
International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 01, January 2013

www.ijcit.com 164

PARAMETERIZED RSA ARCHITECTURES

OMAR NIBOUCHE

College of Computers and Information Technology

Taif University, AlHawiyah Campus

POB 888 Taif 21974, KSA

o.nibouche@tu.edu.sa

Abstract—In this paper, new structures that implement the RSA

cryptographic algorithm are presented. The core of these

architectures is the modular exponential operation based on a

modified Montgomery modular multiplier, where the operations

of multiplication and modular reduction are carried out in

parallel rather than in an interleaved way as in the traditional

Montgomery multiplier. The digit approach has been adopted to

implement the modified Montgomery multipliers, where by

pipelining the feedback loops; one or two modular multiplication

operations can be interleaved to use the same multiplier

structure. Thus, RSA structures that use a single Montgomery

multiplier, termed area-efficient architectures, and architectures

that require two Montgomery multipliers, called speed-efficient

architectures, are presented. The proposed architectures are

scalable and parameterized. Furthermore, by varying the digit

size and the level of pipelining, the designer is provided with an

efficient way of choosing the architecture that suits better his/her

requirements in terms of speed and area usage. The critical

propagation path is shortened and data global broadcast can be

avoided. The proposed architectures are well suited for

description using a VHDL structural style where the user can

chose the design parameters such as the word length, modulus,

data size, digit size and pipelining level to describe the design. To

facilitate the process of generating the proposed architectures for

an FPGA-based implementation, an RSA encryption engine that

produces a VHDL code has been developed where the design

specifications can be entered using the engine’s GUI. The results

of implementation using FPGA have shown that the proposed

structures outperform similar work in the literature. For a 1024-

bit exponentiation operation, their speed and area usage

performances range from 5.67 ms and 37000 slices, to 16 ms and

8500 slices.

Keywords-Montgomery multiplication; RSA; FPGA;

parameterized architectures.

I. INTRODUCTION

Since the seminal work of Diffie and Hellman was
published in 1976, numerous public-key cryptosystems have
been devised to provide confidentiality, authentication, data
integrity and non-repudiation 5,6,13,14. All these crypto-systems
base their security on some mathematical one-way functions.
They are combined with private key encryption primitives and
used with the appropriate protocols to construct secure and
trusted networks. RSA is the most widely used public-key

cryptosystem. An RSA encryption operation is a modular
exponentiation operation, which requires repeated modular
multiplications. For security reasons, RSA operand sizes need
to be 1024-bit or longer 9,10,13-19. Thus, such an algorithm
requires immense processing power that may cause a
bottleneck in high-speed networks. A remedy for this
drawback can consist of implementing the RSA algorithm in
hardware. The developed circuit, either an ASIC or a PLD,
can be used as a co-processor coupled with a host machine in
order to speed up the computation of the encryption
operations. Furthermore, in terms of security, another benefit
of using dedicated hardware is that security attacks become
more difficult, as the secrets can be contained within the
coprocessor using non-volatile memory, which are externally
inaccessible 14.

The basis of many RSA hardware architectures reported to
date is formed by Montgomery modular multipliers 2-4,7-10,15-19.
A Montgomery multiplier replaces trial division by the
modulus with a series of additions and divisions by a power of
2, which is very easy to implement. Many RSA architectures
based on Montgomery modular multiplication have been
proposed in the literature. The approach adopted in Refs 9-10,
is to take advantage of the resources available in FPGA chips
such as the fast carry chains to perform the addition
operations. The main drawback is that the resulting RSA
architecture is specific to the family of FPGA devices they
have been devised for. Another class of RSA architectures
uses a modified Montgomery multiplier based on a Carry Save
Addition (CSA) scheme. By using a carry save representation
of numbers, the authors in Ref 18 have been able to shorten
the propagation path to a single Full Adder (FA) and a 7-to1
multiplexer with pre-computation of multiples of the
operands. Such pre-computation of multiples of the operands
is avoided in Ref 16, where recourse to 5-to-2 and 4-to2 CSAs
is made. However, the critical path is equal to 3 FAs, 2 XORs
and a single AND gate.

A modified version of Montgomery multiplication was
proposed in Ref 2. The structure was devised in such a way
the modular multiplication operation is divided into two
conventional multiplication operations: a multiplication
operation and a reduction operation, where the result of the
first multiplication operation is used to select a reduction value

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 01, January 2013

www.ijcit.com 165

for the second part. The two’s complement of the first
multiplier result is added to the result of the second multiplier
to produce the result of the Montgomery multiplier. A clear
advantage of this architecture is that the propagation path is
shortened and the well-known design methodologies applied
to conventional multipliers (i.e. unfolding, retiming etc) can be
used with the modified structure 1,21,22.

In this paper, new RSA architectures that employ this
multiplier are presented. The proposed generic class of RSA
architectures that use 2 Montgomery multipliers is termed here
Speed-Efficient (SE) architectures. Furthermore, by pipelining
the feedback loops of the modified multiplier, two operations
can be interleaved to use the same structure. This is exploited
in this paper to produce Area-Efficient (AE) RSA
architectures with a single Montgomery multiplier. The digit
approach has been adopted in the papers, where by increasing
the digit size, different performances in terms of speed and
area-usage can be obtained; thus providing the designed with a
wide range of choices to meet the design requirements. The
proposed architectures are scalable and parameterized.
Furthermore, by interleaving 2 instances to use the same
structure, the proposed architectures have their critical path
reduced to up to a single FA and the global lines that
broadcast data avoided, thus leading to systolic architectures
that use nearest neighbor communications only.

The remainder of the paper is organized as follows: section
2 revisits the modified version of Montgomery modular
multiplication algorithm and RSA modular exponentiation. A
brief discussion about the bound of the result of the algorithm
is presented. As a matter of fact, the bound of the result of
Montgomery algorithm is changed in such a way that, if
multiple modular multiplication operations were to be carried
out iteratively, with the result of one iteration being used in the
next one, no subtraction operation would be required. Section 3
presents the RSA architectures and the VHDL engine to
describe them. In Section 4, the implementation results of the
proposed architectures on FPGA are analyzed and compared to
similar work in the literature. Conclusions are drawn in Section
5.

II. MATHEMATICAL BACKGROUND

As it was suggested 6, the modulus M of the RSA algorithm

is the product of two suitably generated secret prime numbers

P and Q:

 (1)

The public exponent (also known as the encryption key) E is

randomly chosen such that it is prime to (P-1)(Q-1). The

secret exponent (also known as the decryption key) D is

computed using the extended Euclidean algorithm such that:

 (2)

A message is divided into blocks of the same word-length as

the product M in equation (1). If M is encoded on k bits, an n

= km bits message is divided into m blocks of k-bit each.

Thus, a k-bit word A is encrypted into a word Enc (A) defined

by . A cipher word B is decrypted into a

word Dec (B) defined by .

The operation of modular exponentiations is carried out

iteratively by repeating a modular squaring operation and a

modular multiplication, as described in Algorithm 1. The

algorithm computes B, which is the remainder of the division

of AE by the modulus M.

Algorithm 1

 , ,

for i = 0 to k-1

{

if then

 else }

Algorithm 1 entails a modular squaring operation,

 , and a modular multiplication operation, . Both

modular multiplication and squaring operation can be

implemented using the Least Significant Bit First (LSBF)

modular multiplication scheme termed Montgomery

algorithm. The term in and is due to the

multiplication factor introduced by the Montgomery

multiplication scheme. If a most significant bit first

multiplication algorithm is used, the factor is simply

dropped and replaced by 1. The modulus M in Montgomery

algorithm can be an integer within the range [2n-1, 2n[8. The

algorithm requires a quantity termed Radix (R), which is equal

to 2n, and M to be relatively prime, which is satisfied as M is

odd. It computes the modular product, P, of two given

integers, A and B, as follows 8:

 (3)

The algorithm uses multiplication modulo R and division by

R, which are only shift operations, thus, faster and simpler to

implement in software and hardware than the computation of
 which involves division by M. However, the algorithm

is only efficient when multiple operations are carried out,

such as in the modular exponentiation operation when such an

operation is broken into modular multiplication operations
7,11,12,15-20. For hardware implementation, a systolic array can

be derived from the bit-wise version of Montgomery

multiplication

Algorithm 2

 , ,

for i= 0 to n-1

{

 }

if then

Algorithm 2 interleaves the multiplication steps,
with the reduction steps, . One bit of the

partial result is used to select the reduction value. As shown in

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 01, January 2013

www.ijcit.com 166

the algorithm, the Least Significant Bit (LSB) of the partial

result of the previous iteration, Pi-1, together with the bit-

product aib0, directly selects the modular reduction value,

which is either 0 or M. At every iteration, the LSB of Pi equals

0. Pi is then shifted one position to the right. After n iterations,

the scaling factor is equal to
 . Therefore, the final result is

 as shown in equation (3). The partial results fall in

the range [0,2M[and, as such, an operation of

comparison/subtraction is necessary at the end of the

algorithm 8. The critical propagation delay of Algorithm 2

occurs during the calculation of the values where the main

contributing factor to this delay is the carry propagation 15-19

and the global broadcast line resulting from using very large

operands 2-4,15-19.

One can easily argue that Algorithm 2 consists of two

interleaved multiplication operations and an addition

operation. This fact has been exploited to build a modified

Montgomery structure that uses two conventional multipliers

to carry out the multiplications in Algorithm 2 in a non-

interleaved way 2. Thus, one multiplier carries out the

operation of multiplication and the other multiplier carries out

the modular reduction operation. These two operations are

carried out in parallel as described in Algorithm 3 2.

Let T be the product of AB, i.e.:

T = AB = T0 +2T1R (4)

Algorithm 3:

 ,

 ,

 , ,

For i= 0 to n+1

{Step1:

 B

Step 2:

Step 3:

Step 4:

Step 5:

 }

As shown in Algorithm 3, the modular multiplication

operation is broken into two concurrent multiplication

operations and computes Montgomery product by using the

two's complement of T0 (which is in step 2 of Algorithm 3)

to select the reduction value. The results from the two

multipliers are then added and a division by 4R (or 2n+2)

follows. However, in the original algorithm (see Algorithm 2),

after each multiplication a reduction was needed (the last step

in Algorithm 2). The inputs have the restriction A, B < M and

the output P is bounded by P < 2M. If used to compute

repeated multiplication operations as in RSA, M must be

subtracted from P so that the output of a modular

multiplication operation can be used as input for the next

operation. To avoid this subtraction operation, the new bound

for the inputs is A, B < 2M, thus, the output is also bounded by

P < 2M. In this way, the result P is equal to:

 (5)

Where is the multiplicative inverse of –M modulo R.

Therefore, at the (n+2)th (i.e., the last iteration), and since

 , the upper bound of the result

 is given by:

 (6)

Thus, it is practicable that the result of each modular

multiplication operation can immediately be used as input for

the next operation, as required by RSA algorithm. At the end

of the encryption operation, a multiplication by 1 is required to

take away the effect of the 2-n-2 factor introduced by Algorithm

3. Finally, for the range of the RSA operation result to fall in

[0, M[, a single comparison/ subtraction operation may be

necessary.

III. IMPLEMENTATION APPROACH

The serial approach processes data serially where at every
clock cycle a single data bit is fed to the RSA processor to be
processed. In contrast, the parallel approach processes the data
bits in a parallel fashion in just one clock cycle. Many RSA
implementations are bit-serial based structures. This is
essentially due to their design simplicity and low hardware
area-usage requirements. However, when high sample rates
are required, the family of bit-serial architectures leads to a
slow system speed. To avoid this problem, and thus, reach
higher system speeds, it is clear that a move towards higher
bit-width operations is necessary. Unfortunately, the parallel
architectures require a considerable area-usage and pin-out,
which may not be satisfied in the resource limited FPGA chips
and the size of data bocks used in RSA.

As a trade-off, the concept of digit-serial computation has
been adopted in this paper. The proposed system processes
more than one bit in one clock cycle. The number of bits
processed in one clock cycle is referred to as the digit size.
Since the digit size is variable, the digit approach provides the
designer with a flexible and efficient area-time method to find
the speed and the area that match the design needs through an
appropriate choice of the digit size. Pipelining the digit
structures is of capital importance 1-4. However, Montgomery
digit multipliers cannot be pipelined beyond the digit level due to
the presence of feedback loops. Nevertheless, based on the use of
the feedback loop pipelining technique 2-4, one can shorten the
propagation path by interleaving two or more data sets into the
same structure 2-4. In the proposed designs, only one or two
instances are interleaved into the same architecture.

A. RSA Structures

Two classes of RSA structures that implement Algorithm 1
are presented. The first generic class requires two
Montgomery multipliers: the first one is used for modular
squaring and the second is used for modular multiplication.
The general skeleton of such a class of structures, termed SE
architectures, is depicted in Figure 1. Registers are used to
store the result form the modular squarer in both parallel and

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 01, January 2013

www.ijcit.com 167

serial way. The parallel register associated with the squarer is
used to feed the parallel operand to the squarer while the serial
register is used to feed the serial input to both the squarer and
the multiplier. Both registers are initialized with

as in Algorithm 1 to start the computation of the

values from . The parallel register associated with the
multiplier in Figure 1 is initialized with . Using
the input from its parallel register and the serial input from the
serial register in which the intermediate results are stored,
the multiplier computes the multiplication step in Algorithm 1,
 . The result is fed back to the multiplier’s
register. The multiplication operation is controlled by the
exponent bit . If it is low, rather than freezing the multiplier
and its parallel register so that is stored for the next
exponentiation step, a multiplication of by 1 takes place. In
Montgomery domain, this is equivalent to a multiplication by
 in order to take account of the scaling factor effect
introduced by Montgomery multiplier.

Serial Register

 Parallel Register

Squarer

Parallel Register

Multiplier

<2n+2>M

<A 2n+2>M

ei

<2n+2>M

Figure 1. A Speed-Efficient (SE) RSA Structure that uses two multipliers

Parallel Register

 Serial Register

Parallel Register

MUX

Multiplier

<2n+2>M

ei

<A2n+2>M

Figure 2. An Area Efficient (AE) RSA Structure that uses one Montgomery

Multiplier

The second class of RSA structures, termed AE
architectures, employs the general skeleton depicted in Figure

2. This class of structures requires only one Montgomery
multiplier which carries out both the multiplication and
squaring operations in RSA in an interleaved way. It is worth
pointing out that one exponentiation iteration of Algorithm 1
takes to execute in an AE architecture twice the execution time
in its SE counterpart architecture. As a matter of fact, the
multiplier in Figure 2 devotes one clock cycle for the modular
squaring step in Algorithm 1 and the next clock cycle for the
modular multiplication step every two clock cycles. Since the
squaring and multiplication operations are carried out in a
serial fashion, the shift process in the serial register in Figure 2
is twice slower than the clock frequency. Multiplexers are
required to select the right data to be fed to the multiplier,
either for the modular multiplication operation or for the
modular squaring operation. If a digit RSA is implemented
using either of the two general skeletons in Figures 1 and 2, the
serial register is replaced by a digit shift register. The parallel
registers remain unchanged and the multiplication time is
reduced by a factor equal to the digit size d.

B. Montgomery Structures

Algorithm 3 can be implemented using two bit serial

multipliers, a serial adder to perform the addition of step 5,

and a serial two's complement circuit that is used to two's

complement the product AB, as shown in Figure 3. The First

Cell (FC) of the second serial multiplier is different from the

remaining Basic Cells (BC), which are gated FAs (a gated FA

is a FA to which an AND gate is connected, the AND gate

generates the partial products). During the n first cycles, the

FC generates the bit qi that selects the reduction value. The

clock path of this bit serial modular multiplier is equivalent to

that of two FAs and a latch. The issue of data lines broadcast

to all the cells is resolved (such as the multiplier input ai in

Figure 3) leading to a fully systolic structure. The insertion of

registers in global lines achieves a significant increase in clock

frequency, especially for large operands, which are usually

used in cryptography. Although the critical propagation path

is equal to 2 FAs, such solution is preferred to shortening the

critical path to a single FA and removing the registers from the

global lines, which can be obtained by retiming the structure

of Figure 3 1-21. However, a different registers insertion

strategy may be used to, in the same time, shorten the critical

path to a single FA and circumvent the global broadcast of

data. In this approach, the same cells used in the multiplier of

Figure 3 are used to build a systolic multiplier structure, except

that the overall number of latches increases. The resulting

architecture will interleave two modular multiplication

operations using the feedback loop pipelining technique 4. In

general, the number of operations interleaved onto the same

structure depends on the number of latches added to the feedback

loops. As such, an extra register has to be added to the feedback

loops and sum- bits of the multiplier in Figure 3 to cope with

feeding two different sets of operands to the multiplier. The two

interleaved modular multiplication operations can be the two

operations involved in the modular exponentiation. In such a

way, the resulting serial multiplier can be used as the core bit

serial-parallel modular exponentiation element in the

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 01, January 2013

www.ijcit.com 168

architecture of Figure 2. The critical path will be reduced to a

single FA and the resulting structure will be fully systolic;

requiring nearest neighbor communications only.

10000..0

TC

FA

b
0

b
1

b
2

b
3

p
i

m
1

m
2

m
3

a
i

BCBCBCBC

FCBCBCBC
i,

T
0q

i

HA: Half Adder

ctrl din

cin

coutdout

HA

sin

qi
i,T0

HA

ctrl

cin

cout

sout

ai

soutcout

FA

sincin

bj

Basic Cell (BC)Two’s Complementer

(TC)
First Cell (FC)

Latch

Figure 3. A serial Montgomery Multiplier derived from Algorithm 3

b
0

b
1

b
2

b
3

a
2i

b
2

b
3

b0
b

1

m0

00..0

100..0

a
2i+1

p
2i

p
2i+1

BC BC

BC BC BC

BC

BC

BC

BC

BC

BC

BC

FC

FCBC

BC
FA

FA

TC

TC

m1m2m3

m0m1m2m3

Figure 4. A 2-bit Digit Montgomery Multiplier that Implements Algorithm 3

A 2-bit digit Montgomery multiplier structure is depicted

in Figure 4. Such architecture processes two bits of the

operand per clock cycle, thus requiring half the number of

cycles of that of the architecture of Figure 3 to carry out a

modular multiplication operation and its critical path is two

FAs. It suffers, however, from global data broadcast.

Nevertheless, a 2-bit digit multiplier capable of interleaving

two data instances can be derived by pipelining the feedback

loops in Figure 4 and then retiming the structure. The resulting

architecture is fully systolic and exhibits a critical path equal

to 2 FAs, thus possessing similar characteristics to that of the

architecture of Figure 3. Higher digit sizes multipliers can be

obtained by unfolding the structure of Figure 4. To interleave

two sets of data into such digit architecture, a FF is added to

its feedback loops followed by retiming. An example of 4-bit

digit multiplier is depicted in Figures 5 and 6. In the remainder

of the paper, the notation Dd_Ll is used to indicate a digit size

of d bits and a level of pipelining l.

C. Code Generation Engine

It is clear that the suggested RSA architectures can be
described using parameters such as the modulus, which defines
the block size, and the public/private key exponent. Such
parameters are sufficient to describe the registers, multiplexers
and control signals in the developed RSA structures. In
addition, Montgomery multipliers are parameterized in terms
of the block length, which determines the size of the multiplier,
the digit size and level of pipelining. Digit and pipelined
multipliers can be derived from the serial structures using the
unfolding transformation 1,4,22. Furthermore, the multipliers in
Figures 3 and 4, their counter parts capable of interleaving two
operations and the digit multipliers depicted in Figures 5 and 6,
are scalable; that is they can be built by replicating a certain
number of basic cells. Thus, an automatic code generator can
be built to take account of all of the designs details and
parameters. The code is generated in a structural VHDL style
which is very suitable for a parameterized description of
circuits. The user’s constraints can be expressed in form of area
usage and speed requirements, from which an RSA structure
with the adequate digit size and level of pipelining is generated.
In addition, the user has the option of picking a predetermined
RSA structure which has the design parameters described
above.

0b1b

4i+3a

4i+1a

4ia

4i+2a

7b 6b
5b

BC

BC

BC

BC

BC

BC

BC

BC

BC

BC

BC

BC

BC

BC

BC

BC

BC

BC

BC

BC

TC

TC

TC

TC

0m1
m

7m 6m 5m

FC

FC

FC

FC

BC

BC

BC

BC

BC

BC

BC

BC

BC

BC

BC

BC

BC

BC

BC

BC

FA

FA

FA

FA
4i+3

p

4i+1p

4ip

4i+2
p

Figure 5. A D4_L1 Digit Multiplier

The proposed system is shown in Figure 7. It consists of a

GUI where the user can enter his/her specifications in terms of
speed and area usage. The user is also able to pick a
predetermined structure which is available in the system
library. The library consists of the basic design components
such as the registers, multipliers and multiplexers of the two
skeletons of RSA architectures. From this basic components
and using the design specifications such as the digit size, word
length, modulus and level of pipelining, new architectures can
be devised. The VHDL code generator can interpret the area
usage and processing time specifications to generate a digit
architecture that best suits the user by applying transformation
techniques such as unfolding, pipelining and retiming on the

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 01, January 2013

www.ijcit.com 169

basic components in the system library. Furthermore, it can
also rely on a heavy pipelining of the input/output pins data-
lines to further improve the clock frequency. Once the VHDL
code has been generated, the Xilinx tools are executed to
synthesize, simulate, verify and implement the obtained design
in the target FPGA chip.

0b1b

4i+3a

4i+1a

4ia

4i+2a

7b 6b 5b

BC

BC

BC

BC

BC

BC

BC

BC

BC

BC

BC

BC

BC

BC

BC

BC

BC

BC

BC

BC

TC

TC

TC

TC

0m1
m

7m 6m 5m

FC

FC

FC

FC

BC

BC

BC

BC

BC

BC

BC

BC

BC

BC

BC

BC

BC

BC

BC

BC

FA

FA

FA

FA
4i+3

p

4i+1p

4ip

4i+2
p

b'7 b'6 b'5 b'1 b'0

4i+3a'

4i+1a'

4ia'

4i+2a'

4i+3p'

4i+1p'

4ip'

4i+2p'

Figure 6. A D4_L2 Digit Multiplier

synthesiser/
Placement & Routing

tools

GUI

User specifications

VHDL

Engine

Virtex FPGA

Library of Basic

structures

Figure 7. RSA code generator

IV. IMPLEMENTATION AND RESULTS

The proposed two classes of RSA architectures are

compared in terms of their area usage and timing

characteristics. To illustrate the fact that the proposed

architectures can be parameterized, digit sizes of 1-bit, 2-bit,

4-bit and 8-bit have been selected to generate RSA

architectures with either a single Montgomery multiplier or

two Montgomery multipliers using the engine of Figure 6 for a

modulus of 1024-bit length. The larger digit size of 16-bit

does not fit in the target device family. For the purpose of

comparison with similar work in the literature, the proposed

structures have been implemented in a Xilinx Virtex-4 device.

Table 1 depicts the area usage of the selected 8 structures.

As one may have expected, the area usage increases when the

digit size increases within the same class of RSA

architectures. Thus, D1_L1 and D8_L1 structures use the

smallest area and largest area within the Dx_L1 class of

architectures, respectively. A similar observation is applicable

to the class of Dx_L2 structures. An interesting point which

comes out from Table 1 is that up to a digit size of 2 bits,

Dx_L1 structures require less area than their Dx_L2

counterparts despite calling for an extra Montgomery

multiplier. However, when the Dx_L2 architectures use a

single multiplier, they also need extra multiplexers and

registers to pipeline the feedback loops. The benefit of AE

architectures over the SE architectures in terms of area saving

due to using one multiplier becomes clearly apparent for digit

sizes 4 bits and 8 bits. Table 1 also shows the critical

propagating path within the proposed architectures. The

critical path of D1_L1, D2_L1 and D2_L2 is equal to 2 FAs

while it is a single FA for the D1_L2 structure. The critical

path for the remaining architectures is equal to d/l FAs. In

addition, Table 1 distinguishes between the proposed

architectures depending on whether or not they avoid global

line broadcast. Thus, architectures D1_L1, D1_L2 and D2_L2

are fully systolic while the remaining architectures are semi

systolic.

Table 2 follows suit of Table 1 in dividing the architectures

into semi and fully systolic structures. The fully systolic

architectures D1_L1, D1_L2 and D2_L2 exhibit superior

clock frequencies with periods ranging from 3,634 ns to 3,936

ns. This is a clear benefit of making the proposed architectures

systolic through retiming. The clock periods of the remaining

semi systolic architectures are clearly higher; increasing with

the critical path from 8.339 ns, in the case of D2_L1 which

exhibits a critical path consisting of 2 FAs, to 20.943 ns in the

case of D8_L1, which has a critical path of 8 FAs. In the case

of a full 1024-bit RSA exponentiation, the processing time of

an SE architecture is generally shorter than that of its

respective AE counterpart architecture for the same digit size,

except for the D2_L2 architecture which requires 8.28 ms to

compute a full 1024-bit RSA operation, which is slightly

shorter than the 8.79 ms taken by the D2_L1 structure to carry

out the computation of the same operation. This means that the

gain achieved in terms of clock frequency thanks to shortening

the critical propagation path is not proportional to the increase

in the number of processing cycles which increases by almost

a factor of two when a single Montgomery multiplier is used.

Nevertheless, the processing time decreases when the digit

size increases making the D8_L1 whose processing time is

only 5.58 ms the fastest of the 8 architectures analyzed in

Table 2. Another metric used to assess the proposed

architectures is their area usage×processing time

performances. Such a metric evaluates whether or not the

increase in area usage is coupled with a proportional decrease

in processing time. From Table 2, Dx_L1 architectures are

more area-time efficient than their Dx_L2 counter parts for

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 01, January 2013

www.ijcit.com 170

digit sizes of up to 4 bits. However, for digit size 8-bit, D8_L2

is clearly more area-time efficient than D8_L1 structure.

Furthermore, the D1_L1 architecture is the most area-time

efficient architecture among the eight structures of Table 2.

Thus, the increase in area usage due to using two Montgomery

multipliers and increasing the digit size is not proportional to

the gain in terms of processing time. The area-time efficiency

of the proposed structures worsens when the digit size

increases. Taking this into account, an important result can be

pointed out from Tables 1 and 2. Among the proposed

architectures, see for example D4_L1 and D8_L2, there are

those with a shorter processing time and at the same time calls

for less area usage. Thus, the digit approach can be seen as

more than a compromise between the bit serial and the bit

Parallel approaches. Through an appropriate selection of the

digit size, such an approach provides the designer with the

best area and speed that match the needs of the system.

The obtained results are compared against similar work in the

literature 9,10,18. In Ref 18, an algorithm combining the

Montgomery’s technique and the carry save representation of

numbers was proposed. The serial structure that implements

this algorithm computes a full 1024-bit exponentiation in

27.88 ms. The proposed D1_L1 is much faster, carrying out

the same operation in just 8.17 ms. The physical device used

in Ref 10 to implement a radix-4 RSA processor is not the

same as ours. This makes an exact comparison difficult in

terms of hardware resource requirements and time

performance. The architecture of Ref 10 shows a critical path

of a 4-bit adders and its radix-4 multiplication unit processes 4

bits of data per cycle. It is equal to the propagation path of the

proposed D4_L1 architecture. However, unlike the

architecture of Ref 10, our design does not make use of

optimized blocks and has considerable device-independent

features.

V. CONCLUSIONS

In this paper, architectures that implement the RSA

encryption algorithm have been presented. The new

architectures use a modified Montgomery algorithm in which

the operations of modular multiplication and modular

reduction are carried out separately and in a parallel way. To

investigate the best area usage-time trade-off, the digit

approach has been adopted. The issue of global lines broadcast

has been circumvented by interleaving more than one instance

onto the same digit multiplier. Such aim has been achieved by

pipelining the feedback loops and retiming the whole

structures. In addition, this technique has also the merit of

shortening the critical propagation path. The resulting RSA

architectures use either two Montgomery multipliers and

termed Speed-Efficient architectures, or utilize a single

multiplier and as such called Area-Efficient architectures.

Furthermore, a VHDL cryptographic engine has been

proposed so that by varying the digit size and level of

pipelining, the designer may select the best architecture that

meets the application requirements in terms of speed and area

usage.

REFERENCE

[1]. O.Nibouche and M.Nibouche. "On Designing Digit

Multipliers”, Proceeding of the 9th International IEEE Conference on

Electronics, Circuits, and Systems (ICECS), Dubrovnik 2002.

[2]. O. Nibouche, A. Bouridane, and M. Nibouche

“Architectures for Montgomery's multiplication”, IEE Proceedings,

Computers and Digital Techniques, Vol.150, November 2003, Issue

06, p. 361-368.

[3]. O. Nibouche, M. Nibouche, A. Bouridane, and A.

Belatreche, “ Fast architectures for FPGA based implementation of

RSA encryption algorithm”, Proceedings. IEEE International

Conference on Field Programmable Technology, pp: 271- 278, 6-8

Dec. 2004.

[4]. W. L. Freking and K. K. Parhi, "Ring-Planarized

Cylindrical Arrays with Application to Modular Multiplication",

IEEE Workshop on Signal Processing Systems Design &

Implementation (SIPS 2000), Lafayette, Louisiana, USA, pp 497-

506.

[5]. W. Diffie and M. E. Hellman, “New directions in

cryptography”, IEEE Transactions on Information Theory, 22:644–

654, 1976.

[6]. R. L. Rivest, A. Shamir, and L. Adleman, “A method for

obtaining digital signatures and public-key cryptosystems”,

Communications of the ACM, 21(2):120–126, 1978.

[7]. M. Shnad and J. Vuillemin, “Fast implementation of RSA

cryptography”, Proceedings of the 11th IEEE Symposium on

Computer Arithmetic, 1993.

[8]. P. L. Montgomery, "Modular multiplication without trial

division", Math. Comp. vol. 44, no. 170, pp. 519-521, 1985.

[9]. T. Blum and C. Paar, “Montgomery modular

exponentiation on reconfigurable hardware”, In Proceedings of 14th

IEEE Symposium on Computer Arithmetic, pages 70–77, Adelaide,

Australia, April 14-16 1999.

[10]. T. Blum and C. Paar, “High-radix Montgomery modular

exponentiation on reconfigurable hardware”, IEEE Transactions on

Computers, 50(7):759–764, July 2001.

[11]. H. Orup, “Simplifying quotient determination in high-radix

modular multiplication”, In Proceedings of the 12th IEEE

Symposium on Computer Arithmetic, pages 193–199, 1995.

[12]. S. E. Eldridge and C. D. Walter, “Hardware

implementation of Montgomery’s modular multiplication algorithm”,

IEEE Transactions on Computers, 42:693–699, 93.

[13]. J. Goodman, and A. P. Chandrakasan, “an Energy-Efficient

Reconfigurable Public Key Cryptography Coprocessor”, IEEE

journal of solid state circuits, vol. 36, pp. 1808-1320, No. 11,

November 2001.

[14]. Anderson, R., and Kuhn, M., “Tamper Resistance- a

Cautionary Note”, in The Second USENIX Workshop on Electronic

Commerce Proceedings, Oakland, California, November 18-21,

1996, pp 1-11.

[15]. C. McIvor, M. McLoone, J. McCanny, A. Daly and W.

Marnane, "Fast Montgomery Modular Multiplication and RSA

Cryptographic Processor Architectures”, 37th Asilomar Conference

on Signals, Systems, and Computers, Nov 2003.

[16]. C. McIvor, M. McLoone, and J.V. McCanny, “Modified

Montgomery Modular Multiplication and RSA Exponentiation

Techniques”, IEE Proceedings – Computers & Digital Techniques,

Vol. 151, No. 6, pp 402-408, Nov 2004.

[17]. A. Mazzeo, L. Romano, G. P. Saggese, and N. Mazzocca,

“FPGA Based Implementation of a Serial RSA Processor”,

proceedings of the Design, Automation and Test in Europe

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 01, January 2013

www.ijcit.com 171

Conference and Exhibition (DATE'03), March 03 - 07, 2003,

Munich, Germany, pp. 10582-10589.

Table 1. Architectures performances

Architecture D1_L1 D1_L2 D2_L1 D2_L2 D4_L1 D4_L2 D8_L1 D8_L2

Area (slices) 9100 12400 12000 13700 19800 15000 36600 23000

Critical path

(FAs)

2 1 2 2 4 2 8 4

Systolicity Fully Fully Semi Fully Semi Semi Semi Semi

Table 2. Implementation results

Architecture D1_L1 D1_L2 D2_L1 D2_L2 D4_L1 D4_L2 D8_L1 D8_L2

Period (ns) 3.883 3.634 8.339 3.963 13.045 10.500 20.943 14.247

Frequency

(Mhz)

257 275 114 254 77 95 48 70

Processing

Time (ms)

8.17 15.28 8.79 8.28 6.89 11.06 5.58 7.54

Throughput

rate (Kb/s)

15.67 8.38 14.56 15.46 18.58 11.57 22.94 16.98

Area-time

(ms × slice)

74347 189472 105480 113436 136422 165900 204228 173420

Table 3. A comparison with similar work in the literature

Architecture D1_L1 D4_L1 RSA 18 RSA 10

Frequency (Mhz) 257 77 78 46

Processing Time (ms) 8.17 6.89 27.88 11.95

