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Abstract—In this paper, new structures that implement the RSA 

cryptographic algorithm are presented. The core of these 

architectures is the modular exponential operation based on a 

modified Montgomery modular multiplier, where the operations 

of multiplication and modular reduction are carried out in 

parallel rather than in an interleaved way as in the traditional 

Montgomery multiplier. The digit approach has been adopted to 

implement the modified Montgomery multipliers, where by 

pipelining the feedback loops; one or two modular multiplication 

operations can be interleaved to use the same multiplier 

structure. Thus, RSA structures that use a single Montgomery 

multiplier, termed area-efficient architectures, and architectures 

that require two Montgomery multipliers, called speed-efficient 

architectures, are presented. The proposed architectures are 

scalable and parameterized. Furthermore, by varying the digit 

size and the level of pipelining, the designer is provided with an 

efficient way of choosing the architecture that suits better his/her 

requirements in terms of speed and area usage. The critical 

propagation path is shortened and data global broadcast can be 

avoided. The proposed architectures are well suited for 

description using a VHDL structural style where the user can 

chose the design parameters such as the word length, modulus, 

data size, digit size and pipelining level to describe the design. To 

facilitate the process of generating the proposed architectures for 

an FPGA-based implementation, an RSA encryption engine that 

produces a VHDL code has been developed where the design 

specifications can be entered using the engine’s GUI. The results 

of implementation using FPGA have shown that the proposed 

structures outperform similar work in the literature. For a 1024-

bit exponentiation operation, their speed and area usage 

performances range from 5.67 ms and 37000 slices, to 16 ms and 

8500 slices. 

Keywords-Montgomery multiplication; RSA; FPGA; 

parameterized architectures. 

I.  INTRODUCTION 

Since the seminal work of Diffie and Hellman was 
published in 1976, numerous public-key cryptosystems have 
been devised to provide confidentiality, authentication, data 
integrity and non-repudiation 5,6,13,14. All these crypto-systems 
base their security on some mathematical one-way functions. 
They are combined with private key encryption primitives and 
used with the appropriate protocols to construct secure and 
trusted networks. RSA is the most widely used public-key 

cryptosystem. An RSA encryption operation is a modular 
exponentiation operation, which requires repeated modular 
multiplications. For security reasons, RSA operand sizes need 
to be 1024-bit or longer 9,10,13-19. Thus, such an algorithm 
requires immense processing power that may cause a 
bottleneck in high-speed networks. A remedy for this 
drawback can consist of implementing the RSA algorithm in 
hardware. The developed circuit, either an ASIC or a PLD, 
can be used as a co-processor coupled with a host machine in 
order to speed up the computation of the encryption 
operations. Furthermore, in terms of security, another benefit 
of using dedicated hardware is that security attacks become 
more difficult, as the secrets can be contained within the 
coprocessor using non-volatile memory, which are externally 
inaccessible 14. 

The basis of many RSA hardware architectures reported to 
date is formed by Montgomery modular multipliers 2-4,7-10,15-19. 
A Montgomery multiplier replaces trial division by the 
modulus with a series of additions and divisions by a power of 
2, which is very easy to implement. Many RSA architectures 
based on Montgomery modular multiplication have been 
proposed in the literature. The approach adopted in Refs 9-10, 
is to take advantage of the resources available in FPGA chips 
such as the fast carry chains to perform the addition 
operations. The main drawback is that the resulting RSA 
architecture is specific to the family of FPGA devices they 
have been devised for. Another class of RSA architectures 
uses a modified Montgomery multiplier based on a Carry Save 
Addition (CSA) scheme. By using a carry save representation 
of numbers, the authors in Ref 18 have been able to shorten 
the propagation path to a single Full Adder (FA) and a 7-to1 
multiplexer with pre-computation of multiples of the 
operands. Such pre-computation of multiples of the operands 
is avoided in Ref 16, where recourse to 5-to-2 and 4-to2 CSAs 
is made. However, the critical path is equal to 3 FAs, 2 XORs 
and a single AND gate.  

A modified version of Montgomery multiplication was 
proposed in Ref 2. The structure was devised in such a way 
the modular multiplication operation is divided into two 
conventional multiplication operations: a multiplication 
operation and a reduction operation, where the result of the 
first multiplication operation is used to select a reduction value 
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for the second part. The two’s complement of the first 
multiplier result is added to the result of the second multiplier 
to produce the result of the Montgomery multiplier. A clear 
advantage of this architecture is that the propagation path is 
shortened and the well-known design methodologies applied 
to conventional multipliers (i.e. unfolding, retiming etc) can be 
used with the modified structure 1,21,22.  

In this paper, new RSA architectures that employ this 
multiplier are presented. The proposed generic class of RSA 
architectures that use 2 Montgomery multipliers is termed here 
Speed-Efficient (SE) architectures. Furthermore, by pipelining 
the feedback loops of the modified multiplier, two operations 
can be interleaved to use the same structure. This is exploited 
in this paper to produce Area-Efficient (AE) RSA 
architectures with a single Montgomery multiplier. The digit 
approach has been adopted in the papers, where by increasing 
the digit size, different performances in terms of speed and 
area-usage can be obtained; thus providing the designed with a 
wide range of choices to meet the design requirements. The 
proposed architectures are scalable and parameterized. 
Furthermore, by interleaving 2 instances to use the same 
structure, the proposed architectures have their critical path 
reduced to up to a single FA and the global lines that 
broadcast data avoided, thus leading to systolic architectures 
that use nearest neighbor communications only. 

The remainder of the paper is organized as follows: section 
2 revisits the modified version of Montgomery modular 
multiplication algorithm and RSA modular exponentiation. A 
brief discussion about the bound of the result of the algorithm 
is presented. As a matter of fact, the bound of the result of 
Montgomery algorithm is changed in such a way that, if 
multiple modular multiplication operations were to be carried 
out iteratively, with the result of one iteration being used in the 
next one, no subtraction operation would be required. Section 3 
presents the RSA architectures and the VHDL engine to 
describe them. In Section 4, the implementation results of the 
proposed architectures on FPGA are analyzed and compared to 
similar work in the literature. Conclusions are drawn in Section 
5. 

II. MATHEMATICAL BACKGROUND 

As it was suggested 6, the modulus M of the RSA algorithm 

is the product of two suitably generated secret prime numbers 

P and Q: 

 

                                                                         (1) 

 

The public exponent (also known as the encryption key) E is 

randomly chosen such that it is prime to (P-1)(Q-1). The 

secret exponent (also known as the decryption key) D is 

computed using the extended Euclidean algorithm such that: 

 
                                                       (2) 

 

A message is divided into blocks of the same word-length as 

the product M in equation (1). If M is encoded on k bits, an n 

= km bits message is divided into m blocks of k-bit each. 

Thus, a k-bit word A is encrypted into a word Enc (A) defined 

by             . A cipher word B is decrypted into a 

word Dec (B) defined by             . 

The operation of modular exponentiations is carried out 

iteratively by repeating a modular squaring operation and a 

modular multiplication, as described in Algorithm 1. The 

algorithm computes B, which is the remainder of the division 

of AE by the modulus M.  

 

Algorithm 1 

        

      
    

   ,           ,             

for i = 0 to k-1  

{        
    

if      then               

              else        } 

 

Algorithm 1 entails a modular squaring operation, 

   
   , and a modular multiplication operation,        . Both 

modular multiplication and squaring operation can be 

implemented using the Least Significant Bit First (LSBF) 

modular multiplication scheme termed Montgomery 

algorithm. The term         in    and    is due to the 

multiplication factor introduced by the Montgomery 

multiplication scheme. If a most significant bit first 

multiplication algorithm is used, the factor         is simply 

dropped and replaced by 1. The modulus M in Montgomery 

algorithm can be an integer within the range [2n-1, 2n[ 8. The 

algorithm requires a quantity termed Radix (R), which is equal 

to 2n, and M to be relatively prime, which is satisfied as M is 

odd. It computes the modular product, P, of two given 

integers, A and B, as follows 8: 

 

                                                                  (3) 

 

The algorithm uses multiplication modulo R and division by 

R, which are only shift operations, thus, faster and simpler to 

implement in software and hardware than the computation of 
      which involves division by M. However, the algorithm 

is only efficient when multiple operations are carried out, 

such as in the modular exponentiation operation when such an 

operation is broken into modular multiplication operations 
7,11,12,15-20. For hardware implementation, a systolic array can 

be derived from the bit-wise version of Montgomery 

multiplication  

 

Algorithm 2 

        
  

     ,      ,            

for i= 0 to n-1 

{                

                 }  

if        then 
 
            

 

Algorithm 2 interleaves the multiplication steps,           
with the reduction steps,               . One bit of the 

partial result is used to select the reduction value. As shown in 
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the algorithm, the Least Significant Bit (LSB) of the partial 

result of the previous iteration, Pi-1, together with the bit-

product aib0, directly selects the modular reduction value, 

which is either 0 or M. At every iteration, the LSB of Pi equals 

0. Pi is then shifted one position to the right. After n iterations, 

the scaling factor is equal to  
  . Therefore, the final result is 

         as shown in equation (3). The partial results fall in 

the range [0,2M[ and, as such, an operation of 

comparison/subtraction is necessary at the end of the 

algorithm 8. The critical propagation delay of Algorithm 2 

occurs during the calculation of the    values where the main 

contributing factor to this delay is the carry propagation 15-19 

and the global broadcast line resulting from using very large 

operands 2-4,15-19. 

One can easily argue that Algorithm 2 consists of two 

interleaved multiplication operations and an addition 

operation. This fact has been exploited to build a modified 

Montgomery structure that uses two conventional multipliers 

to carry out the multiplications in Algorithm 2 in a non-

interleaved way 2. Thus, one multiplier carries out the 

operation of multiplication and the other multiplier carries out 

the modular reduction operation. These two operations are 

carried out in parallel as described in Algorithm 3 2. 

Let T be the product of AB, i.e.: 

 

T = AB = T0 +2T1R                                                (4) 

Algorithm 3: 

 

        
    

      ,         
    

      ,      
       

   
   ,     ,    

     

For i= 0 to n+1    

{Step1:   
      

     B 

Step 2:     
                 

Step 3:          
        

Step 4:   
       

       

Step 5:       
    

     }  

 

As shown in Algorithm 3, the modular multiplication 

operation is broken into two concurrent multiplication 

operations and computes Montgomery  product by using the 

two's complement of T0 (which is     in step 2 of Algorithm 3) 

to select the reduction value. The results from the two 

multipliers are then added and a division by 4R (or 2n+2) 

follows. However, in the original algorithm (see Algorithm 2), 

after each multiplication a reduction was needed (the last step 

in Algorithm 2). The inputs have the restriction A, B < M and 

the output P is bounded by P < 2M. If used to compute 

repeated multiplication operations as in RSA, M must be 

subtracted from P so that the output of a modular 

multiplication operation can be used as input for the next 

operation. To avoid this subtraction operation, the new bound 

for the inputs is A, B < 2M, thus, the output is also bounded by 

P < 2M. In this way, the result P is equal to: 

 

  
             

  
                                          (5) 

 

Where    is the multiplicative inverse of –M modulo R. 

Therefore, at the (n+2)th (i.e., the last iteration), and since 

           , the upper bound of the result   
     

      
      is given by: 

 

                                                              (6) 

 

Thus, it is practicable that the result of each modular 

multiplication operation can immediately be used as input for 

the next operation, as required by RSA algorithm. At the end 

of the encryption operation, a multiplication by 1 is required to 

take away the effect of the 2-n-2 factor introduced by Algorithm 

3. Finally, for the range of the RSA operation result to fall in 

[0, M[, a single comparison/ subtraction operation may be 

necessary. 

III. IMPLEMENTATION APPROACH 

The serial approach processes data serially where at every 
clock cycle a single data bit is fed to the RSA processor to be 
processed. In contrast, the parallel approach processes the data 
bits in a parallel fashion in just one clock cycle. Many RSA 
implementations are bit-serial based structures. This is 
essentially due to their design simplicity and low hardware 
area-usage requirements. However, when high sample rates 
are required, the family of bit-serial architectures leads to a 
slow system speed. To avoid this problem, and thus, reach 
higher system speeds, it is clear that a move towards higher 
bit-width operations is necessary. Unfortunately, the parallel 
architectures require a considerable area-usage and pin-out, 
which may not be satisfied in the resource limited FPGA chips 
and the size of data bocks used in RSA.  

As a trade-off, the concept of digit-serial computation has 
been adopted in this paper. The proposed system processes 
more than one bit in one clock cycle. The number of bits 
processed in one clock cycle is referred to as the digit size. 
Since the digit size is variable, the digit approach provides the 
designer with a flexible and efficient area-time method to find 
the speed and the area that match the design needs through an 
appropriate choice of the digit size. Pipelining the digit 
structures is of capital importance 1-4. However, Montgomery 
digit multipliers cannot be pipelined beyond the digit level due to 
the presence of feedback loops. Nevertheless, based on the use of 
the feedback loop pipelining technique 2-4, one can shorten the 
propagation path by interleaving two or more data sets into the 
same structure 2-4. In the proposed designs, only one or two 
instances are interleaved into the same architecture. 

A. RSA Structures 

Two classes of RSA structures that implement Algorithm 1 
are presented. The first generic class requires two 
Montgomery multipliers: the first one is used for modular 
squaring and the second is used for modular multiplication. 
The general skeleton of such a class of structures, termed SE 
architectures, is depicted in Figure 1. Registers are used to 
store the result form the modular squarer in both parallel and 
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serial way. The parallel register associated with the squarer is 
used to feed the parallel operand to the squarer while the serial 
register is used to feed the serial input to both the squarer and 
the multiplier. Both registers are initialized with    
        

 
as in Algorithm 1 to start the computation of the 

values      from   . The parallel register associated with the 
multiplier in Figure 1 is initialized with           . Using 
the input from its parallel register and the serial input from the 
serial register in which the intermediate results    are stored, 
the multiplier computes the multiplication step in Algorithm 1, 
            . The result is fed back to the multiplier’s 
register. The multiplication operation is controlled by the 
exponent bit   . If it is low, rather than freezing the multiplier 
and its parallel register so that    is stored for the next 
exponentiation step, a multiplication of    by 1 takes place. In 
Montgomery domain, this is equivalent to a multiplication by 
        in order to take account of the scaling factor effect 
introduced by Montgomery multiplier.  

Serial Register

 Parallel Register

Squarer

Parallel Register

Multiplier

<2n+2>M

<A 2n+2>M

ei

<2n+2>M
 

Figure 1. A Speed-Efficient (SE) RSA Structure that uses two multipliers 

 

Parallel Register

 Serial Register

Parallel Register 

MUX

Multiplier

<2n+2>M

ei

<A2n+2>M

 

Figure 2. An Area Efficient (AE) RSA Structure that uses one Montgomery 

Multiplier 

The second class of RSA structures, termed AE 
architectures, employs the general skeleton depicted in Figure 

2. This class of structures requires only one Montgomery 
multiplier which carries out both the multiplication and 
squaring operations in RSA in an interleaved way. It is worth 
pointing out that one exponentiation iteration of Algorithm 1 
takes to execute in an AE architecture twice the execution time 
in its SE counterpart architecture. As a matter of fact, the 
multiplier in Figure 2 devotes one clock cycle for the modular 
squaring step in Algorithm 1 and the next clock cycle for the 
modular multiplication step every two clock cycles. Since the 
squaring and multiplication operations are carried out in a 
serial fashion, the shift process in the serial register in Figure 2 
is twice slower than the clock frequency. Multiplexers are 
required to select the right data to be fed to the multiplier, 
either for the modular multiplication operation or for the 
modular squaring operation. If a digit RSA is implemented 
using either of the two general skeletons in Figures 1 and 2, the 
serial register is replaced by a digit shift register. The parallel 
registers remain unchanged and the multiplication time is 
reduced by a factor equal to the digit size d. 

 

B. Montgomery Structures 

Algorithm 3 can be implemented using two bit serial 

multipliers, a serial adder to perform the addition of step 5, 

and a serial two's complement circuit that is used to two's 

complement the product AB, as shown in Figure 3. The First 

Cell (FC) of the second serial multiplier is different from the 

remaining Basic Cells (BC), which are gated FAs (a gated FA 

is a FA to which an AND gate is connected, the AND gate 

generates the partial products). During the n first cycles, the 

FC generates the bit qi that selects the reduction value. The 

clock path of this bit serial modular multiplier is equivalent to 

that of two FAs and a latch. The issue of data lines broadcast 

to all the cells is resolved (such as the multiplier input ai in 

Figure 3) leading to a fully systolic structure. The insertion of 

registers in global lines achieves a significant increase in clock 

frequency, especially for large operands, which are usually 

used in cryptography.  Although  the critical propagation path 

is equal to 2 FAs, such solution is preferred to shortening the 

critical path to a single FA and removing the registers from the 

global lines, which can be obtained by retiming the structure 

of Figure 3 1-21. However, a different registers insertion 

strategy may be used to, in the same time, shorten the critical 

path to a single FA and circumvent the global broadcast of 

data. In this approach, the same cells used in the multiplier of 

Figure 3 are used to build a systolic multiplier structure, except 

that the overall number of latches increases. The resulting 

architecture will interleave two modular multiplication 

operations using the feedback loop pipelining technique 4. In 

general, the number of operations interleaved onto the same 

structure depends on the number of latches added to the feedback 

loops. As such, an extra register has to be added to the feedback 

loops and sum- bits of the multiplier in Figure 3 to cope with 

feeding two different sets of operands to the multiplier. The two 

interleaved modular multiplication operations can be the two 

operations involved in the modular exponentiation. In such a 

way, the resulting serial multiplier can be used as the core bit 

serial-parallel modular exponentiation element in the 
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architecture of Figure 2. The critical path will be reduced to a 

single FA and the resulting structure will be fully systolic; 

requiring nearest neighbor communications only. 
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Figure 3. A serial Montgomery Multiplier derived from Algorithm 3 
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Figure 4. A 2-bit Digit Montgomery Multiplier that Implements Algorithm 3 

 

A 2-bit digit Montgomery multiplier structure is depicted 

in Figure 4. Such architecture processes two bits of the 

operand per clock cycle, thus requiring half the number of 

cycles of that of the architecture of Figure 3 to carry out a 

modular multiplication operation and its critical path is two 

FAs.  It suffers, however, from global data broadcast. 

Nevertheless, a 2-bit digit multiplier capable of interleaving 

two data instances can be derived by pipelining the feedback 

loops in Figure 4 and then retiming the structure. The resulting 

architecture is fully systolic and exhibits a critical path equal 

to 2 FAs, thus possessing similar characteristics to that of the 

architecture of Figure 3. Higher digit sizes multipliers can be 

obtained by unfolding the structure of Figure 4. To interleave 

two sets of data into such digit architecture, a FF is added to 

its feedback loops followed by retiming. An example of 4-bit 

digit multiplier is depicted in Figures 5 and 6. In the remainder 

of the paper, the notation Dd_Ll is used to indicate a digit size 

of d bits and a level of pipelining l.  

 

C.  Code Generation Engine 

It is clear that the suggested RSA architectures can be 
described using parameters such as the modulus, which defines 
the block size, and the public/private key exponent. Such 
parameters are sufficient to describe the registers, multiplexers 
and control signals in the developed RSA structures. In 
addition, Montgomery multipliers are parameterized in terms 
of the block length, which determines the size of the multiplier, 
the digit size and level of pipelining. Digit and pipelined 
multipliers can be derived from the serial structures using the 
unfolding transformation 1,4,22. Furthermore, the multipliers in 
Figures 3 and 4, their counter parts capable of interleaving two 
operations and the digit multipliers depicted in Figures 5 and 6, 
are scalable; that is they can be built by replicating a certain 
number of basic cells.  Thus, an automatic code generator can 
be built to take account of all of the designs details and 
parameters. The code is generated in a structural VHDL style 
which is very suitable for a parameterized description of 
circuits. The user’s constraints can be expressed in form of area 
usage and speed requirements, from which an RSA structure 
with the adequate digit size and level of pipelining is generated. 
In addition, the user has the option of picking a predetermined 
RSA structure which has the design parameters described 
above. 
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The proposed system is shown in Figure 7. It consists of a 

GUI where the user can enter his/her specifications in terms of 
speed and area usage. The user is also able to pick a 
predetermined structure which is available in the system 
library. The library consists of the basic design components 
such as the registers, multipliers and multiplexers of the two 
skeletons of RSA architectures. From this basic components 
and using the design specifications such as the digit size, word 
length, modulus and level of pipelining, new architectures can 
be devised. The VHDL code generator can interpret the area 
usage and processing time specifications to generate a digit 
architecture that best suits the user by applying transformation 
techniques such as unfolding, pipelining and retiming on the 
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basic components in the system library. Furthermore, it can 
also rely on a heavy pipelining of the input/output pins data-
lines to further improve the clock frequency. Once the VHDL 
code has been generated, the Xilinx tools are executed to 
synthesize, simulate, verify and implement the obtained design 
in the target FPGA chip. 
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Figure 7. RSA code generator 

 

IV. IMPLEMENTATION AND RESULTS 

The proposed two classes of RSA architectures are 

compared in terms of their area usage and timing 

characteristics. To illustrate the fact that the proposed 

architectures can be parameterized, digit sizes of 1-bit, 2-bit, 

4-bit and 8-bit have been selected to generate RSA 

architectures with either a single Montgomery multiplier or 

two Montgomery multipliers using the engine of Figure 6 for a 

modulus of 1024-bit length. The larger digit size of 16-bit 

does not fit in the target device family. For the purpose of 

comparison with similar work in the literature, the proposed 

structures have been implemented in a Xilinx Virtex-4 device.  

Table 1 depicts the area usage of the selected 8 structures. 

As one may have expected, the area usage increases when the 

digit size increases within the same class of RSA 

architectures. Thus, D1_L1 and D8_L1 structures use the 

smallest area and largest area within the Dx_L1 class of 

architectures, respectively. A similar observation is applicable 

to the class of Dx_L2 structures. An interesting point which 

comes out from Table 1 is that up to a digit size of 2 bits, 

Dx_L1 structures require less area than their Dx_L2 

counterparts despite calling for an extra Montgomery 

multiplier. However, when the Dx_L2 architectures use a 

single multiplier, they also need extra multiplexers and 

registers to pipeline the feedback loops. The benefit of AE 

architectures over the SE architectures in terms of area saving 

due to using one multiplier becomes clearly apparent for digit 

sizes 4 bits and 8 bits. Table 1 also shows the critical 

propagating path within the proposed architectures. The 

critical path of D1_L1, D2_L1 and D2_L2 is equal to 2 FAs 

while it is a single FA for the D1_L2 structure. The critical 

path for the remaining architectures is equal to d/l FAs. In 

addition, Table 1 distinguishes between the proposed 

architectures depending on whether or not they avoid global 

line broadcast. Thus, architectures D1_L1, D1_L2 and D2_L2 

are fully systolic while the remaining architectures are semi 

systolic. 

Table 2 follows suit of Table 1 in dividing the architectures 

into semi and fully systolic structures. The fully systolic 

architectures D1_L1, D1_L2 and D2_L2 exhibit superior 

clock frequencies with periods ranging from 3,634 ns to 3,936 

ns. This is a clear benefit of making the proposed architectures 

systolic through retiming. The clock periods of the remaining 

semi systolic architectures are clearly higher; increasing with 

the critical path from 8.339 ns, in the case of D2_L1 which 

exhibits a critical path consisting of 2 FAs, to 20.943 ns in the 

case of D8_L1, which has a critical path of 8 FAs. In the case 

of a full 1024-bit RSA exponentiation, the processing time of 

an SE architecture is generally shorter than that of its 

respective AE counterpart architecture for the same digit size, 

except for the D2_L2 architecture which requires 8.28 ms to 

compute a full 1024-bit RSA operation, which is slightly 

shorter than the 8.79 ms taken by the D2_L1 structure to carry 

out the computation of the same operation. This means that the 

gain achieved in terms of clock frequency thanks to shortening 

the critical propagation path is not proportional to the increase 

in the number of processing cycles which increases by almost 

a factor of two when a single Montgomery multiplier is used. 

Nevertheless, the processing time decreases when the digit 

size increases making the D8_L1 whose processing time is 

only 5.58 ms the fastest of the 8 architectures analyzed in 

Table 2. Another metric used to assess the proposed 

architectures is their area usage×processing time 

performances. Such a metric evaluates whether or not the 

increase in area usage is coupled with a proportional decrease 

in processing time. From Table 2, Dx_L1 architectures are 

more area-time efficient than their Dx_L2 counter parts for 
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digit sizes of up to 4 bits. However, for digit size 8-bit, D8_L2 

is clearly more area-time efficient than D8_L1 structure. 

Furthermore, the D1_L1 architecture is the most area-time 

efficient architecture among the eight structures of Table 2. 

Thus, the increase in area usage due to using two Montgomery 

multipliers and increasing the digit size is not proportional to 

the gain in terms of processing time. The area-time efficiency 

of the proposed structures worsens when the digit size 

increases. Taking this into account, an important result can be 

pointed out from Tables 1 and 2. Among the proposed 

architectures, see for example D4_L1 and D8_L2, there are 

those with a shorter processing time and at the same time calls 

for less area usage. Thus, the digit approach can be seen as 

more than a compromise between the bit serial and the bit 

Parallel approaches. Through an appropriate selection of the 

digit size, such an approach provides the designer with the 

best area and speed that match the needs of the system. 

The obtained results are compared against similar work in the 

literature 9,10,18. In Ref 18, an algorithm combining the 

Montgomery’s technique and the carry save representation of 

numbers was proposed. The serial structure that implements 

this algorithm computes a full 1024-bit exponentiation in 

27.88 ms. The proposed D1_L1 is much faster, carrying out 

the same operation in just 8.17 ms. The physical device used 

in Ref 10 to implement a radix-4 RSA processor is not the 

same as ours. This makes an exact comparison difficult in 

terms of hardware resource requirements and time 

performance. The architecture of Ref 10 shows a critical path 

of a 4-bit adders and its radix-4 multiplication unit processes 4 

bits of data per cycle. It is equal to the propagation path of the 

proposed D4_L1 architecture. However, unlike the 

architecture of Ref 10, our design does not make use of 

optimized blocks and has considerable device-independent 

features. 

 

V. CONCLUSIONS 

In this paper, architectures that implement the RSA 

encryption algorithm have been presented. The new 

architectures use a modified Montgomery algorithm in which 

the operations of modular multiplication and modular 

reduction are carried out separately and in a parallel way. To 

investigate the best area usage-time trade-off, the digit 

approach has been adopted. The issue of global lines broadcast 

has been circumvented by interleaving more than one instance 

onto the same digit multiplier. Such aim has been achieved by 

pipelining the feedback loops and retiming the whole 

structures. In addition, this technique has also the merit of 

shortening the critical propagation path. The resulting RSA 

architectures use either two Montgomery multipliers and 

termed Speed-Efficient architectures, or utilize a single 

multiplier and as such called Area-Efficient architectures. 

Furthermore, a VHDL cryptographic engine has been 

proposed so that by varying the digit size and level of 

pipelining, the designer may select the best architecture that 

meets the application requirements in terms of speed and area 

usage. 

REFERENCE 

[1]. O.Nibouche and M.Nibouche. "On Designing Digit 

Multipliers”, Proceeding of the 9th International IEEE Conference on 

Electronics, Circuits, and Systems (ICECS), Dubrovnik 2002. 

[2]. O. Nibouche, A. Bouridane, and M. Nibouche 

“Architectures for Montgomery's multiplication”, IEE Proceedings, 

Computers and Digital Techniques, Vol.150, November 2003, Issue 

06, p. 361-368. 

[3]. O. Nibouche, M. Nibouche, A. Bouridane, and A. 

Belatreche, “ Fast architectures for FPGA based implementation of 

RSA encryption algorithm”, Proceedings. IEEE International 

Conference on Field Programmable Technology, pp: 271- 278, 6-8 

Dec. 2004. 

[4]. W. L. Freking and K. K. Parhi, "Ring-Planarized 

Cylindrical Arrays with Application to Modular Multiplication", 

IEEE Workshop on Signal Processing Systems Design & 

Implementation (SIPS 2000), Lafayette, Louisiana, USA, pp 497-

506. 

[5]. W. Diffie and M. E. Hellman, “New directions in 

cryptography”, IEEE Transactions on Information Theory, 22:644–

654, 1976. 

[6]. R. L. Rivest, A. Shamir, and L. Adleman, “A method for 

obtaining digital signatures and public-key cryptosystems”, 

Communications of the ACM, 21(2):120–126, 1978. 

[7]. M. Shnad and J. Vuillemin, “Fast implementation of RSA 

cryptography”, Proceedings of the 11th IEEE Symposium on 

Computer Arithmetic, 1993. 

[8]. P. L. Montgomery, "Modular multiplication without trial 

division", Math. Comp. vol. 44, no. 170, pp. 519-521, 1985. 

[9]. T. Blum and C. Paar, “Montgomery modular 

exponentiation on reconfigurable hardware”, In Proceedings of 14th 

IEEE Symposium on Computer Arithmetic, pages 70–77, Adelaide, 

Australia, April 14-16 1999. 

[10]. T. Blum and C. Paar, “High-radix Montgomery modular 

exponentiation on reconfigurable hardware”, IEEE Transactions on 

Computers, 50(7):759–764, July 2001. 

[11]. H. Orup, “Simplifying quotient determination in high-radix 

modular multiplication”, In Proceedings of the 12th IEEE 

Symposium on Computer Arithmetic, pages 193–199, 1995. 

[12]. S. E. Eldridge and C. D. Walter, “Hardware 

implementation of Montgomery’s modular multiplication algorithm”, 

IEEE Transactions on Computers, 42:693–699, 93. 

[13]. J. Goodman, and A. P. Chandrakasan, “an Energy-Efficient 

Reconfigurable Public Key Cryptography Coprocessor”, IEEE 

journal of solid state circuits, vol. 36, pp. 1808-1320, No. 11, 

November 2001. 

[14]. Anderson, R., and Kuhn, M., “Tamper Resistance- a 

Cautionary Note”, in The Second USENIX Workshop on Electronic 

Commerce Proceedings, Oakland, California, November 18-21, 

1996, pp 1-11. 

[15]. C. McIvor, M. McLoone, J. McCanny, A. Daly and W. 

Marnane, "Fast Montgomery Modular Multiplication and RSA 

Cryptographic Processor Architectures”, 37th Asilomar Conference 

on Signals, Systems, and Computers, Nov 2003. 

[16]. C. McIvor, M.  McLoone, and J.V. McCanny, “Modified 

Montgomery Modular Multiplication and RSA Exponentiation 

Techniques”, IEE Proceedings – Computers & Digital Techniques, 

Vol. 151, No. 6, pp 402-408, Nov 2004. 

[17]. A. Mazzeo, L. Romano, G. P. Saggese, and N. Mazzocca, 

“FPGA Based Implementation of a Serial RSA Processor”, 

proceedings of the Design, Automation and Test in Europe 



International Journal of Computer and Information Technology (ISSN: 2279 – 0764)  

Volume 02– Issue 01, January 2013 

 

www.ijcit.com    171 

 

Conference and Exhibition (DATE'03), March 03 - 07, 2003, 

Munich, Germany, pp. 10582-10589. 

 

 

 

Table 1. Architectures performances 

Architecture D1_L1 D1_L2 D2_L1 D2_L2 D4_L1 D4_L2 D8_L1 D8_L2 

Area (slices) 9100 12400 12000 13700 19800 15000 36600 23000 

Critical path 

(FAs) 

2 1 2 2 4 2 8 4 

Systolicity Fully Fully Semi Fully Semi Semi Semi Semi 

 

Table 2. Implementation results 

Architecture D1_L1 D1_L2 D2_L1 D2_L2 D4_L1 D4_L2 D8_L1 D8_L2 

Period (ns) 3.883 3.634 8.339 3.963 13.045 10.500 20.943 14.247 

Frequency 

(Mhz) 

257 275 114 254 77 95 48 70 

Processing 

Time (ms) 

8.17 15.28 8.79 8.28 6.89 11.06 5.58 7.54 

Throughput 

rate (Kb/s) 

15.67 8.38 14.56 15.46 18.58 11.57 22.94 16.98 

Area-time 

(ms × slice) 

74347 189472 105480 113436 136422 165900 204228 173420 

 
Table 3. A comparison with similar work in the literature 

Architecture D1_L1 D4_L1 RSA 18 RSA 10 

Frequency (Mhz) 257 77 78 46 

Processing Time (ms) 8.17 6.89 27.88 11.95 

 


