
 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 03 – Issue 01, January 2014

www.ijcit.com 48

Noise Signal Identification by Modified Self-

Organizing Maps

Thomas Bryant

Department of Computer Science and Engineering

Oakland University

Rochester, MI

Email: tcbryant {at} oakland.edu

Mohamed Zohdy

Department of Electrical and Computer Engineering

Oakland University

Rochester, MI

Abstract— This research uses a modified self-organized map to

look for similarities and differences between noise signals and

provides a context for unknown ones. The program first divides

preprocessed data into quadrants in joint time-frequency domain

and obtains the features. Features are also extracted in time

domain, frequency domain, and joint time-frequency domain

from noise files representing different abstract noise colors.

These features are able to be input independently and classified

accordingly. In addition, several types of distance metrics are

tested to find best matching units including the p-norm distance

formula and determining which node has the smallest weight.

The output is displayed on a two-dimensional map, and the

vector is colored according to the noise that has the smallest

weight. A context tree allows individual features to be input and

classifies the vector to the most similar noise. With the results

that were gathered, the clusters have shown that distinct

differences between the engine sets contribute to the study of

sound discrimination by distinguishing useful sounds that

humans have difficulty telling apart.

Keywords- self-organizing feature map; sounds; unsupervised

learning; classification; feature selection; watershed tranformation

I. INTRODUCTION

Unsupervised learning neural networks are characterized as
competitive networks that compete on an input vector. Self-
organizing maps (SOFM) are an example of unsupervised
neural networks. The learning process of the self-organizing
maps is competitive, meaning no teacher is needed to define
the correct output for a given input [1]. The purpose here is not
to find an optimal clustering of the data, but to get good insight
into the cluster structure of the data for data mining purposes.
Therefore, the clustering method should be fast, robust, and
visually efficient. The clustering is carried out using a two-
level approach, where the data set is first clustered using the
SOFM, and then, the SOFM is clustered [2].

 Sounds are multidimensional signals and can have
practical applications in device health monitoring, containing
complex features such as volume, pitch, frequency, and timbre.
Humans can easily discern differences and similarities between
sounds, but this paper explores how a computer program would
handle this problem. By extracting suitable features from
sounds, a self-organizing feature map is able to display (in a
visual environment) the discriminate clustering that occurs.

Sound can be mathematically represented in a time domain, a
frequency domain, and a joint time-frequency domain. Each
domain has its own features, but the main focus of this program
dealt with the joint time-frequency domain. In the graph, time
serves as the x-axis and frequency is the y-axis. However,
unlike the frequency and time domains, the joint graph also
displays color to represent magnitudes. A red color on the
graph equates to a high magnitude, while a blue color is a low
magnitude. The color adds another dimension to the data. Key
features are extracted from each domain. The key features
extracted from the time domain are obtained by using principal
component analysis, which is discussed in more detail later.
The key features extracted from the frequency domain are
resonances, which are obtained by analyzing the peaks and
frequencies of the respective graph. Lastly, the features
extracted from the joint domain come from the quadtree
function and are obtained by continually splitting the matrix
into four quadrants until there is only one 2-by-2 matrix left.

In the last step of the feature extraction process, features are
entered. Fourteen text boxes manipulate the data. Once the
“input” is given, the top node of a context tree changes to the
color of the noise it most closely resembles. This comparison is
based solely on the information obtained from the input file,
and does not affect the SOFM. The sound clips used in this
application were relatively short, none of them lasting longer
than thirty seconds. Even so, the matrix of the magnitudes from
the joint time-frequency diagram was rather large; the biggest
matrix was 257 rows by 1922 columns. As a result, the entire
matrix could not be used efficiently when comparing against
new data. Thus, a new algorithm was developed to select
features for the self-organizing feature map (SOFM).

Preprocessed data is divided into quadrants and then used
to obtain the salient features. Even though the number of
features can change, the optimal amount ranges between 4 and
14 features. Distinct features are obtained through the three
domains as discussed above. Once the features are obtained,
the program learns the patterns hidden in the data. To classify
the sounds, the winning node is calculated using the p-norm
distance formula to determine which node is closest. The
output is visualized and displayed on a two-dimensional map,
and the vector is colored according to the sound that has the
closest node. It visualizes sounds as similar colors that act as

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 03 – Issue 01, January 2014

www.ijcit.com 49

agents that compete against each other. The vectors that weigh
the least “win” [3].

 Once the features were obtained, the map was initialized
with random weights. Nodes were created to form map
anchors with these pseudo-random entities. The algorithm
reads the data from the input file and compares it to the random
numbers, determining which pseudo-random number it is
closest to using the p-norm distance formula. This stage of
updating the weights to best adapt the network’s behavior is
known as the training phase [4]

Before the SOFM algorithm begins to cluster the nodes, it
also takes in ten parameters: the neighborhood radius, learning
rate, rate decay, neighborhood decay, history limit, and history
factor. The default values are best for different types of data,
but the user can specify any or all of the values to obtain more
effective clustering. The history function in particular is an
important contribution. The colors of the previous several
iterations are displayed underneath the map. By knowing the
previous values, the clustering becomes far more accurate [5].

Lastly, features can also be input by the user specifically.
Fourteen text boxes are available for the user to manipulate the
data. Once the “input” is given, the top node of a context tree
changes to the color of the noise it most closely resembles.
This comparison is based solely on the information obtained
from the input file, and does not affect the SOFM.

II. PROBLEM FORMULATION

A. Feature Extraction Algorithm

In order to obtain the features, quad division was used to
split the data. The densities of each quadrant were calculated
using the matrix density equation to determine the most active
quadrant:

where C is equal to the count of the values in the quadrant that
are greater than the average of all the values in the matrix. The
variable C was then used in the following equation:

In essence, C was divided by the total count of all the values in
the quadrant, which yielded the density. This process was
repeated for each quadrant. The quadrants were then ordered
according to highest density. The most active quadrant (the one
with the highest density) was then further divided into four
sub-quadrants using the same equations shown above, and
again was ordered. Using the seven quadrants, the arithmetic
mean and the range were calculated:

The value ai is the value of the magnitude, n is the number of
values in the quadrant, and A is the sum of all the values
divided by the number of values (in other words, the average).
The range is simply equal to the maximum value in the
quadrant minus the minimum value in the quadrant. Using the
average and range of each quadrant, fourteen features were
thus extracted and used as input for the SOFM.

B. Learning Algorithm

The map is initialized with random nodes of the weight
vector. It takes an input vector and traverses each node in the
map using the p-norm distance formula:

This equation finds the similarities between the input vector

and node weight vector. The program then tracks the node that

produces the smallest distance (this node is called the best

matching unit or BMU). The neighborhood function updates

the BMU and its neighborhood making them more similar to

the inputted vector using the equation below:

Increase t and repeat from 2 while t< λ:

 t denotes current iteration

 λ is the limit on time iteration

 is the current weight vector

 dist is the target input

 (t), where is the estimate of an analysis performed
on variables that have been standardized so that they
have variances of 1, represents restraint due to
distance from BMU, usually called the neighborhood
function, and

 α(t), where α is the conventional symbol for angular
eccentricity, is learning restraint due to time.

The above parameters determine the efficiency of the

SOFM algorithm. The input vectors will have three

components, and each will correspond to a color space. The

target input will correspond to a color space, somewhere on

the RGB map [6]. Each weight vector, including the current

one, is of the same dimension as the node's input vector. The

current iteration must always be less than the limit on time

iteration. The weight vector should be as small as possible.

There is also the history limit, which keeps track of the input

history, and a history factor to update previous winning nodes

has been implemented to decrease the time necessary to

complete the training phase.

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 03 – Issue 01, January 2014

www.ijcit.com 50

C. Strengths and Weaknesses of the Self-Organizing Feature

Map Algorithm

 The main strength, or advantage, of using a SOFM is that
the data is easily interpreted and understood. As a result,
patterns can be easily obtained. The reduction of
dimensionality and grid clustering makes it easy to observe
similarities in the data. SOFMs depend on data; in other words,
they factor in all the data in the input to generate these clusters
and can be altered such that certain pieces of data have
more/less of an effect on where an input is placed. Relying on
data instead of an exact mathematical formula is essential
because no two SOFMs are ever exactly the same.

 One major disadvantage of a SOFM is that it requires
sufficient data in order to develop meaningful clusters. The
weight vectors must be based on data that can successfully
group and distinguish inputs. Lack of data or extraneous data in
the weight vectors will add randomness to the groupings.
Finding the correct data involves determining which factors are
relevant; the ability to determine a good data set is a deciding
factor in determining whether to use a SOFM or not.

 Another problem with SOFMs is that it is often difficult to
obtain a perfect mapping where groupings are unique within
the map. Instead, anomalies in the map often generate where
two similar groupings appear in different areas on the same
map. Clusters will often get divided into smaller clusters,
creating several areas of similar neurons [8]. This can be
prevented by initializing the map, but this is not an option if the
state of the final map is not obvious.

III. PROBLEM SOLUTION

A. An Application to Sound

This program can accept any type of sound file, so long as
it is in the text format described above. As a result, several
types of different sounds were analyzed, but the focus of this
project went into color noises, such as white noise, pink noise,
etc. These types of noises were chosen due to their many
different uses. For example, white noise negates other sound,
while pink noise is often used as a reference signal. Red noise,
violet noise, blue noise, and gray noise were also used. Black
noise, which is total silence, was not used, since humans
cannot perceive it and can only be heard in a vacuum [9].

B. Simulation Results and Discussion

First, different color noise sounds were gathered. These
types of sounds were used because, to the human ear, they
sound very similar, but not quite the same. When displayed in a
joint time-frequency diagram, however, the differences are
quite clear. This makes them excellent candidates to use in the
SOFM, since the overall objective is to distinguish between
sounds that humans have difficulty doing.

 The sounds were first preprocessed in MATLAB by
plotting the sound data into a joint time-frequency domain [10].
The magnitude of the matrix was calculated using the abs()
function, which created a matrix. This matrix could be
converted into a text file, which was then be read by the Java

application. The extracted matrix is analyzed by the feature
extraction algorithm. The output is a feature vector whose
content can range from 4 to 14 features, which is the optimal
range.

 Time and Frequency Domain:

Figure 1: Pink noise in the time and frequency domain

Joint Domain:

Figure 2: Pink noise in the joint time-frequency domain

The nodes in the SOFM are initialized with small random
weights. This is an important step, since the initial weight
determines the learning speed of the map. The larger the
learning rate, the more iterations it will take. However, if the
numbers are too small, then the overall quality of the map will
be affected. The user will be able to see on the SOFM that the
noises did not cluster very well, since the colors will not neatly
group together on the visual display. The next step is to cluster
and classify the training sounds using the learning algorithm. In
this step, the clustering of the sound could be affected by the
input sequence, since this SOFM uses a history function. Using
a random input sequence makes it harder to track the pattern, in

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 03 – Issue 01, January 2014

www.ijcit.com 51

comparison to a sequential input sequence. After training,
different random noises were used for testing the map. In order
to obtain similar but slightly different sound samples, the color
noises were altered using Adobe Sound Booth.

In addition, the differences between random input and
sequential input were analyzed. Random input means that the
files were selected randomly to be put into the SOFM. The
sequential input used the data in the files in the order that they
were written. The results are shown below.

Figure 3: Visualization of random input

Figure 4: Clustered nodes using random input

Figure 5: Visualization of sequential input

Figure 6: Clustered nodes using sequential input

The graphs above represent a sample clustering of two
hundred iterations. The y-axis displays the number of nodes
that were clustered of each color. The x-axis shows how many
nodes were clustered at each iteration. As seen in Fig. 3 and
Fig. 4, the sequential input achieves a stable level much faster
than the random input. This is because it is much easier to
predict patterns when the input order is known, which Fig. 5
and Fig. 6 make clear.

To further investigate this theory, another sample clustering
was done. The range of the small random number initialization
was reduced from 0 to 1 to 0 to .5. This test is to evaluate if
smaller numbers affect the clustering speed. In essence, the
results showed that smaller numbers would cluster faster than
larger random numbers.

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 03 – Issue 01, January 2014

www.ijcit.com 52

Figure 7: Clustered nodes using random input

Figure 8: Clustered nodes using sequential input

 Even by significantly changing the factors, the sequential
input clustered far better than the random input by achieving a
stable level in fewer iterations. The graph with the random
input did not level out until 150 iterations, while the sequential
achieved the same result between 75 and 100 iterations. Thus,
the sequential input proved to be far more successful in the
SOFM clustering algorithm.

 After testing the program multiple times, it was found that
the best result was achieved using a sequential input rather than
a random input sequence, as shown by the pictures. The order
in which the data is presented to the program clearly makes a
difference. By using the sequential method, a faster learning
and a more precise clustering was obtained. Additionally, in
the testing phase of the program, we got a proximal 73.3% of
positive hit of 30 unknown sounds. However, the random input
is not a truly random selection; it is based on the time executed,
as well as other several different factors. While this proved
sufficient for this project, a more accurate representation of
random input might be obtained by other methods. Moreover,
the previous version of this project determined the importance
of the history to increase accuracy. There is also the history
limit, which keeps track of the input history, and a history
factor to update previous winning nodes has been implemented
to decrease the time necessary to complete the training phase.
The range (range=max-min) and arithmetic average of each
quadrant and sub-quadrant proved to be satisfactory features
for the SOFM.

C. Watershed transform analysis in joint (time-frequency)

domain

 There is a way of making the SOFM images clearer.

Watershed segmentation is often used to separate touching

objects in an image. The watershed transform is often used by

finding "catchment basins" and "watershed ridge lines" in an

image by treating it as a surface with high light pixels and low

dark pixels.

 Segmentation using the watershed transform works better

if one can identify, or "mark," foreground objects and

background locations. Marker-controlled watershed

segmentation follows this basic procedure:

1. Compute a segmentation function, which is an image whose

dark regions are the objects you are trying to segment.

2. Compute foreground markers. These are connected blobs of

pixels within each of the objects.

3. Compute background markers. These are pixels that are not

part of any object.

4. Modify the segmentation function so that it only has

minima at the foreground and background marker locations.

5. Compute the watershed transform of the modified

segmentation function.

 Fig. 9 shows the image of the self-organizing map in

gradient magnitude, but it is not clear enough without further

preprocessing. This visualization illustrates how the locations

of the foreground and background markers affect the result. In

around two locations, partially occluded darker objects were

merged with their brighter neighbor objects because the

occluded objects did not have foreground markers.

A visualization technique that is shown in Fig. 10 is to

superimpose the foreground markers, background markers,

and segmented object boundaries on the original image.

Another useful visualization technique is to display the label

matrix as a color image. This is superimposed by

transparency, as displayed in Fig. 11.

Figure 9: Watershed transform of gradient magnitude

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 03 – Issue 01, January 2014

www.ijcit.com 53

Figure 10: Watershed transform superimposed transparently on original
image

Figure 11: Watershed transform superimposed transparently on original
image

 Pre processing methods are used to reduce the noise of image

and adjust the image intensity [11]. This is not altogether different

from the process of extracting features from sounds. As can be

seen, the watershed transformations help to further subdivide

between clusters and make each one clearer. If a cluster were

to overlap, image segmentation helps to tell them apart. The

watershed transform also assists the smaller clusters to stand

out more than they normally would.

IV. CONCLUSION

 Overall, the results turned out to be successful. The

program was able to accept the text files of the magnitudes

from the joint time-frequency matrices, divide them into

quadrants, and obtain 14 features to put into one feature

vector. The SOFM (self-organizing feature map) classified

random inputs according to the features and accurately

clustered the data. Moreover, it provided a context for input

features with a tree diagram and displayed the color that most

resembled the sound. After rigorous testing, the SOFM

performed best with nonrandom input, a radius of 10.0, a

learning rate of 4.0, a rate decay of 1.0, a neighborhood decay

of 0.99, a history limit of 10.0, and a history factor of 0.5. This

was determined by how well the colors clustered together and

how many randomly colored squares were left on the SOFM.

Of course, future work can always be done. The project can be

expanded to include several different noise samples, rather

than just the color noises. Moreover, even more features could

be added for different results.

ACKNOWLEDGMENTS

First and foremost, the authors would like to thank Oakland
University, for the research opportunity. Also, thank you
Matthew Bradley, Kay Jantharasorn, and Keith Jones, who
created this program that the future contributors. Additional
thanks to Kate LaBelle and Kemuel Cruz for their further work
on the program. This research work was originally conducted
at Oakland University in the UnCoRe program - REU funded
by the NSF under grant number 1062960, and then
independently at Oakland.

REFERENCES

[1] Phillip D. Waserman, “Advanced Methods in Neural Computing”,
International Thompson Publishing, UK’ 93.

[2] Vesanto, J., and E. Alhoniemi, “Clustering of the Self-Organizing Map.”
IEEE Transactions on Neural Networks, vol. 11, No. 3, May 2000.
Neural Networks Res. Centre, Helsinki Univ. of Technol., Espoo,
Finland.

[3] Kohonen, Teuvo. Self-Organizing Maps. Berlin: Springer, 2001.

[4] Nsour, Ahmad R.. and Mohamed A. Zohdy, “Self organized learning
applied to global positioning system (GPS) data”, Proceedings of the 6th
WSEAS International Conference on Signal, Speech and Image
Processing. September 22-24, 2006. pp. 203-208, Lisbon, Portugal.

[5] Bradley, Matthew, Kay Jantharasorn, Keith Jones, and Dr. M. Zohdy,
"Self Organized Neural Networks Applied to Animal Communications",
REU Report, unpublished.

[6] Abdel-Aty-Zohdy, H. S., and M. A. Zohdy. “Self-Organizing Feature
Maps.” Wiley Encyclopedia for Electrical Engineering. Dec 27, 1997.
pp. 767-772.

[7] Audio Processing. Web.

<http://www.aquaphoenix.com/lecture/matlab10/page4.html>.

[8] Pang, Kevin, “Self-organizing Maps”, unpublished.

[9] "The Science of Noise." Web.

 <http://www.youtube.com/watch?v=FKg1dm5tF4>.

[10] Aguado, Alberto S., and Mark S. Nixon, "Feature Extraction and Image
Processing", Linacre House, Jordan Hill, Oxford OX2 8DP, UK. 2008.

[11] Bala, Anju, An Improved Watershed Image Segmentation Technique
using MATLAB, International Journal of Scientific & Engineering
Research Volume 3, Issue 6, June-2012.

