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Abstract— Since the inception of virtualization technology in 

recent years, multi-core systems have become the major platform 

for most of real-world virtualized systems. However, the 

invention of multi-core CPUs adds complication to the view. This 

paper provides a critical analysis of the existing virtualization 

techniques for multi-core systems and outlines its advantages, 

challenges and the outcome of the application of those techniques 
on each multi-core platform.  
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I.  INTRODUCTION 

Virtualization concept allows the sharing of hardware 
(CPUs, memory, I/O) on a single computer, this has come in 
the sense that multiple operating systems (OSs) to function by 
sharing the same system. The remarkable advantage of sharing 
the same system by implementation of Virtualization is the 
minimization of cost and power efficiency in addition to the 
flexibility. Virtualization is made by establishing a software 
layer known as Hypervisor or a Virtual Machine Monitor 
(VMM) 

System Virtualization is being used at an increasing rate in 
multi-core systems for mainly the benefit of processor 
consolidation. The sharply increasing cost of a processor core, 
makes some thoughts that the use of Hypervisors in embedded 
systems is not a permanent event, and hence will become 
obsolete as multi-core technology becomes the required 
standard. In fact it was also noted that, multi-core chips will be 
always dependent on the efficiency of Hypervisors in order to 
have efficient resource management. 

Our world’s virtual solutions consist of four basic 
components, these are: Tesimulated environment, a client 
viewer at end user level, a gathering of concerted resources 
obtainable from inside the virtual world environs, and a 
network organization that compresses and supports the virtual 
world solution.  

 A virtualized setup lets users to convert hardware res A 
virtualized setup lets users to convert hardware resources into a 
further elastic software-based resource and more explicitly, 
arrange for the ability to compile and then reallocate multiple 

hardware resources like CPUs, memory, storage, and network 
controllers to generate one or extra completely functional 
virtual machine. These virtual machines (VM’s) can care of 
their own operating system and applications – thus replicating 
the same competences of one or more singular physical 
computing platforms [1, 2]. 

The additional CPUs you have existing in a PC that runs as 
a virtualized machine, the additional processing supremacy you 
can share amongst the virtual PCs. Nevertheless the existence 
of multi-core CPUs obscures the picture a slightly. Can a PC 
using four physical CPUs function on a virtualized burden as 
same as a two-CPU system by means of two cores each CPU? 
Besides if so, how to sort out anything distinct necessity to be 
prepared?  

 

 

 

 

 

 

 

 

 

Figure 1: Multi-core Virtualization layers 

Multi-core systems took the vantage of Moore’s Law by 
means of putting in extra processors in a particular field. 

Current commodity multi-core technologies have system 

Virtualization architectures that offer microprocessor 

assignment segregation. The sum of CPU-cores, in association 

to I/O interfaces, is high in the multi-core servers. This results 

in the sharing of I/O devices among independent virtual 

machines and therefore, changes the I/O device sharing 

dynamics, whereas in relationship to, dedicated, non-

virtualized servers [3, 4 and 5]. 
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There remain two recognized drives for Virtualization in 
server environments. First of all is the desire to make a single 
computer doing as multiple computers to a group individuals 
.The other main pusher is the starvation to shape legacy code 
on new PCs. In Multi-core Virtualization , you have a single 
computer with the Operating System that hosts multiple guest 
operating system on the same hardware over a Virtualization 
layer that makes the translations in order to satisfy the of 
all(Fig 1). 

At a more modest level, Virtualization performs the 
responsibilities of: allocation and sharing of resources for the 
guest programs. This diagram in figure 1 can be scaled to 
include more Cores and more guest operating systems, this will 
add to it more complexity that need to be seen. 

Virtualization in such a complex embedded system must 
offer all of the benefits of allocating, sharing, and isolation 
required for a server. But, in many cases, the multiple 
“programs” actually work together on the implementation of a 
higher-level system, and so they may need to communicate in a 
way that would not be necessary – or even desirable – between, 
say, different tenants in a cloud-computing server. So here the 
Virtualization services would need to be able both to isolate for 
security and manage communication for the mission system. 

A virtual CPU is an abstraction of a hardware CPU that 
models its behavior. However, a virtual CPU can be equally 
allocated to any of the existing cores. [4, 7]. 

A.  Virtualization Techniques  
Virtualization schemes are not same. Some methods may 

be used differently in implementing subsystems and provide 
features that other methods do not provide. Primary 
implementations of Virtualization might be as follows [8]. 

- System  Emulation 
- The Native Virtualization 

- Para –Virtualization technique 

- Virtualization at Operating System Level  

-  Resources level  Virtualization 

-  Storage Virtualization 

-  Application level Virtualization  

a. Emulation (EM) 
IS a Virtualization technique in which the entire hardware 

architecture might be created in a software, this motioned 
software can replicate the functions of the hardware processor 
and the associated hardware system .This technique possesses a 
wonderful flexibility in the sense that the guest OS might not 
need to be altered to run on. Emulation has features 
tremendous disadvantages in performance penalties because 
each instruction on the guest Operating System must be 
translated prior to be understood by the host system [8, 10]. 

 
b. Native  Virtualization (NV) 

It is another technique for providing virtualized guests on a 
host system. In This method any guest software must have a 
compatible with the host. It introduces software called a 

‘Hypervisor’, which acts as a command translator between the 
guest OS and the host hardware. The mentioned Hypervisor 
may serve several guest systems on a single host, and is found 
in several Virtualization methods. NV is considered as a 
middle ground between full emulation, and Para-Virtualization. 
It does not require any modification in the guest OS to enhance 
Virtualization capabilities. [8, 11]. 

c. Para- Virtualization (PV) 
Abundant systems have been established that use the above 

mentioned techniques: particular architectures for running 
virtual machines in, or else fully emulating a system 
environment. These systems addressed to have the  
disadvantage of requiring a specialized hardware, compromise 
fewer than needed recital, or else cannot support the 
commodity  OS [16]. 

 
d. Operating System Level  Virtualization (OSLV)   

Is the technique in which an operating system kernel offers 
multiple individual user-space instances? It's not a true 
Virtualization; however it does enable user-space applications 
to run in isolation from different software [8, 12]. 

 

e. Resources  Level Virtualization (RV)  
Virtualizing system particular resources similar to storage 

capacities, namespaces then the linkage resources are identified 
as resource Virtualization. Around numerous methods to 
achieve resource Virtualization. Selected of them are [16, 17].  

 Combining many separate elements into the bigger 

resource puddle. 

 Grid computing or computer clusters where manifold 

unconnected computers are pooled to form a big 

supercomputer by means of huge resources. 

  Subdividing a single source such as disk space into a 

number of reduced and with no trouble   reachable 

resources of the similar type. 

 
f.  Virtual Storage (VS) 

VS are some specific kind of Resource Virtualization in 
which merits its own subcategory. VS give us a single logical 
disk from many different systems across a network. The disk is 
then could be made available to Host or Guest OS’s. Storage 
Virtualization is a practice of Resource Virtualization, where a 
logical stowage is shaped by conceptualizing altogether the 
bodily storage resources that are distributed above the network 
[6, 13]. First the physical storage means are pooled to form a 
storage puddle which formerly creates the logical storage. This 
logical storage which is the collection of dispersed physical 
means looks to be a single huge storage device to the customer 
[14, 16]. 

 

g. Application Virtualization (AV)   
AV Provides small size single application virtual machines 

that allow for emulation of a particular environment on a client 
system. For example a Java Virtual Machine .This 
Virtualization is limited in the sense that it only provides single 
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program isolation from the host. It is nevertheless useful when 
testing programs. [8, 27]. 

h.   MULTI-CORE COMPUTER  
Also acknowledged as a chip multiprocessor syndicates two 

or extra Processors named (Cores) on a single piece of silicon 
(termed a die). Naturally, each core contains the entirely 
elements of an independent CPU, for example registers, ALU, 
pipeline hardware, then control unit, and above L1 instruction 
and data caches. In addition to the several cores, modern multi-
core chips likewise include L2 cache and, in certain cases, L3 
cache. The possible performance remunerations of a multi-core 
organization rest on the capability to efficiently exploit the 
parallel resources existing on the way to the application. [9]. 

II. RELATED WORK  

Virtualization concept was initially presented by IBM in the 
1960s to offer synchronized, interactive access to a mainframe 
computer - IBM 360, which cares many instances of operating 
systems running on the same hardware platform Normally, 
VMs are alienated into two major types: process VMs and 
system VMs. [10] some authors deliberated system VMs 
whereas others talk over the process virtual machine. The 
Virtual Machine Monitor (VMM) is a essential constituent of 
system VM, that delivers the anticipated  abstraction layer of 
the  hardware for each operating system (OS) running on it, for 
example VMware, Virtual PC, and Xen [11,30]. 

A. The Initiation  of  Virtualization 

A HAL level software was implemented, called a virtual 

machine monitor (VMM), lying between raw hardware and 

virtual machines (VMs), to give the guest OSs a virtualized 

view of all the hardware. VMM manages all the VMs where 

every VM provides facilities to an OS or application to believe 

as if it runs in a normal environment and directly on the same 

hardware. Companies like Intel and AMD presented their CPU 

products with Virtualization support since 2005 and 2006, 

respectively. With the support of hardware, developers can 

build a much tidier VMM. Virtualization functions at the OS 

level work on top of or as a module in OS to provide a 

virtualized system call interface. In this kind of virtual 

environment, the kernel of an operating system allows for 

multiple isolated user-space instances (instead of just one 

instance). These instances (often named containers, VEs or 

VPSs) look like real servers, from the standpoint of their 

owners. Because of this, OS level Virtualization is also named 

single OS image Virtualization or container based 

Virtualization. It usually imposes little or no overhead [11, 30].  

B.  The VMM 

VMM is usually a small OS nonetheless with no hardware 
drivers. For getting into the physical resources, the VMM is 
naturally attached with a normal operating system, like Linux, 
which offers device/hardware access. There are two methods 

employed, formalized by Goldberg as: (a) type-I Virtualization 
wherever the VMM and VM run straight on the physical 
hardware, then (b) type-II Virtualization where the VMM and 
VM run on a host operating system. Since the type-I 
Virtualization has direct access to resources; performance is 
comparable to that of native execution. In contrast, type-II 
Virtualization incurs the cost of additional overhead due to the 
layering of the VMM on top of the host OS when servicing 
resource requests from VMs. The type-II layering makes its 
approach more suitable for the development phase, where some 
performance may be reduced in exchange for greater diagnostic 
and development capabilities. Today, several system-level 
Virtualization solutions are available, for instance Xen (type-I), 
QEMU (type-II), or VMware workstation & server (type-II). 
However, these resolutions are not suited for high performance 
computing (HPC). Xen has become a rather massive micro-
kernel that includes unneeded features for HPC, e.g., a network 
communication bus; QEMU and VMware do not offer support 
to direct access to high-performance network solutions [12, 29, 
and 22]. 

C. The Challenges of Multi-core  

It is difficult to overestimate the magnitude of the 
discontinuity that the high performance computing (HPC) 
community is about to experience because of the emergence of 
the next generation of multi-core and heterogeneous processor 
designs [5, 22, and 28]. For at least two decades, HPC 
programmers have taken it for granted that each successive 
generation of microprocessors would, either immediately or 
after minor adjustments, make their old software run 
substantially faster[21]. But three main factors are converging 
to bring this “free ride” to an end. First, system builders have 
encountered intractable physical barriers – too much heat, too 
much power consumption, and too much leaking voltage – to 
further increases in clock speeds. Second, physical limits on the 
number of pins and bandwidth on a single chip means that the 
gap between CPU performance and memory performance, 
which was already bad, will get increasingly worse.  

Ultimately, the design trade-offs being made to address the 
previous two factors will render commodity processors, absent 
any further augmentation, inadequate for the purposes of tetra- 
and peta-scale systems for advanced applications[25]. This 
daunting combination of obstacles has forced the designers of 
new multi-core and hybrid systems, searching for more 
computing power, to explore architectures that software built 
on the old model are unable to effectively exploit without 
radical change. But despite the rapidly approaching 
obsolescence of familiar programming paradigms, there is 
currently no well understood alternative in whose viability the 
community can be confident [20, 23]. The core of the problem 
is the dramatic increase in complexity that software developers 
will have to face. Dual-core machines are already common, 
and the number of cores is expected to roughly double with 
each processor generation. But contrary to the premises of the 
previous model, programmers will not be able to consider these 
cores independently (i.e. multi-core is not “the new SMP”) 
because they share on-chip resources in ways that separate 
processors do not. This position is made even more 
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complicated by the other non-standard components that future 
architectures are expected to deploy, including mixing different 
types of cores, hardware accelerators, and storage systems. 
Finally, the proliferation of widely divergent design ideas 
shows that the question of how to best combine all these new 
resources and components is largely unsettled. When combine 
changes produce an impression of a future in which software 
engineers must overcome software design problems that are 
vastly more complex and challenging than in the past in order 
to take advantage of the much higher degrees of concurrency 
and greater computing power that new architectures will 
provide. [13, 26]. 

D.  Main factors driving the multi-core discontinuity  
Among the various factors that are driving the momentous 

changes now occurring in the design of microprocessors and 
high end systems, three stand out as especially notable: 1) the 
number of transistors on the chip will continue to double 
roughly every 18 months, but the speed of processor clocks 
will not continue to increase; 2) the number of pins and 
bandwidth on CPUs are reaching their limits and 3) there will 
be a strong drift toward hybrid systems for peta-scale (and 
larger) systems. The first two involve 2 fundamental physical 
limitations that nothing currently on the horizon is likely to 
surmount. The third is a consequence of the first two, 
combined with the economic necessity of using many 
thousands of CPUs to scale up to peta-scale and larger systems.  

 
Each of these factors has a somewhat different effect on the 

design space for future programming:   1) More transistors and 
slower clocks means multi-core designs and more parallelism 
required – The modus operandi of traditional processor design 
– increase the transistor density, speed up the clock rate, raise 
the voltage – has now been blocked by a stubborn set of 
physical barriers – too much heat produced, too much power 
consumed, too much voltage leaked. Multi-core designs are a 
natural response to this post. By putting multiple processor 
cores on a single die, architects can continue to increase the 
number of gates on the chip without increasing the power 
densities. But since excess heat production means that 
frequencies cannot be further increased, deep-and-narrow 
pipeline models will tend to recede as shallow-and-wide 
pipeline designs become the norm. Moreover, despite obvious 
similarities, multi-core processors are not equivalent to 
multiple-CPUs or to SMPs. Multiple cores on the same chip 
can share various caches (including TLB!) and they certainly 
share the bus. Extracting performance from this configuration 
of resources means that programmers must exploit increased 
thread-level parallelism (TLP) and efficient mechanisms for 
inter-processor communication and synchronization to manage 
resources effectively. The complexity of parallel processing 
will no longer be hidden in hardware by a combination of 
increased instruction level parallelism (ILP) and deep-and-
narrow pipeline techniques, as it was with superscalar designs. 
It drive have be addressed in software [13, 27]. 2) Thicker 
“memory wall” means that communication efficiency will be 
even more essential – The pins that connect the processor to 
main memory have become a strangle point, with both the rate 
of pin growth and the bandwidth per pin slowing down, if not 
flattening out. Thus the processor to memory performance gap, 

which is already approaching a thousand cycles, is expected to 
grow, by 50% per year according to some estimates. 
Concurrently, the number of cores on a single chip is expected 
to continue to double every 18 months, and since limitations on 
space will keep the cache resources from growing as quickly, 
cache per core ratio will continue to decline. Problems of 
memory bandwidth, memory latency, and cache fragmentation 
will, therefore, tend to get worse. [13, 14 and 15]  

3) Limitations of commodity processors will further 
increase heterogeneity and system complexity: Experience has 
shown that tera- and peta-scale systems must, for the sake of 
economic viability, use commodity off-the-shelf (COTS) 
processors as their foundation. Regrettably, the trade-offs that 
are being (and will continue to be) made in the architecture of 
these general purpose multi-core processors are unlikely to 
deliver the capabilities that leading edge research applications 
require, even if the package is suitably qualified. Therefore, in 
addition to all the different kinds of multithreading that multi-
core systems may utilize – at the core-level, socket-level, 
board-level, and distributed memory level – they are also likely 
to incorporate some constellation of special purpose processing 
elements. Examples include hardware accelerators, GPUs; off-
load engines (TOEs), FPGAs, and communication processors 
(NIC-processing, RDMA). Since the competing designs (and 
design lines) that vendors are offering are already diverging, 
and mixed hardware configurations are already appearing, the 
hope of finding common target architecture around which to 
develop future programming models seems at this point to be 
largely forlorn. It is believed that these major trends will 
define, in large part at least, the design space for scientific 
software in the coming decade. But while it may be important 
for planning purposes to describe them in the abstract, to 
appreciate what they mean in practice, and therefore what their 
strategic significance may be for the development of new 
programming models, one has to look at how their effects play 
out in[13, 24]. 

E.   Platform  Feature Comparison 

With the wide array of potential choices of virtualization 
technologies available, it’s often difficult for potential users to 
identify which platform is best suited for their needs. In order 
to simplify this task, some authors conducted a comparison 
between Xen 3.1, KVM from RHEL5, VirtualBox 3.2 and 
VMware ESX. The first point of investigation is the 
Virtualization method of each VM. Each Hypervisor supports 
full Virtualization, which is now common practice within most 
x86 Virtualization deployments today. Xen, originating as a 
para-virtualized VMM, still supports both types, however full 
Virtualization is often preferred as it does not require the 
manipulation of the guest kernel in any way. From the Host 
and Guest CPU lists, we see that x86 and, more specifically, 
x86-64/amd64 guests are all universally supported. Xen and 
KVM both support Itanium-64 architectures for full 
Virtualization (due to both Hypervisors dependency on 
QEMU), and KVM also claims support for some recent 
PowerPC architectures. VirtualBox and VMware have internal 
mechanisms to provide full Virtualization even without the 
Virtualization instruction sets, and Xen can default back to 
Para-virtualized guests. Considering host environments for 
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each system , As Linux is the primary OS type of choice within 
HPC deployments, its key that all Hypervisors support Linux 
as a guest OS, and also as a host OS. As VMware ESX is 
meant to be a Virtualization-only platform, it is built upon a 
specially configured Linux/UNIX proprietary OS specific to its 
needs. All other Hypervisors support Linux as a host OS, with 
VirtualBox is also supporting Windows. VirtualBox, on the 
other hand, supports only 32 vCPUs and 16GB of addressable 
RAM per guest OS, which may lead to problems when looking 
to deploy it on large multi-core systems.. Another vital aspect 
of these Virtualization technologies is the license agreements 
for its applicability within HPC deployments. Xen, KVM, and 
VirtualBox are provided free of charge under the GNU Public 
License (GPL) version 2. VMware, on the other hand, is 
completely proprietary with an extremely limited licensing 
scheme that even prevents the authors from will fully 
publishing any performance benchmark data without specific 
and prior approval . [14, 18 and 19]. 

III. EVALUATION OF IMPLEMENTING VIRTUALIZATION IN 

MULTICORE SYSTEMS  

Different Virtualization techniques and technologies in 
Multicores platforms were reviewed and critically analyzed 

.The previous discussed techniques are applicable with some 
advantages and limitations when applied in different Virtual 
Machine Mangers (VMM), though the implementation  of 
some showed their usefulness in certain real life problems . 
Recent studies have shown the industry direction to support 
Multicore systems to better utilization of their hardware 
capabilities in the form of software designs that has ability to 
run better in these cores. 

The choice of the right hypervisor was the sign of success 
for some implementation. Previous studies also showed that 
certain Virtualization techniques in some multicore platform 
can even be useful for future designs .Virtualization 
Techniques implementation was found to highly dependent on 
platform, hypervisor used and the Operating system.  

Table 1 shows summaries on each Virtualization technique 
and the applicability in cases of certain platforms and 
hypervisors. The table also shows the advantages and 
limitations addressed by previous studies. 
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TABLE 1 ADVANTAGES AND LIMITATIONS 

 

 

 

Techniques 

Results From previous Implementation 

Hypervisor Platform Advantages Applicability Limitations 

Para-Virtualization 
 

Xen 
HPC 

Easy to grow and widely 

used as a flavoring 

Not recommended for 

HPC 
The performance lacks 

Para-Virtualization RT-Xen Dell Q9400 Quad core Not addressed 
Promising step to real-

time Virtualization 

Not addressed in statutes 

reviewed 

Full-Virtualization DBT ARM V7-A 

DBT better than hardware 
assisted Virtualization and 

has possibility of 

development 

Applicable in modern 
Computer architectures 

which not classically 

vertualizable 

Implementation cost and 

complexity and memory 

footprint 

Para-Virtualization 
Xen (RT-

Xen2.0) 
Inteli7 x980 with 6 Cores 

Lower deadline misses 
compared to other real-time 

schedulers 

Can be implemented in 
dynamic memory 

management 

It takes time longer  than 

theoretical predicted time 

Full-Virtualization 
KVM with EPT 

and PLE support 

Dell Power Edge R720 
Server with 2 2.4GHZ Intel 

Xeon ES-2665 CPU 8 

cores 

Reduction in slow down 

and actively Cores 

If well studied , Can be 
a primary solution for 

synchronization I 

virtualized 

environments 

Not well studied and alternative 

designs are needed 

Para-Virtualization Xen4.1.1 
Quad core Xeon Y5560 

8GB DDR memory 

Dynamically adjusting 
allocations to meet changes 

in workload 

Application level 
quality of service not 

addressed 

Applicable in power allocation 
over provision multicore 

platforms 

Para-Virtualization 
MultiPARTES 

XtratuM 

Dual core x86 processor 

and FPGA with LEON3 

(spare V8) synchronized 

processors 

Has a methodology to deal 

with different levels of 

criticality and layers 

Issues related to OS 

used and security 
Able to adapt the MultiPARTES 

Full-Virtualization KVM 
Quad Core physical 

machine 

Performance enhancement 
for optimal processor 

scheduling 

Not verified to 
optimize big data tools 

to utilize multicore 

architectures 

Can be used to quantify the 
overhead from CPU migrations 

for heterogeneous workloads in 

systems 

Para-Virtualization Xen4.2.1 

Two 2.53GHZ  Intel Xeon 

E5540 processors 4 cores 

each and 8 MB L3 Cache 

Added a time slice and 

result in better  

performance in 

computation tasks 

Xen default credit 

scheduler has problems 

with the I/O 
performance of mixed 

workloads 

Applicable in new multicore 

based schedulers with better 

performance. 

OS level 

Virtualization 

------------- 

- 
Current X86 processors 

Better performance than 

Xen 

Dynamic resource 

reallocation not 

supported 

Suitable for real-time workloads 

that have fixed resource demand 

Para-Virtualization Xtratum LEON4 

LEON$ Overcomes some 

bottlenecks by 

implementing 128-bit bus 

Still there is a memory 

access bottleneck 

And requirement of  

changes 

Can support SMP hardware 

architecture 

Full system 

emulation 
QEMU X86 Ability to simulate I/O 

Significant complexity 
handling in virtual 

memory issues 

Useful in modelling 
heterogeneous core designs of 

the future 

Para-Virtualization Xen3.2.1 
Intel quad Core Xeon with 
each RAM and two 1GB 

NIC card 

Well-matched for 

enterprise  IP telephony 

Media applications are 
challenging direct I/O 

access is essential from 

time to time 

Can be employed in 
telecommunication solution 

providers 
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