind which will be used aldghig paper.

It is a hybrid language (declarative and imperatihat allows
defining a model to model transformation (called ddte) in

the form of a set of mapped rules. It allows alefiring model

to text transformation (called Query). The transfation takes
one or many source models (defined with an Ecore
metamodels). ATL is based on the main idea thatbdels
are first-class entities. Therefore, and since hgrg is
model, the transformations are also considered eod#e can
therefore apply their transformations, and it ie @f the other
important points about ATL. Indeed, it provides theans to
achieve higher-order transformations (HOT). Thatiassay
which changes the source and / or targets are #ieass
transformations.

The OMG has defined the standard QVT
(Query/View/Transformation) [17] for model trangfuation.
The metamodel of the QVT is conforming to MOF an@LO
and is used to navigate in the models. This metamad
presented in tree sub-languages for model transfilom
characterized by the paradigm of implementation for
transformation definition (declarative, imperatibgprid).

34

International Journal of Computer and Informatioachnology (ISSN: 2279 — 0764)

C. Transformations performed:

In this section, we present the main
transformation performed to generate the desigssalgagram
with the different classes and association deddoeah the
domain class diagram and using the transition skaigram to
generate the method'’s specification.

Main Transformation rules (Figure 8):

From the Domain class diagram meta-model, all teegnt
elements with their instance will
corresponding elements in design one. Thereby, redysis
class is transformed into a design class keepmagtitibutes,
modifiers and its associations.

However, the meta-model of the transition stateyrdian
allows us to transform the activities to methodat thill feed
into the corresponding design classes of the tahigefram. In
fact, the transition state diagram presents thesobbgtate
change when receiving an event. When this evenirecthe
object will execute an activity to respond. Suppein
information and data needed to accomplish this taitlkbe
given as parameters of this event. Therefore, we ladl the
necessary elements to generate clearly and correlod
method signature. Thus, for each transition betvteenstates,
we will map the activity to an operation in the remponding
domain class. To complete the specification of aperation
we will look for the parameters and returned valfresn the
event that has activated the transition.

helper context ACD!Propertydef : toStringProperty():
String=
if self.visibility.ocllsUndefined()and
self. modifier.oclisUndefined(}hen
selfname+'+self.type.name
else ifselfvisibility.ocllsUndefined(dhen
self.modifier+ '+
selfname+'+self.type.name
else selfvisibility + ' '+
selfname+'+selftype.name
endif
endif;

helper context TSD!Actiondef : getSignature()String =
if self.return.oclisUndefined@nd
self.visibility.ocllsUndefined()then
self.name+('+self.getParametres()void’
else
if self.return.oclisUndefinedhen

self.visibility+"+self.name+('+self.getParametres()void'
else

selfname¥('+self.getParametres()t'+self.return.name
endif
endif;

Figure 7: principal function used in the transfotiora

www.ijcit.com

rules of the

be mapped to theg

Volume 02— Issue 01, January 2013

rule ACDClass2DCDClass{

from s:ACD1!Class

to t: DCD!Class (
name <- s.name,
superClass <- s.superClass,
ownedEnds <- s. ownedEnds
)

}

rule ACDProperty2DCDProperty{
from s:ACD!Property
to t: DCD!Attribut (
declaration <- c.toStringProperty(),
name <- s.name,
type <- s.type,
visibility <- s.visibility,
modifier <- s.modifier,
anclass <- s.class
)
}

rule ACDAssociation2DCDAssociation{
from s:ACD!Association
to t:DCD!Association(
name<-c.name
)

}

rule TSDActivity2DCDOperation{
from s:TSD!Activity
to t: DCD!Operation (
declaration <- s.getSignature(),
name <- s.name,
classe <- DCD!Classe.allinstances()-> select(ddrde =
c.transition.oldstate.statemachine.classe.nanmsf)fir
return <- s.return,
visibility<-s.visibility

)

Figure 8: principal mapped rules used in the tamnsétion.

Principal Functions used in the transformation (&ig 7):

To perform the model transformation for the running
example we have written a several function in Ahattare
called helper.

So, to transform each attribute of the domain ottkagram
into a target attribute we developed the methodhelper
toStringProperty (), which provides visibility, type, and
modifier of an attribute i.e. its full code decléoa. Example
of this helper return: public final code : int'.

35

International Journal of Computer and Informatioachnology (ISSN: 2279 — 0764)

Dristributor

Canzumptian
+numdi=s: int P

+numcons : int
+datecons:int

+dizplayHellal) : string
+dizplayT hanka]) @ string
+checkCoins) : boalean +s3we
+ereateConsll: Consumption 1
+destructCons) : woid
+getTotall): flaat
+returnCoind : fleat

concern

. Crrink
Typelirink

1 Q.7 [+reference @ int

*idtype - int {}7 +designation : String

+twpa : String “+price : float

Figure 9: the resulting design class diagram model.

For each method, we get its signature using thehadet
getSignature () This helper explore the entire transition
diagram and look for every activity and transformta a
method in the corresponding class including pararsethat
was gathered from the event parameter as well easetinrnd
value. An example of this kingbublic checkCoin() : boolean

The resulting design class diagram for the runeixgmple
obtained by the performed model transformatioregesented
in the Figure 9 above.

V. CONCLUSION AND PERSPECTIVES

In this paper, we introduced the Model Driven Eegiring
(MDE) approach and its implementation in Model Bnv
Architecture — MDA that was proposed by the OMG dsd
utility in relation with the partial or total autation of the
methods and the process applied in software engigee

Our work falls into this category of research andhis
way; we have presented in this paper an examplarof
exogenous and vertical models transformation ugiBgagram
of transition states, a domain class diagram taiolihe target
model design class diagram. The main idea of thpepis to
use the transition state diagram to enrich the domkss
diagram to obtain the design one by transformimgdttivities
triggered in recipient of an event into a meth@dlowing thus
to obtain full and complete signature of differemthods. This
approach is very useful in the case of a systetrkti@vs more
interaction that comes from events rather thanehosmes
from interaction with other objects as in sodardistor or an
ATM...Thus, the present paper complete our previongso
that aims to automate the entire software developp@cess.

Also, this work opens the new perspectives likeerth
passages that can be proposed to automate the sotiware

(1]
(2
(3]

(4]

(5]
(6]

(7]

(8]
(9]

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

development process such as: UP, RAD, 2TUP, XP... by

presenting a set of transformations between thefements.

www.ijcit.com

Volume 02— Issue 01, January 2013

REFERENCES

Object Management Group, Inc. Unified Modeling Laage (UML)
2.1.2 Infrastructure, November 2007. Final Adogsgecification.

Object Management Group, Inc. Unified Modeling Laage (UML)
2.1.2 Superstructure, November 2007. Final Adofeekification.

OMG, « Object Constraint Language (OCL) Specifmativersion 2.0 »,
2006. http ://www.omg.org/spec/OCL/2.0/.

Jean Bézivin and Olivier Gerbé. Towards a PreBisénition of the

OMG/MDA Framework. In Proceedings of the 16th IEEEernational

conference on Automated Software Engineering (A$Bje 273, San
Diego, USA, 2001. IEEE computer Society Press.

Ed Seidewitz. What models mean. |IEEE Software5R@6-32, 2003.

Object Management Group, Inc. Meta Object Fac{MyOF) 2.0 Core
Specification, 2004

P. Harmon, The OMG’s model driven architecture BfRM, Business
ProcessTrends 2 (5) (2004).

Object Management Group, MDA Guide Version 1.2003.

Object Management Group, Meta Object Facility (MOR)O
Query/View/Transformation specification, OMG Adogt8pecification
ptc/05-11-01, 2005,

I. Kurtev, State of the art of QVT: a model transfation language
standard,in: Applications of Graph Transformatiowgh Industrial
Relevance, ThirdInternational Symposium (AGTIVE), adsel,
Germany, 2007.

ATL - a model transformation technology, http://wvealipse.org/atl/

Freddy Allilaire , Jean Bézivin, Frédéric Jodaulvan Kurtev, ATL —
Eclipse Support for Model Transformation (2006yod of the Eclipse
Technology eXchange Workshop (eTX) at ECOOP

Jean Bézivin , Erwan Breton , Grégoire Dupé ,i€aWalduriez ,-The
ATL Transformation-based Model (2003) , ManagemErgmework,
Research Report, Atlas Group, INRIA and IRIN

Ivan Kurtev , Atlas Group , Rule-based Modulaiimatin Model
Transformation Languages illustrated with ATL (2D0621st Annual
ACM Symposium on Applied Computing (SAC2006)

Jean Bézivin, Grégoire Dupé, Frédéric Jouault,eGilPitette, Jamal
Eddine Rougui , First experiments with the ATL mlotansformation

language:Transforming XSLT into XQuery— 2003 — 20DPSLA

Workshop on Generative Techniques in the contexoflel Driven

Architecture

J. Miller and J. Mukerji, MDA Guide, Object Managem Group, Inc.,
jun 2003, version 1.0.1. [Online]. Available:
http://www.omg.org/docs/omg/03-06-01.pdf

Request for Proposal: MOF 2.0 Query / Views / Tfamsations RFP,
Object Management Group, Inc., apr 2002. [OnlinAlailable:
http://www.omg.org/docs/ad/02-04-10.pdf 2006. Finadopted
Specification.

BOUSETTA Brahim, EL BEGGAR Omar, GADI Taoufig. UML
modeling guide, ISBN 978-9954-580-39-9. Itc-leagnédition 2011.

BOUSETTA Brahim, EL BEGGAR Omar, GADI Taoufiq. Autmating
software development process: Analysis-PIMs to @re$§liIM model
transformation. Under review.

EL BEGGAR Omar, BOUSETTA Brahim, GADI Taoufig. Autatic
code generation by model transformation from seqeediagram of
system’s internal behavior. International Journé&l Gomputer and
Information Technology (IJCIT) December 2012 Volurhelssue: 2.
p129-146.

36

