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Abstract— This research uses a modified self-organized map to 

look for similarities and differences between noise signals and 

provides a context for unknown ones. The program first divides 

preprocessed data into quadrants in joint time-frequency domain 

and obtains the features. Features are also extracted in time 

domain, frequency domain, and joint time-frequency domain 

from noise files representing different abstract noise colors. 

These features are able to be input independently and classified 

accordingly. In addition, several types of distance metrics are 

tested to find best matching units including the p-norm distance 

formula and determining which node has the smallest weight. 

The output is displayed on a two-dimensional map, and the 

vector is colored according to the noise that has the smallest 

weight. A context tree allows individual features to be input and 

classifies the vector to the most similar noise. With the results 

that were gathered, the clusters have shown that distinct 

differences between the engine sets contribute to the study of 

sound discrimination by distinguishing useful sounds that 

humans have difficulty telling apart.      
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I.  INTRODUCTION  

Unsupervised learning neural networks are characterized as 
competitive networks that compete on an input vector. Self-
organizing maps (SOFM) are an example of unsupervised 
neural networks.  The learning process of the self-organizing 
maps is competitive, meaning no teacher is needed to define 
the correct output for a given input [1].  The purpose here is not 
to find an optimal clustering of the data, but to get good insight 
into the cluster structure of the data for data mining purposes. 
Therefore, the clustering method should be fast, robust, and 
visually efficient. The clustering is carried out using a two-
level approach, where the data set is first clustered using the 
SOFM, and then, the SOFM is clustered [2]. 

        Sounds are multidimensional signals and can have 
practical applications in device health monitoring, containing 
complex features such as volume, pitch, frequency, and timbre.  
Humans can easily discern differences and similarities between 
sounds, but this paper explores how a computer program would 
handle this problem. By extracting suitable features from 
sounds, a self-organizing feature map is able to display (in a 
visual environment) the discriminate clustering that occurs. 

Sound can be mathematically represented in a time domain, a 
frequency domain, and a joint time-frequency domain. Each 
domain has its own features, but the main focus of this program 
dealt with the joint time-frequency domain. In the graph, time 
serves as the x-axis and frequency is the y-axis. However, 
unlike the frequency and time domains, the joint graph also 
displays color to represent magnitudes. A red color on the 
graph equates to a high magnitude, while a blue color is a low 
magnitude. The color adds another dimension to the data. Key 
features are extracted from each domain.  The key features 
extracted from the time domain are obtained by using principal 
component analysis, which is discussed in more detail later.   
The key features extracted from the frequency domain are 
resonances, which are obtained by analyzing the peaks and 
frequencies of the respective graph.  Lastly, the features 
extracted from the joint domain come from the quadtree 
function and are obtained by continually splitting the matrix 
into four quadrants until there is only one 2-by-2 matrix left. 

In the last step of the feature extraction process, features are 
entered. Fourteen text boxes manipulate the data. Once the 
“input” is given, the top node of a context tree changes to the 
color of the noise it most closely resembles. This comparison is 
based solely on the information obtained from the input file, 
and does not affect the SOFM. The sound clips used in this 
application were relatively short, none of them lasting longer 
than thirty seconds. Even so, the matrix of the magnitudes from 
the joint time-frequency diagram was rather large; the biggest 
matrix was 257 rows by 1922 columns. As a result, the entire 
matrix could not be used efficiently when comparing against 
new data. Thus, a new algorithm was developed to select 
features for the self-organizing feature map (SOFM). 

Preprocessed data is divided into quadrants and then used 
to obtain the salient features.  Even though the number of 
features can change, the optimal amount ranges between 4 and 
14 features.  Distinct features are obtained through the three 
domains as discussed above.  Once the features are obtained, 
the program learns the patterns hidden in the data.  To classify 
the sounds, the winning node is calculated using the p-norm 
distance formula to determine which node is closest. The 
output is visualized and displayed on a two-dimensional map, 
and the vector is colored according to the sound that has the 
closest node.  It visualizes sounds as similar colors that act as 
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agents that compete against each other. The vectors that weigh 
the least “win” [3]. 

       Once the features were obtained, the map was initialized 
with random weights.  Nodes were created to form map 
anchors with these pseudo-random entities. The algorithm 
reads the data from the input file and compares it to the random 
numbers, determining which pseudo-random number it is 
closest to using the p-norm distance formula. This stage of 
updating the weights to best adapt the network’s behavior is 
known as the training phase [4] 

Before the SOFM algorithm begins to cluster the nodes, it 
also takes in ten parameters: the neighborhood radius, learning 
rate, rate decay, neighborhood decay, history limit, and history 
factor. The default values are best for different types of data, 
but the user can specify any or all of the values to obtain more 
effective clustering. The history function in particular is an 
important contribution. The colors of the previous several 
iterations are displayed underneath the map.  By knowing the 
previous values, the clustering becomes far more accurate [5]. 

Lastly, features can also be input by the user specifically. 
Fourteen text boxes are available for the user to manipulate the 
data. Once the “input” is given, the top node of a context tree 
changes to the color of the noise it most closely resembles. 
This comparison is based solely on the information obtained 
from the input file, and does not affect the SOFM.  

II. PROBLEM FORMULATION 

A. Feature Extraction Algorithm 

In order to obtain the features, quad division was used to 
split the data. The densities of each quadrant were calculated 
using the matrix density equation to determine the most active 
quadrant: 

 

                  

where C is equal to the count of the values in the quadrant that 
are greater than the average of all the values in the matrix. The 
variable C was then used in the following equation: 

                                

In essence, C was divided by the total count of all the values in 
the quadrant, which yielded the density. This process was 
repeated for each quadrant. The quadrants were then ordered 
according to highest density. The most active quadrant (the one 
with the highest density) was then further divided into four 
sub-quadrants using the same equations shown above, and 
again was ordered. Using the seven quadrants, the arithmetic 
mean and the range were calculated: 

                                  

The value ai is the value of the magnitude, n is the number of 
values in the quadrant, and A is the sum of all the values 
divided by the number of values (in other words, the average). 
The range is simply equal to the maximum value in the 
quadrant minus the minimum value in the quadrant. Using the 
average and range of each quadrant, fourteen features were 
thus extracted and used as input for the SOFM. 

B. Learning Algorithm 

The map is initialized with random nodes of the weight 
vector. It takes an input vector and traverses each node in the 
map using the p-norm distance formula: 

         
 

This equation finds the similarities between the input vector 

and node weight vector. The program then tracks the node that 

produces the smallest distance (this node is called the best 

matching unit or BMU). The neighborhood function updates 

the BMU and its neighborhood making them more similar to 

the inputted vector using the equation below: 

 

   
  

Increase t and repeat from 2 while t< λ: 

 

 t denotes current iteration 

 λ is the limit on time iteration 

  is the current weight vector 

 dist is the target input 

 (t), where  is the estimate of an analysis performed 
on variables that have been standardized so that they 
have variances of 1, represents restraint due to 
distance from BMU, usually called the neighborhood 
function, and 

 α(t), where α is the conventional symbol for angular 
eccentricity, is learning restraint due to time. 

The above parameters determine the efficiency of the 

SOFM algorithm. The input vectors will have three 

components, and each will correspond to a color space. The 

target input will correspond to a color space, somewhere on 

the RGB map [6]. Each weight vector, including the current 

one, is of the same dimension as the node's input vector. The 

current iteration must always be less than the limit on time 

iteration. The weight vector should be as small as possible. 

There is also the history limit, which keeps track of the input 

history, and a history factor to update previous winning nodes 

has been implemented to decrease the time necessary to 

complete the training phase. 
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C. Strengths and Weaknesses of the Self-Organizing Feature 

Map Algorithm 

      The main strength, or advantage, of using a SOFM is that 
the data is easily interpreted and understood.  As a result, 
patterns can be easily obtained.  The reduction of 
dimensionality and grid clustering makes it easy to observe 
similarities in the data. SOFMs depend on data; in other words, 
they factor in all the data in the input to generate these clusters 
and can be altered such that certain pieces of data have 
more/less of an effect on where an input is placed. Relying on 
data instead of an exact mathematical formula is essential 
because no two SOFMs are ever exactly the same. 

      One major disadvantage of a SOFM is that it requires 
sufficient data in order to develop meaningful clusters. The 
weight vectors must be based on data that can successfully 
group and distinguish inputs. Lack of data or extraneous data in 
the weight vectors will add randomness to the groupings. 
Finding the correct data involves determining which factors are 
relevant; the ability to determine a good data set is a deciding 
factor in determining whether to use a SOFM or not. 

      Another problem with SOFMs is that it is often difficult to 
obtain a perfect mapping where groupings are unique within 
the map. Instead, anomalies in the map often generate where 
two similar groupings appear in different areas on the same 
map. Clusters will often get divided into smaller clusters, 
creating several areas of similar neurons [8]. This can be 
prevented by initializing the map, but this is not an option if the 
state of the final map is not obvious. 

III. PROBLEM SOLUTION 

A. An Application to Sound 

This program can accept any type of sound file, so long as 
it is in the text format described above. As a result, several 
types of different sounds were analyzed, but the focus of this 
project went into color noises, such as white noise, pink noise, 
etc. These types of noises were chosen due to their many 
different uses. For example, white noise negates other sound, 
while pink noise is often used as a reference signal. Red noise, 
violet noise, blue noise, and gray noise were also used. Black 
noise, which is total silence, was not used, since humans 
cannot perceive it and can only be heard in a vacuum [9]. 

B. Simulation Results and Discussion 

First, different color noise sounds were gathered. These 
types of sounds were used because, to the human ear, they 
sound very similar, but not quite the same. When displayed in a 
joint time-frequency diagram, however, the differences are 
quite clear. This makes them excellent candidates to use in the 
SOFM, since the overall objective is to distinguish between 
sounds that humans have difficulty doing. 

      The sounds were first preprocessed in MATLAB by 
plotting the sound data into a joint time-frequency domain [10]. 
The magnitude of the matrix was calculated using the abs() 
function, which created a matrix. This matrix could be 
converted into a text file, which was then be read by the Java 

application. The extracted matrix is analyzed by the feature 
extraction algorithm. The output is a feature vector whose 
content can range from 4 to 14 features, which is the optimal 
range. 

     Time and Frequency Domain: 

 
Figure 1: Pink noise in the time and frequency domain 

 
Joint Domain: 

  

Figure 2: Pink noise in the joint time-frequency domain 

 

The nodes in the SOFM are initialized with small random 
weights. This is an important step, since the initial weight 
determines the learning speed of the map. The larger the 
learning rate, the more iterations it will take. However, if the 
numbers are too small, then the overall quality of the map will 
be affected. The user will be able to see on the SOFM that the 
noises did not cluster very well, since the colors will not neatly 
group together on the visual display. The next step is to cluster 
and classify the training sounds using the learning algorithm. In 
this step, the clustering of the sound could be affected by the 
input sequence, since this SOFM uses a history function. Using 
a random input sequence makes it harder to track the pattern, in 
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comparison to a sequential input sequence. After training, 
different random noises were used for testing the map. In order 
to obtain similar but slightly different sound samples, the color 
noises were altered using Adobe Sound Booth. 

In addition, the differences between random input and 
sequential input were analyzed. Random input means that the 
files were selected randomly to be put into the SOFM. The 
sequential input used the data in the files in the order that they 
were written. The results are shown below. 

 
Figure 3: Visualization of random input 

 

Figure 4: Clustered nodes using random input 

 

Figure 5: Visualization of sequential input 

 

 
Figure 6: Clustered nodes using sequential input 

 

The graphs above represent a sample clustering of two 
hundred iterations. The y-axis displays the number of nodes 
that were clustered of each color. The x-axis shows how many 
nodes were clustered at each iteration. As seen in Fig. 3 and 
Fig. 4, the sequential input achieves a stable level much faster 
than the random input. This is because it is much easier to 
predict patterns when the input order is known, which Fig. 5 
and Fig. 6 make clear.  

To further investigate this theory, another sample clustering 
was done. The range of the small random number initialization 
was reduced from 0 to 1 to 0 to .5. This test is to evaluate if 
smaller numbers affect the clustering speed. In essence, the 
results showed that smaller numbers would cluster faster than 
larger random numbers. 
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Figure 7: Clustered nodes using random input 

Figure 8: Clustered nodes using sequential input 
     

       Even by significantly changing the factors, the sequential 
input clustered far better than the random input by achieving a 
stable level in fewer iterations. The graph with the random 
input did not level out until 150 iterations, while the sequential 
achieved the same result between 75 and 100 iterations. Thus, 
the sequential input proved to be far more successful in the 
SOFM clustering algorithm. 

       After testing the program multiple times, it was found that 
the best result was achieved using a sequential input rather than 
a random input sequence, as shown by the pictures. The order 
in which the data is presented to the program clearly makes a 
difference. By using the sequential method, a faster learning 
and a more precise clustering was obtained. Additionally, in 
the testing phase of the program, we got a proximal 73.3% of 
positive hit of 30 unknown sounds. However, the random input 
is not a truly random selection; it is based on the time executed, 
as well as other several different factors. While this proved 
sufficient for this project, a more accurate representation of 
random input might be obtained by other methods. Moreover, 
the previous version of this project determined the importance 
of the history to increase accuracy. There is also the history 
limit, which keeps track of the input history, and a history 
factor to update previous winning nodes has been implemented 
to decrease the time necessary to complete the training phase. 
The range (range=max-min) and arithmetic average of each 
quadrant and sub-quadrant proved to be satisfactory features 
for the SOFM. 

C. Watershed transform analysis in joint (time-frequency) 

domain 

 There is a way of making the SOFM images clearer. 

Watershed segmentation is often used to separate touching 

objects in an image. The watershed transform is often used by 

finding "catchment basins" and "watershed ridge lines" in an 

image by treating it as a surface with high light pixels and low 

dark pixels. 

 

      Segmentation using the watershed transform works better 

if one can identify, or "mark," foreground objects and 

background locations. Marker-controlled watershed 

segmentation follows this basic procedure: 

 

1. Compute a segmentation function, which is an image whose 

dark regions are the objects you are trying to segment. 

2. Compute foreground markers. These are connected blobs of 

pixels within each of the objects. 

3. Compute background markers. These are pixels that are not 

part of any object. 

4. Modify the segmentation function so that it only has 

minima at the foreground and background marker locations. 

5. Compute the watershed transform of the modified 

segmentation function. 

 

       Fig. 9 shows the image of the self-organizing map in 

gradient magnitude, but it is not clear enough without further 

preprocessing. This visualization illustrates how the locations 

of the foreground and background markers affect the result. In 

around two locations, partially occluded darker objects were 

merged with their brighter neighbor objects because the 

occluded objects did not have foreground markers. 

A visualization technique that is shown in Fig. 10 is to 

superimpose the foreground markers, background markers, 

and segmented object boundaries on the original image. 

Another useful visualization technique is to display the label 

matrix as a color image. This is superimposed by 

transparency, as displayed in Fig. 11. 

 

 

Figure 9: Watershed transform of gradient magnitude 
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Figure 10: Watershed transform superimposed transparently on original 
image 

 

Figure 11: Watershed transform superimposed transparently on original 
image 

      Pre processing methods are used to reduce the noise of image 

and adjust the image intensity [11]. This is not altogether different 

from the process of extracting features from sounds. As can be 

seen, the watershed transformations help to further subdivide 

between clusters and make each one clearer. If a cluster were 

to overlap, image segmentation helps to tell them apart. The 

watershed transform also assists the smaller clusters to stand 

out more than they normally would. 

 

IV. CONCLUSION 

     Overall, the results turned out to be successful. The 

program was able to accept the text files of the magnitudes 

from the joint time-frequency matrices, divide them into 

quadrants, and obtain 14 features to put into one feature 

vector. The SOFM (self-organizing feature map) classified 

random inputs according to the features and accurately 

clustered the data. Moreover, it provided a context for input 

features with a tree diagram and displayed the color that most 

resembled the sound. After rigorous testing, the SOFM 

performed best with nonrandom input, a radius of 10.0, a 

learning rate of 4.0, a rate decay of 1.0, a neighborhood decay 

of 0.99, a history limit of 10.0, and a history factor of 0.5. This 

was determined by how well the colors clustered together and 

how many randomly colored squares were left on the SOFM. 

Of course, future work can always be done. The project can be 

expanded to include several different noise samples, rather 

than just the color noises. Moreover, even more features could 

be added for different results. 
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