
International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 03 – Issue 03, May 2014

www.ijcit.com 661

Phased Effort Estimation of Legacy Systems

Migration to Service Oriented Architecture

Esraa A. Farrag

College of Computing and Information Technology (CCIT)

Arab Academy of Science and Technology and Maritime

Transport (AASTMT) Heliopolis, Cairo, Egypt

esraa_farag16 {at} yahoo.com

Ramadan Moawad

Faculty of Computers and Information Technology (FCIT)

Future University (FUE), Cairo, Egypt

 Abstract— Cost estimation for Service Oriented Architecture

(SOA) has not been addressed properly in the existing literatures.

Most cost estimation approaches published in the literatures are

more guidelines than actual practical estimation techniques. On

the other hand, traditional software cost estimation techniques

don’t fit SOA characteristics properly. In this paper, a phased

effort distribution in legacy systems migration to SOA is

presented.

In this paper, we have identified several cost factors related to

SOA. These cost factors have been distributed among different

SOA project phases. Then weight for each cost factor has been

assigned. This approach has been applied to different service

migration strategies to SOA. The results have been obtained and

analyzed. This approach represents one possible way to estimate

the overall cost of a SOA project early and accurately by

estimating the cost of only one phase of the project.

Keywords— SOA; Effort Estimation; Service Migration;

Migration Strategies; Phased Cost Estimation; Legacy Migration.

I. INTRODUCTION

Business changes rapidly that organizations need to build IT

system that can cope with such speed. Organizations started to

migrate to SOA [1] to decrease the development costs. The only

way to verify this decreased cost is the proper cost estimation[2]

. This is crucial as most organizations don’t have a clue about

SOA cost estimation[3].

Legacy systems [3] are outdated systems that organization

still uses. It represents valuable financial assets[5][6] . Legacy

systems are crucial to the organization and their migration to

SOA is risky and expensive[7][8]. So the costs and benefits

must be carefully weighted[3].

There are many reasons that push the organization to go

through this risky migration. These reasons include: difficult

maintenance of the existing legacy system and adding new

features to this legacy system is considered to be a hard task.

Also, legacy systems could be no longer able to cope with rapid

business changes. Furthermore the legacy system technology

could be obsolete or could be running on outdated hardware[9].

Also the lack of experts of the legacy system and non-existence

of up-to-date documentation make the changes even harder. On

the other side, SOA has many benefits include clear separation

of service interface from implementation. This separation allows

many service upgrades to occur without impact on service users.

Moreover, loose coupling between services minimizes

interdependencies and facilitates reuse.

Traditional software cost estimation approaches [10][11] are

unsuitable for costing SOA projects .As SOA projects are more

complex , heterogeneous and dynamic than traditional

software[12].This is due to SOA characteristics that affect the

cost , including: loose coupling, reusability and composability.

There is limited publication in SOA cost estimation approaches

[1].They were more guidelines than estimation technique as

they cost only from high level and didn’t estimate the services in

details. It is very important to estimate the cost and effort

accurately in SOA projects. As inaccurate cost estimation will

lead to unpredicted risks, launch slips, mission failure and

major cost growth[10][11].

In this research cost factors related to SOA are extracted from

existing literatures .The extracted factors are then distributed

among different phases .Each factor is weighted from cost

perspective .This approach will be applied to different service

migration to SOA strategies .The aim of this research is

phased effort distribution. The results have been obtained and

analyzed as will be shown in details in this paper.

This paper is organized as follows: background and related

work will be shown in section 2 that discusses the different cost

estimation approaches. Our approach will be introduced in

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 03 – Issue 03, May 2014

www.ijcit.com 662

section 3, and will be applied for service migration in section 4

.Results will be presented and analyzed in section 5, and section

6 concludes the paper.

II. BACKGROUND AND RELATED WORK

There are several cost estimation approaches that have been

proposed to estimate the cost of software projects in general

and SOA in particular. But before introducing these approaches

it would be better to introduce characteristics of SOA. These

characteristics emphasize special treatment while estimating

the cost.

A. SOA characteristics and their impact on cost:

SOA has many characteristics[38] that differ from traditional

software. These characteristics include: loose coupling,

reusability, composability and discoverability which are detailed

as follows[14]:

1) Loose coupling:

In SOA each service is independent [12] and the services are

less cohesive[15]. Consequently SOA supports agility. Loose

coupling of the services will make it easier to change the

existing services. Thus flexibility will be increased [15] and the

cost of modifying the existing service will be decreased

compared to traditional applications, thus the cost of

maintenance will be decreased [1][16].Loose coupling of

services will encourage reuse of the services in various

applications [15].

2) Reusability

The same service can be used for other purposes, to prevent

redundancy in the system[17]. Reuse will occur only if the

services are clearly documented and identified [18].Also

designed and deployed in a manner which enables them to be

invoked by the independent service consumer[1] and the logic is

divided into services for the intention of reuse [12].Reusability

decreases development, operational, management and

maintenance costs, which decreases time to market.

3) Composability:

Composability [19] is combining several services into one

powerful service. So composing is a new form of reusability

[17]. Service could be composed of other services which are

coordinated and assembled. These services could be estimated

using Divide and Conquer approach [20] as will be shown later .

4) Discoverability:

Services can be found and used via a service registry [22] or

any discovery mechanism, this will encourage reusability of

service.

B. Cost Estimation Approaches:

In this section we will discuss the different cost estimation

techniques. We classified them into two categories: traditional

software cost estimation approaches and SOA specific cost

estimation approaches.

1) Traditional software cost estimation approaches:

a) Expert Judgment:

This approach depends on expert intuition and experience

based on cost of similar recent project [2][10]. It is the most

common approach used in industry [19] as it is highly adaptive

to different environments [23]. Consequently, past projects

circumstances, factors, details could be forgotten [19] as it

depends on expert’s memory[10]. Unless these historical data

are clearly documented [11], which is limited for SOA .

 On the other side, it doesn’t give accurate estimation to the

cost of maintenance, as the most experienced engineers tended

to over-estimate the amount of work required for small tasks

and under-estimate the amount of work for large tasks[2].

Apparently this approach is inadequate for SOA, as it ignores

the reusability, discoverability and composability nature of

services. This approach is also insufficient to estimate SOA

projects as it doesn’t support separation of concerns and

Reusability Loose Coupling
Separation Of Concerns

(Abstraction)
Composability

Autonomy

 (Encapsulation)
Discoverability

Expert

Judgment
No No Bias No Bias No

COCOMO II Yes Yes No No No No

Function Point

V1 (IFPUG)
No Yes No No No No

Function Point

V2 (COSMIC)
Yes Yes Yes Yes yes No

Linthicum

Formula
NA NA NA NA NA NA

SMART Yes No No Yes Yes Yes

WBS - D&C yes yes yes yes yes Yes

Available

service
Yes Yes

Migrated

Service
Yes Yes Yes

New Service Yes Yes Yes

Composed

Service
Yes Yes Yes

Yes

AUS_SMAT

framework
Yes Yes Yes Yes Yes Yes

Service Mining Yes Yes Yes

Service

Development

& Application

Development

Yes Yes Yes Yes Yes Yes

service

integration
Yes Yes Yes Yes Yes

SOA

infrastructure
Yes Yes Yes Yes Yes

Traditional Approaches

SOA specific

Approaches

based on

classification

of services

TABLE 1 SUMMARY OF COST ESTIMATION APPROACHES VS SOA CHARACTERISTICS

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 03 – Issue 03, May 2014

www.ijcit.com 663

composability nature of SOA.

b) COCOMO II Model:

COCOMO II [24] is one of the most documented and best

known approaches, it estimates the cost based on number of

lines of code. One of the major criticisms faced by COCOMO II

is its complexity as to many coefficients exists in the formula.

Also number of lines of code will not be suitable due to rise of

automated code generation. However COCOMO II has been

applied to estimate the cost of SOA in [25], the parameters have

been calibrated to suit SOA environment .In [25] flexibility and

reusability have been addressed [19]. However it didn’t address

the composition nature of services.

c) Function Point V1 (Version 1):

This approach [21][26] is based on the size of the software

which is directly dependent on its functions. These functions

include: number of inputs, number of user’s outputs, the number

of inquiries, number of files and the number of interfaces[27].

Function Point V1 considers only the functional requirements

and ignores the non-functional requirements [19]. Function

Point doesn’t support SOA perfectly as SOA doesn’t completely

meet function point metrics[26].In [26] adjustments have been

made to traditional FP to empirically support SOA. It has been

calibrated by including characteristics of SOA and eliminating

unused characteristics. Also integration efforts of services were

estimated using FP in Error! Reference source not found..

Typically, the size based estimation techniques in general, is

not accurate as modern languages code size is not relative to

size of the project. Also the Lines of Code (LOC) couldn't be

determined until the project is finished. So LOC is difficult to

estimate in the early phases of the project as it varies according

to implementation and design [19].

d) Function Point V2(Version 2):

One of the main limitation of function point V1 is boundary

definition of SOA. Function Point V2 [12]has been proposed to

address loose coupling nature of SOA and to overcome common

function point V1 drawback which is boundary definition. This

approach supports composability nature of services and

reusability nature of services .Autonomous nature of the services

is supported as function point V2 would identify the inner

services.

2) SOA specific cost estimation approaches

a) Linthicum Formula:

This approachError! Reference source not found.is one of

the first approaches of cost estimation specialized to SOA. The

cost of SOA is calculated as in equation (1)

Cost of SOA = (Cost of Data Complexity + Cost of Service

Complexity + Cost of Process Complexity + Enabling

Technology Solution) (1)

This formula takes into consideration many factors ignored by

other approaches, however it doesn’t fit in real environments.

b) Service Migration and Reuse Technique Approach

(SMART)

SMART [3] is a method is to support cost estimation of

legacy systems migration to SOA[5][8].SMART gathers a wide

range of information about legacy components, the target SOA,

and potential services produce a service migration strategy as its

primary product [6].SMART is helpful in legacy system

migration to SOA, as it took into consideration service discovery

and reusability. Service composability is also considered as

legacy systems could be wrapped into services. However this

approach ignored the loose coupling and separation of concerns

nature of SOA. Also it is more likely to be guidelines than

practical estimation technique.

c) Divide and Conquer (D&C) Approach:

This approach [19][20][21] was inspired from the divide and

conquer algorithm which is used to solve complicated problems

.This approach takes the advantage of composability nature of

services and solves the complexity of SOA .As SOA project

could be broken down into smaller components (services) which

could be manageable and flexible building blocks [26]. The

whole project is broken down into services, the cost of each

service is estimated .The overall cost of the application is the

summation of the cost of the component services which supports

reusability nature of SOA. This approach enhances the

parallelism [19]as many services could be developed and tested

simultaneously, which supports loose coupling nature of SOA.

d) AUS-SMAT Framework (NICTA):

This approach [18][26] was developed by NICTA

organization .It supports loose coupling nature of SOA, and it

also solves the complexity of SOA. As in this framework the

application is divided into services according to its type into:

service mining, service development, service integration and

service infrastructure. Each type has its own associated

activities, templates, cost factors and cost functions[28]. The

overall cost of the project will be a summation of the cost of the

composing services.

All these characteristics of SOA taken into consideration by

various cost estimation techniques have been summarized in

TABLE 1 .

From TABLE 1 we can conclude that SOA specific cost

estimation approaches better estimates the SOA projects than

traditional approaches. As SOA specific cost estimation

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 03 – Issue 03, May 2014

www.ijcit.com 664

approaches take into consideration all or most of SOA

characteristics.

III. PROPOSED APPROACH

 In this section our approach will be discussed in details. We

extracted factors related to cost of SOA from previous literatures

.These cost factors were distributed among SOA project phases.

Services have been classified from construction perspective into:

available service, migrated service, new service and composite

service. Our paper is mainly concerned with migrated services.

There are different service migration strategies to SOA, which

will be shown in details in section 4 .Service migration

strategies include: wrapping, re-engineering, replacement and

migration. Each cost factor has been weighted for each

migration strategy. All of the previous steps are detailed as

follows:

A. Exhaustive search for all factors (drivers) that affect cost of

SOA:

In this section we will focus on factors affecting the cost

which are extracted from previous literatures. A comparative

study among different migration strategies has been discussed

in[37]. The factors discussed were introduced in the context of

comparison .However, for the purpose of this paper we took only

factors related to cost which are: need for original requirements,

need for source code, flexibility and stable environment.

Another research[28] has been made on different migration

paths which showed comparison among wrapping, re-hosting,

componentization, re-engineering and COTS .In this paper we

have ignored both re-hosting and componentization, as re-

hosting is publishing the service on another host and it is out of

our scope. On the other side componentization cost has been

mentioned in details in [19] and will be out of our scope. From

[28], we extracted factors related to cost which include: business

agility, integration with partners, modifications require

considerable testing effort and business risk. Unnecessary

factors have been removed, these factors include: move from

batch processing to online processing and a near real time

enterprise and hard-coded business rules as they are not related

to cost.

On the other hand there were factors which were mentioned

in both researches [19][28], which mean that they have a deep

impact on cost. These factors are as follow: Migration duration,

level of tools support, performance post migration, integration

costs which involve systems integration with business partners

cost and difficult to integrate with new breed of technologies .

Furthermore maintainability after migration, Modifications

require considerable testing effort, and experienced resources

needed have been discussed in both [28]and [37].

Another research[29] sah evaluated migration strategies from

technical value and both cost and business value .We extracted

only business value factor from it.

Testing factors have been addressed in[34] , which showed

testing from two dimensions: testing level and testing

perspective. We have ignored testing perspective as it doesn’t

directly affect the cost, only testing level has been considered.

Testing level includes: functional testing, non-functional

testing, integration testing and regression testing.

B. Distribution of drivers into SOA project phases:

The extracted factors were distributed among different SOA

phases [30].These phases are as follows:

1) Requirements:

In this phase the major function of the service is defined.

Requirement gathering phase has many factors including:

business agility, cost of integration, business value and business

risk;

2) Design:

In this phase the target service is described in a sufficient way

that skilled developers can develop the service in minimal effort.

Service design phase has many factors which are: need for

original requirements, obsolete legacy system technology,

experienced resources needed and need for source code;

3) Development:

Development phase involves writing the code which satisfies

both requirements and design previously documented.

Development of the service has many factors which are:

flexibility, code size, tools support and time required for

migration;

4) Testing:

In this phase, all test cases are run to validate and verify the

service. However, classical testing techniques don’t fully fit

SOA, so testing should be done using common methods in

testing component or subsystem testing [31]. Testing of SOA

has two dimensions: testing level and testing perspective, as

detailed in [29]. In this paper we will focus only on testing

levels which are: functional testing, non-functional testing,

integration testing and regression testing [32] as will be

discussed in details in the next section;

5) Integration and transition

In this phase, the services are integrated with the desired

application and the gap between existing system and target

developed system is identified and these changes are made. This

phase has many factors which involve: stable environment,

maintainability post migration and solving existing problems in

legacy systems.

C. Classification of services:

Services are better estimated on their own by separation[12].

Each type of service has its own characteristics, considerations,

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 03 – Issue 03, May 2014

www.ijcit.com 665

templates and methods that are affect the cost[18] . svrevoahh

hrhorjosvforfvhothosvho aotrsrjosvhrhorjosvhr frsvso

hvoethvh [19].

Fig.1. Classification of services from construction perspective

Services could be classified based on construction perspective

[20][21] as available , migrated, new , and composing service as

in Fig.1.Service types are detailed as follows:

1) Available Service (Black Box):

A service that already exists and will be used as is. Available

services may be homegrown[28]or external services (3rd

party).The cost will vary between them [18] as homegrown

services will involve testing and integration of services . On the

other hand external services cost will involve service discovery

[22]and service integration[18];

2) Migrated Service (White Box):

A service that is generated through wrapping, replacing or

modifying existing services [4].Migration strategies will be

discussed in details below;

3) New Service:

A service that will be developed from scratch;

4) Composite Service:

A service which is composed of one or more of the above

types, which could be estimated using Divide and Conquer

approach as mentioned in details in the previous section.

In this paper we are concerned with the phased cost estimation

of migrated service type as will be shown in the next section.

D. Assigning relative weights of each driver according to

each Migration strategy:

The extracted cost factors were weighted from cost perspective

on the scale from 1 to 3. 1 represents lowest cost and 3

represents highest cost. The cost factors are weighted for each

service migration strategy. For example: Business value of

wrapping takes the weight 1 as it has lowest cost and

replacement will take weight 3 as it involves high cost .As re-

engineering has intermediate cost so it will take the weight

2.All the extracted cost factors are weighted in the same manner

as will be shown in details in section IV .

IV. APPLICATION OF THE PROPOSED APPROACH FOR SERVICE

MIGRATION:

In this section we will apply our proposed approach on

different migration strategies of service migration .Each of the

extracted cost factors from section III, will be distributed among

phases .Each factor will be weighted for each service type and

migration strategy. The weight of each factor reflects its relative

cost. The weights are scaled from 1 to 3 .Low cost is represented

by 1 and high cost is represented by 3, as mentioned earlier.

All the cost factors are grouped and aggregated by phase and

migration strategy. For each strategy, all the phased cost

weights will be summed. The overall cost of each phase will be

calculated for each service type and strategy. All the above steps

are summarized in Fig. 2 .

Fig. 2 . Block Diagram shows the steps of our proposed approach

For the purpose of this paper, we will focus only on the

migrated service type. In order to migrate legacy systems to

SOA, migration path should be taken.

A. Migration Strategies to SOA (Paths):

There are many migration strategies each has pros and cons as

detailed in [37]. However, relying on a single implementation

strategy is not preferred. Hence, multiple strategies could be

used. Various factors such as business value, business priority

and the technical qualities of the legacy applications can be used

to decide upon the selection of proper strategy [29]which is

decided at the final step of SMART [7].Those strategies are :

wrapping, re-engineering, replacement and migration as shown

in Error! Reference source not found. and they are as

follows:

1) Wrapping

Wrapping [37] is a black box migration strategy in which

interface is built to wrap the existing legacy system .This

strategy is used when legacy code is too expensive to rewrite ,

relatively small , high quality code , high business value and fast

solution is needed. This makes wrapping legacy is the most

attractive feature of SOA, as many organizations can’t take the

risk of re-developing new solution from scratch [4].However,

this strategy will not solve the existing problems of the legacy

system[9].Generally speaking, wrapping is not the optimal

strategy. However it allows a traditional system to easily gain

some of the benefits of service oriented architecture in limited

time.

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 03 – Issue 03, May 2014

www.ijcit.com 666

2) Re-engineering:

Re-engineering [37]is the adjustment of the application to be

in a new form to easily adding new functionality to the legacy

system.

Re-engineering is used in some cases as follows:

- Legacy system needs to be exposed as service, as it has

embedded reusable and reliable functionality with valuable

logic;

-some components are more maintainable than the whole system

or could be replaced without affecting the whole system;

3) Replacement

Replacement [37] is removing the old application and

replace it with new system. The new system could be either off

shelf product or build from scratch[18].This strategy is used

when business rules are well understood , the old application is

obsolete or costly in maintenance and if the other strategies

costs can't be justified [37] . This strategy is beneficial to the

organization as it is a customized solution which satisfies the

exact needs .However it is expensive , risky and time

consuming .In order to decrease the risk and time of

development, COTS could be used[37].However it should be

used carefully as the future modifications could be difficult and

expensive. Consequently, COTS are not good option if the

business changes rapidly .However, Replacement is less costly

in maintenance and gives high performance [9].

4) Migration

In migration[37] ,legacy code is separated from user

interface. User interface is modified to be compatible with SOA.

The core code is wrapped [9].

This strategy is very close to wrapping, therefore in this paper

only three strategies are considered and shown in fig 3 .

Fig. 3. Different Migration Strategies

B. Assigning weight value for each cost factor:

1) Business agility:

As wrapping can cope with rapid business changes as it is fast

technique so it takes weight 1. Re-engineering satisfies the

business changes but at high cost so it will take weight

3.Replacement can meet the changing business in moderate cost

it will take the weight 2.

2) Integration with partners' cost:

Wrapping involves dealing with legacy systems which is hard

technology to be integrated with partners , so it will take weight

3.Re-engineering has lower integration costs as it gives a high

business value which reduces integration costs, so will be given

1.Replacement has a moderate cost of integration, so will be

given weight 2.

3) Business value

Based on [29]wrapping gives low business value at low cost.

So it will be given weight 1.Replacement gives high business

value and has low technical value in high cost. So it will be

weighted as 3 .Re-engineering gives high technical value at low

cost so it will be weighted as 2.

4) Business risk:

Wrapping involves little risk on one side and replacement

involves high risk on the other side. So wrapping will take 1

and replacement will take 3. Re-engineering will take 2 as its

risk is in between.

5) Need for Original requirements :

In wrapping there is no need for original requirements as it

only encapsulate the existing legacy system. Thus it will be

weighted as 1 (might need original requirements to make sure

that the encapsulation will not affect the main functionality of

legacy systems).Re-engineering involves adding new SOA

functionality to the legacy system .So original detailed

requirements used have to be up-to-date, to make sure that the

original functionality will not be affected. So it will take the

weight 3.In replacement, original requirements doesn’t have to

be existed ,as new system will be built from scratch to satisfy the

exact needs . So replacement will take the weight 1.

6) Obsolete Legacy system technology:

Wrapping involves direct interaction with legacy code. If the

legacy technology is obsolete, modification will be highly costly

so it will be 3.Replacement involves least or no interaction with

the legacy system, so the cost weight will be 1.In re-engineering

smooth migration from legacy to SOA is carried out so the

weight will be 2.

7) Experienced resources needed:

Replacement involves high risks, so experienced resources are

highly needed to overcome these risks. So replacement weight

will be 3. On the other side, wrapping involves low risk. The

experienced resources are not highly needed, so it will weight

1.As re-engineering involves risks in between wrapping and

replacement so it will be given weight 2.

8) Need for Source Code

Re-engineering requires up-to-date source code to be

available .This involves high cost, so it will take weight

3.Replacement doesn’t require available source code so it will

take weight 1.Wrapping needs source code as core to build the

interface so it will take weight 3.

9) Flexibility

As replacement gives the highest level of flexibility, so in

order to build dynamic system it is time consuming task. So

replacement will be given weight 3.Wrapping is inflexible

approach, so it will take less time to change a piece of code.

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 03 – Issue 03, May 2014

www.ijcit.com 667

Consequently, wrapping will take weight 1.Re-engineering will

be given 2 as it has intermediate cost.

10) Code size

Wrapping legacy systems involves small code writing, so it

will be given weight 1.Replacement involve building new

service from scratch, so size of code will be weighted as 3 .Re-

engineering involves adding new functionality to existing

system, will be given weight 2.

11) Tools support

Wrapping involves direct dealing with legacy systems that

could be obsolete technology .So tools could be no longer

available .Wrapping will take weight 3 .Re-engineering and

replacement involve new technology support so will be given

weight 1.

12) Time required for migration

Wrapping is fast as detailed in [37]it requires the least cost

compared to other approaches . Wrapping will be given 1

.Replacement is time consuming as mentioned in [37], will be

given 3.As re-engineering is in between it will be given 2.

13) Testing factors:

For the purpose of this paper we will take into consideration

testing level only as mentioned before. Testing level includes:

Functional and Non-functional testing, integration testing and

regression testing as follows:

a) Functional Testing:

Service functional testing could be done using common

methods in testing component or subsystem testing[34].In

wrapping it will be given 1, re-engineering will take 2,

replacement will take 3.

b) Non-functional Testing

Non-functional testing aims to make sure that Quality of

Service (QoS) meets Service Level Agreement (SLA). External

factors such as heavy network or server load could affect service

performance; Therefore stress testing on SLA has to be done

[34];. Non-functional testing could be getting more complex and

expensive.

Wrapping takes 3, as we have to make sure of stability and

reliability of the system. Re-engineering takes 1 , replacement is

given 1.

c) Integration Testing

The integration testing main concern is to make sure that any

problems caused due to the integration of the services are

eliminated [35]. Classical integration testing fail when the

service experience dynamic binding .Due to polymorphism of

SOA, testing all possible endpoints is costly and endpoints could

be unknown at testing time[34].Despite the complex automatic

discovery-and-composition mechanisms available, the integrator

must adequately test the service or composition before using it.

In this case, test time must be minimized because it affects

runtime performance. Wrapping will be given 3, as we need to

make sure that the modification can fit the system. Re-

engineering will take 2. Replacement will be given 3 as the

whole system is new and we want to make sure that it fits

properly.

d) Regression Testing:

Retesting piece of software after a round of changes to make

sure that the changes didn't adversely affect the delivered

service [34].Any service integrated into composition requires

regression testing, when the service has been updated.

Wrapping modification will have the lowest impact on the

system .It doesn’t need heavy testing effort, will be given 1

.Replacement will take weight 2 as the modifications need to be

heavily tested but not that risky. The re-engineering will have a

risky impact on the system and needs heavy test, so will be

given 3.

14) Stable environment:

Wrapping is the least risky approach, it will be given weight

1.On the other hand, replacement involves the highest risk

compared to other strategies, will be given weight 3. Re-

engineering involve compromise between the other approaches,

will be given weight 2.

15) Maintainability post migration:

As the [37] suggests , wrapping takes high cost. So it will be

given 3. Re-engineering will take limited cost , so will be given

1 . And replacement will have intermediate cost (weight 2) as it

is whole new system that needs maintenance.

16) Solving existing problems in legacy systems

(Maintenance)

As mentioned in section III, wrapping doesn’t solve the

existing problems in the legacy system. So wrapping will take

more effort to solve existing problems compared to other

approaches. So on the scale from 1 to 3 wrapping will be given

3. On the other side, replacement involves legacy system

elimination. Thus no legacy existing problems will occur.

Legacy system maintenance will take the weight 1.As re-

engineering involves adding new SOA functionality to an

existing legacy system as mentioned earlier. This will involve

solving existing problems and finding long term solutions for

them. So in the long term, the cost of solving legacy existing

problems will be lower than wrapping. Thus it will take weight

2.

V. RESULTS AND ANALYSIS

All the factors discussed in section IV were added to each

other and categorized by phase discussed in section III. The

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 03 – Issue 03, May 2014

www.ijcit.com 668

weights of the identified cost factors were summed and grouped

by phase. The total phase weight was divided by the sum of

factors weight of the migration strategy. Phased ratio % is

calculated as in equation (2), by dividing the sum of weight of

factors in the phase by the sum of all weights for the strategy.

Phase Ratio %=sum of the weights of the factors in this

phase/the sum of weight of the strategy (2)

Phase Ratio % is calculated and shown in Table 2 .These

results were summarized in Table 3 and were plotted in Fig 4.

As mentioned before ,each factor takes weight scaled from 1

to 3 .As the total number of factors is 19 , so the max total

weight of each strategy = 19* 3 = 57 .From Table 2 we can find

that wrapping has the least overall cost and replacement has the

highest cost. As wrapping overall weight is 35 out of 57,

compared to replacement overall weight 37 out of 57.Re-

engineering has intermediate overall cost, weighted 42 out of

57. From Fig 4 , we can notice that all service types are close to

each other in testing phase but vary in both design and planning

& requirements phase. Wrapping effort is mainly concentrated

in design and testing. The design phase of wrapping strategy is

high, as investigation of the legacy system has to be made and

determine which changes have to be made. The testing phase of

wrapping strategy effort is mainly to make sure that the changes

didn’t affect the system. However, it has least development

effort.
TABLE 3 SUMMARIZED PHASED EFFORT RATIO

Re-engineering main effort is concentrated in design phase.

As re-engineering involve adding new functionality to existing

legacy system. Replacement effort is concentrated in planning&

requirements, development and testing. As replacement involve

building new system from scratch.

Generally, phased effort estimation is useful as the proper

cost estimation of one phase will lead to better estimation of the

other phases. For example: as shown in Table 3, wrapping

planning & Req. effort is 17% of the total effort of the project.

So if Planning & Req. phase effort is estimated by 170 PH

(Person-Hour), so the overall effort of the whole project would

be approximately 1000 PH.

Fig 4: Service Migration Effort Phased Ratio Graph

On the other side, traditional SW cost is mainly concentrated

in both development and testing phases. Transition phase has

the least effort as shown in Fig 5 discussed in [36].

TABLE 2 FACTORS WEIGHT DISTRIBUTION AMONG PHASES

Wrapping Reengineering Replacement
Planning & Req
Business agility 1 3 2

Integration with partners' cost 3 1 2

business value 1 2 3

Business risk 1 2 3

Planning & Req total weight 6 8 10

Planning & Req (%) 17% 22% 24%

Design
Need for Original requirments 1 3 1

Obsolete Legacy system technology 3 2 1

Experienced resources needed 1 2 3

Need for Source Code 3 3 1

Design total weight 8 10 6

Design (%) 23% 27% 14%

Development
Flixibility 1 2 3

Code size 1 2 3

Tools Support 3 1 1

Time required for migration 1 2 3

Development weight 6 7 10

Development (%) 17% 19% 24%

Testing
functional Testing 1 2 3

Non-Functional Testing 3 1 1

Integration Testing 3 2 3

Regression Testing 1 2 3

Testing weight 8 7 10

Testing (%) 23% 19% 24%

Transition k

Stable Environment 1 2 3

Maintainability post migration 3 1 2

Solving existing problems in legacy systems (Maintenance) 3 2 1

Transition weight 7 5 6

Transition (%) 20% 14% 14%

Relative Total Cost of Strategy 35 37 42

phase Effort % Wrapping Reengineering Replacement
Planning & Req (%) 17% 22% 24%

Design (%) 23% 27% 14%

Development (%) 17% 19% 24%

Testing (%) 23% 19% 24%

Transition (%) 20% 14% 14%

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 03 – Issue 03, May 2014

www.ijcit.com 669

Fig 5: Phased Effort Ratio for Traditional Software

In a general Comparison between SOA migration and

traditional software projects, SOA has higher efforts in planning

& requirements than traditional approaches .Design phase effort

in traditional approaches is quite near to SOA .A design in new

development in traditional approaches is 14% .On the other

side, wrapping design is 23%, reengineering is 27% and

replacement is 14%.

Development phase effort of new development in traditional

approaches has significant higher effort than SOA. As new

development is 46% ,however wrapping is 17% , reengineering

19% and replacement 24%.Testing phase efforts in traditional

approaches is quite near to SOA .Testing effort in new

development of traditional approach is 18% .Wrapping testing

is 23%, reengineering testing is 19% and replacement testing is

24%.Transition phase effort vary dramatically between SOA

and traditional approaches .Traditional approaches new

development takes 4% ,Wrapping 20%,reengineering 14%and

replacement 14%.

VI. CONCLUSION

In this paper cost factors related to SOA were extracted from

previous literature and distributed among different phases. Each

factor is weighted from cost perspective. Effort ratio for each

phase has been calculated. This approach has been applied to

different migration paths to SOA. The results have been

obtained and analyzed as shown in this paper. Also we

compared service migration to SOA to traditional software

approach. The phased effort distribution gives one possible way

for estimating the overall cost by estimating one phase only.

VII. REFERENCES

[1] C. Abrams,R. Schulte, “Service-Oriented Architecture Overview and

Guide to SOA Research”, Gartner ,2008.

[2] K.Lum ,M.Bramble ,J.Hihn ,J.Hackney ,M.Khorrami ,E.Monson,

“Handbook for Software Cost Estimation”,2003.

[3] Linthicum, D., “How Much Will Your SOA Cost?”, https://soa.sys-

con.com/node/318452, April 2007.

[4] G. Lewis, E.Morris, L .O'Brien, D.Smith, “Service-Oriented Migration

and Reuse Technique (SMART)”,2005.

[5] S. Tilley,”Tradeoffs in Using SOA with Legacy Components”,2009.

[6] G. Lewis ,”SMART: Analyzing the Reuse Potential of Legacy Systems in

Service- Oriented Architecture (SOA) Environments”,2009.

[7] G.Lewis ,E.Morris, D.Smith, S.Simanta, “SMART: Analyzing the Reuse

Potential of Legacy Components in a Service-Oriented Architecture

Environment”,2008.

[8] D.Smith, G.Lewis,”Migrating Legacy Assets to Service Oriented

Architecture (SOA): a DoD Example”,2007.

[9] E.Stehle, B.Piles, J.Max-Sohmer, K.Lynch, “Migration of Legacy

Software to Service Oriented Architecture”,2008.

[10] R.E.Fairley ,Managing and Leading Software Projects,Feb 2008 .

[11] A.Stellman, J.Greene, “Applied Software Project Management”,2005.

[12] L. Santillo, “Seizing and Sizing SOA Application with COSMIC

Function Points,” Proc. the 4th Software Measurement European Forum,

Rome, Italy, May 2007.

[13] G. Pierce, “Cost Aspects of Service-Oriented Architectures”, April,

2009.

[14] Erl, T., “Service-Oriented Architecture – Concepts, Technology, and

Design”, Prentice Hall/PearsonPTR, 2006.

[15] I.Bajwa , Samad, S. Mumtaz, R.Kazmi and A.Choudhary, SOA and

BPM Partnership: A paradigm for Dynamic and Flexible Process and

I.T. Management,2008.

[16] S.T Craggs , SOA IS RUBBISH! ,2007.

[17] C.Steghuis,”Service Granularity in SOA projects : A trade-off

analysis”,2006.

[18] L.O’Brien, ”A Framework for Scope, Cost and Effort Estimation for

Service Oriented Architecture (SOA) Projects”,2009.

[19] Z. Li, “A Qualitative Approach to Effort Judgment for Web Service

Composition based SOA Implementations” ,2011.

[20] L. Zheng, J.Keung, “Software Cost Estimation Framework for Service-

Oriented Architecture Systems using Divide-and-Conquer

Approach”,2012.

[21] Y. L.Oladimeji , “A Framework for Costing Service-Oriented

Architecture (SOA) Projects Using Work Breakdown Structure (WBS)

Approach” ,2011

[22] D.Mukhopadhyay,A. Chougule, “A Survey on Web Service Discovery

Approaches”,2012.

[23] C. Rush,R. Roy, “Expert judgement in cost estimating: Modelling the

reasoning process”,2001.

[24] N.Merlo, “COCOMO(Constructive Cost Model)”,2003.

[25] B.Tansey,E. Stroulia, “Valuating Software Service Development:

Integrating COCOMO II and Real Options Theory” , 2007.

[26] K.Mahmoud, M. Ilahi,B.Ahmed, S.Ahmed, “Empirical Analysis of

Function Points in Service Oriented Architecture (SOA)

Applications”,2012.

[27] S.Malathi, Dr.S.Sridhar, “Analysis Of Size Metrics And Effort

Performance Criterion In Software Cost Estimation”, 2012.

[28] A. Erradi,S. Anand,N. Kulkarni, “Evaluation of Strategies for

Integrating Legacy Applications as Services in a Service Oriented

Architecture”,2006.

[29] r.Khadka, a.m.Saeidi, s.Jansen, j.Hage, “A Structured Legacy to SOA

Migration Process and its Evaluation in Practice”,2013.

[30] The Software Development Life Cycle (SDLC), Document ID: REF-0-

02.

[31] A. Seth,H.Agarwal,A. Singla, “Techniques for Evaluating Service

Oriented Systems: A Comparative Study”,2014.

[32] G. Canfora,M.Penta,”Testing Services and Service-Centric

Systems:Challenges and Opportunities”,2006.

[33] Mahmood.K , Ilahi.M, Ahmad .S, Ahmad.B ,”Integration Efforts

Estimation in Service Oriented Architecture (SOA) Applications” ,

2011.

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 03 – Issue 03, May 2014

www.ijcit.com 670

[34] G. Canfora and M. Di. Penta, “Testing services and service-centric

systems: Challenges and opportunities,” IEEE Computer Society,

2006.

[35] integration testing, Wikipedia [online], Available

at:http://en.wikipedia.org/wiki/Integration_testing [Accessed 12th May

2014].

[36] Y. Yang,M.He,M. Li,Q. Wang,B. Boehm, “Phase Distribution of

Software Development Effort”,2008.

[37] A. Almonaies, J.Cordy,. Dean ,”Legacy System Evolution towards

Service-Oriented Architecture”,2010.

[38] D. Krafzig, K. Banke, and D. Slama, “Enterprise SOA:

ServiceOriented Architecture Best Practices”, Upper Saddle River:

Prentice Hall PTR, Nov. 2004.

http://en.wikipedia.org/wiki/Integration_testing

