
 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 03, May 2014

www.ijcit.com 631

 An Analysis on Virtualization Techniques in

Multicore Systems

Abuelgasim Ibrahim Musa, Munam Ali Shah, Hasan M H Owda, Rasool Bakhsh Jatoi

Department of Computer Science

COMSATS Institute of Information Technology

Islamabad, Pakistan

gasim1_78{at}yahoo.com

Abstract— Since the inception of virtualization technology in

recent years, multi-core systems have become the major platform

for most of real-world virtualized systems. However, the

invention of multi-core CPUs adds complication to the view. This

paper provides a critical analysis of the existing virtualization

techniques for multi-core systems and outlines its advantages,

challenges and the outcome of the application of those techniques
on each multi-core platform.

Keywords-component; Hypervisor, Multi-cores, Virtualization,

Virtual Layer.

I. INTRODUCTION

Virtualization concept allows the sharing of hardware
(CPUs, memory, I/O) on a single computer, this has come in
the sense that multiple operating systems (OSs) to function by
sharing the same system. The remarkable advantage of sharing
the same system by implementation of Virtualization is the
minimization of cost and power efficiency in addition to the
flexibility. Virtualization is made by establishing a software
layer known as Hypervisor or a Virtual Machine Monitor
(VMM)

System Virtualization is being used at an increasing rate in
multi-core systems for mainly the benefit of processor
consolidation. The sharply increasing cost of a processor core,
makes some thoughts that the use of Hypervisors in embedded
systems is not a permanent event, and hence will become
obsolete as multi-core technology becomes the required
standard. In fact it was also noted that, multi-core chips will be
always dependent on the efficiency of Hypervisors in order to
have efficient resource management.

Our world’s virtual solutions consist of four basic
components, these are: Tesimulated environment, a client
viewer at end user level, a gathering of concerted resources
obtainable from inside the virtual world environs, and a
network organization that compresses and supports the virtual
world solution.

 A virtualized setup lets users to convert hardware res A
virtualized setup lets users to convert hardware resources into a
further elastic software-based resource and more explicitly,
arrange for the ability to compile and then reallocate multiple

hardware resources like CPUs, memory, storage, and network
controllers to generate one or extra completely functional
virtual machine. These virtual machines (VM’s) can care of
their own operating system and applications – thus replicating
the same competences of one or more singular physical
computing platforms [1, 2].

The additional CPUs you have existing in a PC that runs as
a virtualized machine, the additional processing supremacy you
can share amongst the virtual PCs. Nevertheless the existence
of multi-core CPUs obscures the picture a slightly. Can a PC
using four physical CPUs function on a virtualized burden as
same as a two-CPU system by means of two cores each CPU?
Besides if so, how to sort out anything distinct necessity to be
prepared?

Figure 1: Multi-core Virtualization layers

Multi-core systems took the vantage of Moore’s Law by
means of putting in extra processors in a particular field.

Current commodity multi-core technologies have system

Virtualization architectures that offer microprocessor

assignment segregation. The sum of CPU-cores, in association

to I/O interfaces, is high in the multi-core servers. This results

in the sharing of I/O devices among independent virtual

machines and therefore, changes the I/O device sharing

dynamics, whereas in relationship to, dedicated, non-

virtualized servers [3, 4 and 5].

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 03, May 2014

www.ijcit.com 632

There remain two recognized drives for Virtualization in
server environments. First of all is the desire to make a single
computer doing as multiple computers to a group individuals
.The other main pusher is the starvation to shape legacy code
on new PCs. In Multi-core Virtualization , you have a single
computer with the Operating System that hosts multiple guest
operating system on the same hardware over a Virtualization
layer that makes the translations in order to satisfy the of
all(Fig 1).

At a more modest level, Virtualization performs the
responsibilities of: allocation and sharing of resources for the
guest programs. This diagram in figure 1 can be scaled to
include more Cores and more guest operating systems, this will
add to it more complexity that need to be seen.

Virtualization in such a complex embedded system must
offer all of the benefits of allocating, sharing, and isolation
required for a server. But, in many cases, the multiple
“programs” actually work together on the implementation of a
higher-level system, and so they may need to communicate in a
way that would not be necessary – or even desirable – between,
say, different tenants in a cloud-computing server. So here the
Virtualization services would need to be able both to isolate for
security and manage communication for the mission system.

A virtual CPU is an abstraction of a hardware CPU that
models its behavior. However, a virtual CPU can be equally
allocated to any of the existing cores. [4, 7].

A. Virtualization Techniques
Virtualization schemes are not same. Some methods may

be used differently in implementing subsystems and provide
features that other methods do not provide. Primary
implementations of Virtualization might be as follows [8].

- System Emulation
- The Native Virtualization

- Para –Virtualization technique

- Virtualization at Operating System Level

- Resources level Virtualization

- Storage Virtualization

- Application level Virtualization

a. Emulation (EM)
IS a Virtualization technique in which the entire hardware

architecture might be created in a software, this motioned
software can replicate the functions of the hardware processor
and the associated hardware system .This technique possesses a
wonderful flexibility in the sense that the guest OS might not
need to be altered to run on. Emulation has features
tremendous disadvantages in performance penalties because
each instruction on the guest Operating System must be
translated prior to be understood by the host system [8, 10].

b. Native Virtualization (NV)

It is another technique for providing virtualized guests on a
host system. In This method any guest software must have a
compatible with the host. It introduces software called a

‘Hypervisor’, which acts as a command translator between the
guest OS and the host hardware. The mentioned Hypervisor
may serve several guest systems on a single host, and is found
in several Virtualization methods. NV is considered as a
middle ground between full emulation, and Para-Virtualization.
It does not require any modification in the guest OS to enhance
Virtualization capabilities. [8, 11].

c. Para- Virtualization (PV)
Abundant systems have been established that use the above

mentioned techniques: particular architectures for running
virtual machines in, or else fully emulating a system
environment. These systems addressed to have the
disadvantage of requiring a specialized hardware, compromise
fewer than needed recital, or else cannot support the
commodity OS [16].

d. Operating System Level Virtualization (OSLV)

Is the technique in which an operating system kernel offers
multiple individual user-space instances? It's not a true
Virtualization; however it does enable user-space applications
to run in isolation from different software [8, 12].

e. Resources Level Virtualization (RV)
Virtualizing system particular resources similar to storage

capacities, namespaces then the linkage resources are identified
as resource Virtualization. Around numerous methods to
achieve resource Virtualization. Selected of them are [16, 17].

 Combining many separate elements into the bigger

resource puddle.

 Grid computing or computer clusters where manifold

unconnected computers are pooled to form a big

supercomputer by means of huge resources.

 Subdividing a single source such as disk space into a

number of reduced and with no trouble reachable

resources of the similar type.

f. Virtual Storage (VS)

VS are some specific kind of Resource Virtualization in
which merits its own subcategory. VS give us a single logical
disk from many different systems across a network. The disk is
then could be made available to Host or Guest OS’s. Storage
Virtualization is a practice of Resource Virtualization, where a
logical stowage is shaped by conceptualizing altogether the
bodily storage resources that are distributed above the network
[6, 13]. First the physical storage means are pooled to form a
storage puddle which formerly creates the logical storage. This
logical storage which is the collection of dispersed physical
means looks to be a single huge storage device to the customer
[14, 16].

g. Application Virtualization (AV)
AV Provides small size single application virtual machines

that allow for emulation of a particular environment on a client
system. For example a Java Virtual Machine .This
Virtualization is limited in the sense that it only provides single

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 03, May 2014

www.ijcit.com 633

program isolation from the host. It is nevertheless useful when
testing programs. [8, 27].

h. MULTI-CORE COMPUTER
Also acknowledged as a chip multiprocessor syndicates two

or extra Processors named (Cores) on a single piece of silicon
(termed a die). Naturally, each core contains the entirely
elements of an independent CPU, for example registers, ALU,
pipeline hardware, then control unit, and above L1 instruction
and data caches. In addition to the several cores, modern multi-
core chips likewise include L2 cache and, in certain cases, L3
cache. The possible performance remunerations of a multi-core
organization rest on the capability to efficiently exploit the
parallel resources existing on the way to the application. [9].

II. RELATED WORK

Virtualization concept was initially presented by IBM in the
1960s to offer synchronized, interactive access to a mainframe
computer - IBM 360, which cares many instances of operating
systems running on the same hardware platform Normally,
VMs are alienated into two major types: process VMs and
system VMs. [10] some authors deliberated system VMs
whereas others talk over the process virtual machine. The
Virtual Machine Monitor (VMM) is a essential constituent of
system VM, that delivers the anticipated abstraction layer of
the hardware for each operating system (OS) running on it, for
example VMware, Virtual PC, and Xen [11,30].

A. The Initiation of Virtualization

A HAL level software was implemented, called a virtual

machine monitor (VMM), lying between raw hardware and

virtual machines (VMs), to give the guest OSs a virtualized

view of all the hardware. VMM manages all the VMs where

every VM provides facilities to an OS or application to believe

as if it runs in a normal environment and directly on the same

hardware. Companies like Intel and AMD presented their CPU

products with Virtualization support since 2005 and 2006,

respectively. With the support of hardware, developers can

build a much tidier VMM. Virtualization functions at the OS

level work on top of or as a module in OS to provide a

virtualized system call interface. In this kind of virtual

environment, the kernel of an operating system allows for

multiple isolated user-space instances (instead of just one

instance). These instances (often named containers, VEs or

VPSs) look like real servers, from the standpoint of their

owners. Because of this, OS level Virtualization is also named

single OS image Virtualization or container based

Virtualization. It usually imposes little or no overhead [11, 30].

B. The VMM

VMM is usually a small OS nonetheless with no hardware
drivers. For getting into the physical resources, the VMM is
naturally attached with a normal operating system, like Linux,
which offers device/hardware access. There are two methods

employed, formalized by Goldberg as: (a) type-I Virtualization
wherever the VMM and VM run straight on the physical
hardware, then (b) type-II Virtualization where the VMM and
VM run on a host operating system. Since the type-I
Virtualization has direct access to resources; performance is
comparable to that of native execution. In contrast, type-II
Virtualization incurs the cost of additional overhead due to the
layering of the VMM on top of the host OS when servicing
resource requests from VMs. The type-II layering makes its
approach more suitable for the development phase, where some
performance may be reduced in exchange for greater diagnostic
and development capabilities. Today, several system-level
Virtualization solutions are available, for instance Xen (type-I),
QEMU (type-II), or VMware workstation & server (type-II).
However, these resolutions are not suited for high performance
computing (HPC). Xen has become a rather massive micro-
kernel that includes unneeded features for HPC, e.g., a network
communication bus; QEMU and VMware do not offer support
to direct access to high-performance network solutions [12, 29,
and 22].

C. The Challenges of Multi-core

It is difficult to overestimate the magnitude of the
discontinuity that the high performance computing (HPC)
community is about to experience because of the emergence of
the next generation of multi-core and heterogeneous processor
designs [5, 22, and 28]. For at least two decades, HPC
programmers have taken it for granted that each successive
generation of microprocessors would, either immediately or
after minor adjustments, make their old software run
substantially faster[21]. But three main factors are converging
to bring this “free ride” to an end. First, system builders have
encountered intractable physical barriers – too much heat, too
much power consumption, and too much leaking voltage – to
further increases in clock speeds. Second, physical limits on the
number of pins and bandwidth on a single chip means that the
gap between CPU performance and memory performance,
which was already bad, will get increasingly worse.

Ultimately, the design trade-offs being made to address the
previous two factors will render commodity processors, absent
any further augmentation, inadequate for the purposes of tetra-
and peta-scale systems for advanced applications[25]. This
daunting combination of obstacles has forced the designers of
new multi-core and hybrid systems, searching for more
computing power, to explore architectures that software built
on the old model are unable to effectively exploit without
radical change. But despite the rapidly approaching
obsolescence of familiar programming paradigms, there is
currently no well understood alternative in whose viability the
community can be confident [20, 23]. The core of the problem
is the dramatic increase in complexity that software developers
will have to face. Dual-core machines are already common,
and the number of cores is expected to roughly double with
each processor generation. But contrary to the premises of the
previous model, programmers will not be able to consider these
cores independently (i.e. multi-core is not “the new SMP”)
because they share on-chip resources in ways that separate
processors do not. This position is made even more

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 03, May 2014

www.ijcit.com 634

complicated by the other non-standard components that future
architectures are expected to deploy, including mixing different
types of cores, hardware accelerators, and storage systems.
Finally, the proliferation of widely divergent design ideas
shows that the question of how to best combine all these new
resources and components is largely unsettled. When combine
changes produce an impression of a future in which software
engineers must overcome software design problems that are
vastly more complex and challenging than in the past in order
to take advantage of the much higher degrees of concurrency
and greater computing power that new architectures will
provide. [13, 26].

D. Main factors driving the multi-core discontinuity
Among the various factors that are driving the momentous

changes now occurring in the design of microprocessors and
high end systems, three stand out as especially notable: 1) the
number of transistors on the chip will continue to double
roughly every 18 months, but the speed of processor clocks
will not continue to increase; 2) the number of pins and
bandwidth on CPUs are reaching their limits and 3) there will
be a strong drift toward hybrid systems for peta-scale (and
larger) systems. The first two involve 2 fundamental physical
limitations that nothing currently on the horizon is likely to
surmount. The third is a consequence of the first two,
combined with the economic necessity of using many
thousands of CPUs to scale up to peta-scale and larger systems.

Each of these factors has a somewhat different effect on the

design space for future programming: 1) More transistors and
slower clocks means multi-core designs and more parallelism
required – The modus operandi of traditional processor design
– increase the transistor density, speed up the clock rate, raise
the voltage – has now been blocked by a stubborn set of
physical barriers – too much heat produced, too much power
consumed, too much voltage leaked. Multi-core designs are a
natural response to this post. By putting multiple processor
cores on a single die, architects can continue to increase the
number of gates on the chip without increasing the power
densities. But since excess heat production means that
frequencies cannot be further increased, deep-and-narrow
pipeline models will tend to recede as shallow-and-wide
pipeline designs become the norm. Moreover, despite obvious
similarities, multi-core processors are not equivalent to
multiple-CPUs or to SMPs. Multiple cores on the same chip
can share various caches (including TLB!) and they certainly
share the bus. Extracting performance from this configuration
of resources means that programmers must exploit increased
thread-level parallelism (TLP) and efficient mechanisms for
inter-processor communication and synchronization to manage
resources effectively. The complexity of parallel processing
will no longer be hidden in hardware by a combination of
increased instruction level parallelism (ILP) and deep-and-
narrow pipeline techniques, as it was with superscalar designs.
It drive have be addressed in software [13, 27]. 2) Thicker
“memory wall” means that communication efficiency will be
even more essential – The pins that connect the processor to
main memory have become a strangle point, with both the rate
of pin growth and the bandwidth per pin slowing down, if not
flattening out. Thus the processor to memory performance gap,

which is already approaching a thousand cycles, is expected to
grow, by 50% per year according to some estimates.
Concurrently, the number of cores on a single chip is expected
to continue to double every 18 months, and since limitations on
space will keep the cache resources from growing as quickly,
cache per core ratio will continue to decline. Problems of
memory bandwidth, memory latency, and cache fragmentation
will, therefore, tend to get worse. [13, 14 and 15]

3) Limitations of commodity processors will further
increase heterogeneity and system complexity: Experience has
shown that tera- and peta-scale systems must, for the sake of
economic viability, use commodity off-the-shelf (COTS)
processors as their foundation. Regrettably, the trade-offs that
are being (and will continue to be) made in the architecture of
these general purpose multi-core processors are unlikely to
deliver the capabilities that leading edge research applications
require, even if the package is suitably qualified. Therefore, in
addition to all the different kinds of multithreading that multi-
core systems may utilize – at the core-level, socket-level,
board-level, and distributed memory level – they are also likely
to incorporate some constellation of special purpose processing
elements. Examples include hardware accelerators, GPUs; off-
load engines (TOEs), FPGAs, and communication processors
(NIC-processing, RDMA). Since the competing designs (and
design lines) that vendors are offering are already diverging,
and mixed hardware configurations are already appearing, the
hope of finding common target architecture around which to
develop future programming models seems at this point to be
largely forlorn. It is believed that these major trends will
define, in large part at least, the design space for scientific
software in the coming decade. But while it may be important
for planning purposes to describe them in the abstract, to
appreciate what they mean in practice, and therefore what their
strategic significance may be for the development of new
programming models, one has to look at how their effects play
out in[13, 24].

E. Platform Feature Comparison

With the wide array of potential choices of virtualization
technologies available, it’s often difficult for potential users to
identify which platform is best suited for their needs. In order
to simplify this task, some authors conducted a comparison
between Xen 3.1, KVM from RHEL5, VirtualBox 3.2 and
VMware ESX. The first point of investigation is the
Virtualization method of each VM. Each Hypervisor supports
full Virtualization, which is now common practice within most
x86 Virtualization deployments today. Xen, originating as a
para-virtualized VMM, still supports both types, however full
Virtualization is often preferred as it does not require the
manipulation of the guest kernel in any way. From the Host
and Guest CPU lists, we see that x86 and, more specifically,
x86-64/amd64 guests are all universally supported. Xen and
KVM both support Itanium-64 architectures for full
Virtualization (due to both Hypervisors dependency on
QEMU), and KVM also claims support for some recent
PowerPC architectures. VirtualBox and VMware have internal
mechanisms to provide full Virtualization even without the
Virtualization instruction sets, and Xen can default back to
Para-virtualized guests. Considering host environments for

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 03, May 2014

www.ijcit.com 635

each system , As Linux is the primary OS type of choice within
HPC deployments, its key that all Hypervisors support Linux
as a guest OS, and also as a host OS. As VMware ESX is
meant to be a Virtualization-only platform, it is built upon a
specially configured Linux/UNIX proprietary OS specific to its
needs. All other Hypervisors support Linux as a host OS, with
VirtualBox is also supporting Windows. VirtualBox, on the
other hand, supports only 32 vCPUs and 16GB of addressable
RAM per guest OS, which may lead to problems when looking
to deploy it on large multi-core systems.. Another vital aspect
of these Virtualization technologies is the license agreements
for its applicability within HPC deployments. Xen, KVM, and
VirtualBox are provided free of charge under the GNU Public
License (GPL) version 2. VMware, on the other hand, is
completely proprietary with an extremely limited licensing
scheme that even prevents the authors from will fully
publishing any performance benchmark data without specific
and prior approval . [14, 18 and 19].

III. EVALUATION OF IMPLEMENTING VIRTUALIZATION IN

MULTICORE SYSTEMS

Different Virtualization techniques and technologies in
Multicores platforms were reviewed and critically analyzed

.The previous discussed techniques are applicable with some
advantages and limitations when applied in different Virtual
Machine Mangers (VMM), though the implementation of
some showed their usefulness in certain real life problems .
Recent studies have shown the industry direction to support
Multicore systems to better utilization of their hardware
capabilities in the form of software designs that has ability to
run better in these cores.

The choice of the right hypervisor was the sign of success
for some implementation. Previous studies also showed that
certain Virtualization techniques in some multicore platform
can even be useful for future designs .Virtualization
Techniques implementation was found to highly dependent on
platform, hypervisor used and the Operating system.

Table 1 shows summaries on each Virtualization technique
and the applicability in cases of certain platforms and
hypervisors. The table also shows the advantages and
limitations addressed by previous studies.

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 03, May 2014

www.ijcit.com 636

TABLE 1 ADVANTAGES AND LIMITATIONS

Techniques

Results From previous Implementation

Hypervisor Platform Advantages Applicability Limitations

Para-Virtualization

Xen
HPC

Easy to grow and widely

used as a flavoring

Not recommended for

HPC
The performance lacks

Para-Virtualization RT-Xen Dell Q9400 Quad core Not addressed
Promising step to real-

time Virtualization

Not addressed in statutes

reviewed

Full-Virtualization DBT ARM V7-A

DBT better than hardware
assisted Virtualization and

has possibility of

development

Applicable in modern
Computer architectures

which not classically

vertualizable

Implementation cost and

complexity and memory

footprint

Para-Virtualization
Xen (RT-

Xen2.0)
Inteli7 x980 with 6 Cores

Lower deadline misses
compared to other real-time

schedulers

Can be implemented in
dynamic memory

management

It takes time longer than

theoretical predicted time

Full-Virtualization
KVM with EPT

and PLE support

Dell Power Edge R720
Server with 2 2.4GHZ Intel

Xeon ES-2665 CPU 8

cores

Reduction in slow down

and actively Cores

If well studied , Can be
a primary solution for

synchronization I

virtualized

environments

Not well studied and alternative

designs are needed

Para-Virtualization Xen4.1.1
Quad core Xeon Y5560

8GB DDR memory

Dynamically adjusting
allocations to meet changes

in workload

Application level
quality of service not

addressed

Applicable in power allocation
over provision multicore

platforms

Para-Virtualization
MultiPARTES

XtratuM

Dual core x86 processor

and FPGA with LEON3

(spare V8) synchronized

processors

Has a methodology to deal

with different levels of

criticality and layers

Issues related to OS

used and security
Able to adapt the MultiPARTES

Full-Virtualization KVM
Quad Core physical

machine

Performance enhancement
for optimal processor

scheduling

Not verified to
optimize big data tools

to utilize multicore

architectures

Can be used to quantify the
overhead from CPU migrations

for heterogeneous workloads in

systems

Para-Virtualization Xen4.2.1

Two 2.53GHZ Intel Xeon

E5540 processors 4 cores

each and 8 MB L3 Cache

Added a time slice and

result in better

performance in

computation tasks

Xen default credit

scheduler has problems

with the I/O
performance of mixed

workloads

Applicable in new multicore

based schedulers with better

performance.

OS level

Virtualization

-
Current X86 processors

Better performance than

Xen

Dynamic resource

reallocation not

supported

Suitable for real-time workloads

that have fixed resource demand

Para-Virtualization Xtratum LEON4

LEON$ Overcomes some

bottlenecks by

implementing 128-bit bus

Still there is a memory

access bottleneck

And requirement of

changes

Can support SMP hardware

architecture

Full system

emulation
QEMU X86 Ability to simulate I/O

Significant complexity
handling in virtual

memory issues

Useful in modelling
heterogeneous core designs of

the future

Para-Virtualization Xen3.2.1
Intel quad Core Xeon with
each RAM and two 1GB

NIC card

Well-matched for

enterprise IP telephony

Media applications are
challenging direct I/O

access is essential from

time to time

Can be employed in
telecommunication solution

providers

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 03, May 2014

www.ijcit.com 637

REFERENCES

[1] Lesko, Charles J., and Yolanda A. Hollingsworth. "Architecting

Scalable Academic Virtual World Grids: A Case Utilizing

OpenSimulator." Journal of Virtual Worlds Research 6.1 (2013). W.-K.

Chen, Linear Networks and Systems (Book style). Belmont, CA:

Wadsworth, 1993, pp. 123–135.

[2] Olukotun, Oyekunle Ayinde. Multicore processors and systems. Eds.

Stephen W. Keckler, and H. Peter Hofstee. Springer, 2009.

[3] Reilly, Matthew. "When multicore isn't enough: Trends and the future

for multi-multicore systems." Proceedings of Workshop on High

Performance Embedded Computing. 2008.

[4] B. Smith, “An a Carrascosa, E., et al. "XtratuM hypervisor redesign for

LEON4 multicore processor."pproach to graphs of linear forms

(Unpublished work style),” unpublished.

[5] Petrides, Panayiotis, et al. "Virtualization for morphable multi-cores."

ARCS 2011 (2011).

[6] Bini, Enrico, et al. "Resource management on multicore systems: The

ACTORS approach." Micro, IEEE 31.3 (2011): 72-81.

[7] Reilly, Matthew. "When multicore isn't enough: Trends and the future

for multi-multicore systems." Proceedings of Workshop on High

Performance Embedded Computing. 2008.

[8] White, Joshua, and Adam Pilbeam. "A survey of virtualization

technologies with performance testing." arXiv preprint arXiv:1010.3233

(2010).

[9] Stallings, William. Computer organization and architecture: designing

for performance. Pearson Education India, 1993.

[10] Shimada, Hiromasa, et al. "Design issues in composition kernels for

highly functional embedded systems." Proceedings of the 2011 ACM

Symposium on Applied Computing. ACM, 2011

[11] Jin, Hai, et al. "ChinaV: Building virtualized computing system." High

Performance Computing and Communications, 2008. HPCC'08. 10th

IEEE International Conference on. IEEE, 2008

[12] Vallee, Geoffroy, et al. "System-level Virtualization for high

performance computing." Parallel, Distributed and Network-Based

Processing, 2008. PDP 2008. 16
th
 Euromicro Conference on. IEEE,

2008.

[13] Dongarra, Jack, et al. "The impact of multicore on computational

science software." CTWatch Quarterly 3.1 (2007): 1-10

[14] Younge, Andrew J., et al. "Analysis of virtualization technologies for

high performance computing environments." Cloud Computing

(CLOUD), 2011 IEEE International Conference on. IEEE, 2011

[15] Reilly, Matthew. "When multicore isn't enough: Trends and the future

for multi-multicore systems." Proceedings of Workshop on High

Performance Embedded Computing. 2008

[16] Rose, Robert. "Survey of system virtualization techniques." Collections

(2004).

[17] Sahoo, Jyotiprakash, Subasish Mohapatra, and Radha Lath.

"Virtualization: A survey on concepts, taxonomy and associated security

issues." Computer and Network Technology (ICCNT), 2010 Second

International Conference on. Ieee, 2010.

[18] Ding, Xiaoning, Phillip B. Gibbons, and Michael A. Kozuch. "A Hidden

Cost of Virtualization when Scaling Multicore Applications."

[19] Penneman, Niels, et al. "Formal virtualization requirements for the ARM

architecture." Journal of Systems Architecture (2013).

[20] Trujillo, Salvador, Alfons Crespo, and Alejandro Alonso.

"MultiPARTES: Multicore virtualization for Mixed-criticality Systems."

Digital System Design (DSD), 2013 Euromicro Conference on. IEEE,

20

[21] Velkoski, Goran, Sasko Ristov, and Marjan Gusev. "Affinity-aware

HPC applications in multichip and multicore multiprocessor."

Information Technology Interfaces (ITI), Proceedings of the ITI 2013

35th International Conference on. IEEE, 2013.

[22] Lim, Seung-Hwan, et al. "Performance Implications from Sizing a VM

on Multi-core Systems: A Data Analytic Application's View." Parallel

and Distributed Processing Symposium Workshops & PhD Forum

(IPDPSW), 2013 IEEE 27th International. IEEE, 2013

[23] Wen, Yuanfeng, et al. "Multiprocessor architectural support for

protecting virtual machine privacy in the interested cloud environment."

Proceedings of the ACM International Conference on Computing

Frontiers. ACM, 2013.

[24] Yu, Chao, Leihua Qin, and Jingli Zhou. "A multicore periodical

preemption virtual machine scheduling scheme to improve the

performance of computational tasks." The Journal of Supercomputing

(2013): 1-23.

[25] Dai, Yuehua, et al. "Design and verification of a lightweight reliable

virtual machine monitor for a many-core architecture." Frontiers of

Computer Science(2013): 1-10

[26] Herber, Christian, et al. "Self-virtualized CAN controller for multi-core

processors in real-time applications." Architecture of Computing

Systems–ARCS 2013. Springer Berlin Heidelberg, 2013. 244-255.

[27] Cerotti, Davide, et al. "End-to-End Performance of Multi-core Systems

in Cloud Environments." Computer Performance Engineering. Springer

Berlin Heidelberg, 2013. 221-235.

[28] Smari, Waleed W., Sandro Fiore, and David Hill. "High performance

computing and simulation: architectures, systems, algorithms,

technologies, services, and applications." Concurrency and

Computation: Practice and Experience (2013).

[29] Gupta, Vishal, and Karsten Schwan. "PowerTune: Differentiated Power

Allocation in Over-provisioned Multicore Systems."

[30] Shih, Chi-Sheng, et al. "Fairness scheduler for virtual machines on

heterogonous multi-core platforms." ACM SIGAPP Applied Computing

Review13.1 (2013): 28-40

.

