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Abstract— This paper proposes an algorithm for detection in 

multiple input multiple output (MIMO) communication systems. 

The algorithm combines minimum mean square error (MMSE) 

and minimum mean square error with ordered successive 

interference cancellation (MMSE-OSIC) detectors with detection 

error estimation. Neyman-Pearson criterion is used and the 

decision boundary is derived. It helps the implementation of the 

proposed algorithm in practical systems and the achieving the 

balance between the computational complexity and the bit error 

rate performance for different signal-to-noise ratios. The derived 

adaptive detection boundary can be applied in various other 

combined detector schemes. The analytical and simulation results 

show that the average computational complexity of the proposed 

algorithm approaches to the MMSE equalizer, and the error 

probability is comparable with the conventional MMSE-OSIC 

detector.  
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I.  INTRODUCTION 

There exist multiple publications and practical applications 

of different algorithms for MIMO forming and detection. All 

of them count on for two major characteristics: computational 

complexity and bit error rate (BER) performance. The 

algorithms using detection with minimum mean square error 

(MMSE) or ordered successive interference cancellation 

(OSIC), have а reduced computational complexity and worse 

noise immunity compared to the optimal maximum likelihood 

(ML) detector [1-4]. Due to the matrix orthogonalization of 

the MIMO channel, the set of algorithms with lattice-reduction 

(LR) [5,6,8] and subsequent suboptimal detection tends to the 

error performance of ML detector. There exist techniques that 

use combination of linear equalization and subsequent 

detection with ML detector [7]. 

In this work the idea from [7] is elaborated and a 

modification of the MMSE-OSIC detector in order to reduce 

the average computational complexity and remaining the noise 

immunity according to the original case is proposed. Here is 

applied Neyman-Pearson criterion for detection error 

estimation and the derived adaptive detection boundary helps 

achieving a balance between the computational complexity 

and error probability for different signal-to-noise ratios (SNR). 

The derived adaptive detection boundary and the rule for 

detection error estimation can be applied in various combined 

detector schemes. In this work a new combined method is 

investigated to prove analytical results. The method combines 

MMSE and MMSE-OSIC algorithms using an estimation of 

the detection error.  

The performance of the conventional MIMO detectors with 

MMSE, MMSE-OSIC, ML processing and the proposed 

modified method CMMSE-OSIC is investigated and 

compared each other. The relative number of calculations by 

the second detector is much smaller than that obtained in [7], 

because the derived dependencies allow for adaptively 

changing the decision boundary  

 Notation: The operator []T denotes matrix transpose, 

and []H- Hermitian transpose. |x| is absolute value or a module 

of a complex scalar number, ||x|| denotes Euclidian norm of a 

vector x,  INt is unity matrix with size Nt  Nt. N(n, σn
2) is 

Gaussian distribution with mean value n and variance σ2
n. 

II. SYSTEM MODEL 

Mathematical description of the MIMO system in base 

band versus the received vector r, is given by the matrix 

equation: 

 r = Hs +n  

The input data of the transmitter is demultiplexed in Nt 

layers, where they are modulated with M-QAM modulation 

and transmitted in parallel in Nt channels, which can be space, 

time or frequency diverted. Each symbol sm of the input 

column vector s is presented in the baseband. sm  A and A is a 

finite set, consisting of the complex elements of the 

constellation of the M-QAM modulated signal. The average 

power of the modulated signals in each channel is normalized 

and E{s s
H}= INt. 

The receiver has Nr parallel input channels, which are 

affected by additive white Gaussian noise (AWGN) nk. A noise 

vector n is defined as complex elements with Gaussian 

distribution with zero mean value and variance σ2
n, 

E{nn
T}= σ2

n.INr. The elements hk,m of matrix H with size 

Nt  Nr are with random complex values and model the 

transmission coefficient between the m-th layer of transmitter 

and k-th receiver. Their statistical properties depend on the type 

of the fading in the channel. The transmission coefficients are 
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prior known in the receiver and they are independent complex 

random values with normalized variance equal to unity. The 

fading type is flat slow Rayleigh fading. The channel is 

invariant, when a single block s is transmitted. The real and 

imaginary parts of hk,m are Gaussian distributed - 
. .

,
k m k mR Ih h  

N(0,0.5). 

III. PROPOSED ALGORITHM 

The algorithm can be described in the following way: 

1. The received signal r is detected with MMSE detector 

and MMSEs


is the detected vector; 

2. Calculate the estimation of the detection error in a 

decision taken based on the metric criterion for ML:  


2 22 2/ ( ) /MMSE n MMSE n     = r H s H s s n

 
 

3. Detection of the error. If the assessment in not bigger 

than predefined limit Lε (ε < Lε), the processing is 

stopped and the output result is MMSEs


;  

4. If ε  Lε, additional detection with MMSE-OSIC is 

applied. It has higher computational complexity and 

higher noise immunity. 

The assessment ε is the normalized Euclidian distance in 

the space of the received signal vectors and it is used in [7] in 

order to define the “reliability judge rule”. 

IV. STATISTICAL PROPERTIES OF THE DETECTION ERROR 

ESTIMATION 

After detection with MMSE the number of error symbols is 

Nе. The estimation ε can be defined by (1) and (2) with: 



2

2

,2
1 1 1

1
.

er rNN N

k m m k k

k m kn

h s n 
   

   =  

In baseband, the difference between the transmitted and the 

received vector from the m-th layer is sm and hk,m, nk are 

complex values. Consequently: 

    
2 2

1 1

Re Im
r rN N

k k

k k

  
 

 =  

  
, ,

1 1

Re /
e e

k m m k m m k

N N

k R R I I R n

m m

h s h s n 
 

 
     
 
  

  
, ,

1 1

Im /
e e

k m m k m m k

N N

k R I I R I n

m m

h s h s n 
 

 
     
 
  

kRn  and 
kIn  are the components of the complex AWGN or 

,
k kR In n 

2(0, / 2)nN  . 

The worst case, in which the decision was taken with ε is 

the vector in which the error between the transmitted and the 

received vector sm has the smallest possible amplitude dmin for 

all transmitting channels. The simplification is caused by the 

fact that the most likely errors are between adjacent vectors. If 

it is used M-QAM and the error is only between two adjacent 

characters of the vector constellation, sm is either pure real or 

pure imaginary value, equal to dmin. Therefore, Re{εk} or 

Im{εk} are random values with a Gaussian distribution with 

zero mean value and variance:  

 2 2 2

min0.5 / 0.5x e nN d  =  

Representing dmin in M array QAM constellation diagram with 

the signal-to-noise ratio SNR = Ps / Pn=Es / No, the variance is: 

 2 3 / [2( 1)] 0.5x eN SNR M  =  

where Ps and Es are the average power and energy of the 

modulated signal, and Pn and No are the power and the noise 

power spectral density. 

It is clear that the random variable ε’=ε/ σ2
x has chi-squared 

distribution with 2Nr degrees of freedom. Because of σ2
x >0 

and σ2
x is independent of Nr, then ε = ε’ σ2

x is approximated 

with Gamma distribution with shape parameter Nr and scale 

2σ2
x:  

 1 22

2
( ; ,2 ) exp / 2 ( )

2
r r rN N N

r x x r

x

f N N


   



  

      
   

= 

Here Γ( ) is the gamma function. When Ne = 0 and σ2
x= 0.5: 

 
 

1

( ; ,1)
exp ( )

rN

r

r

f N
N









=  

V. DETECTION ERROR AND DECISION BOUNDARY 

Let there are two random events: m0 is the event in which 

there is no error after detection of the MMSE detector, and m1 

is the event when present at least one error, and in that case 

must apply detection with higher accuracy. In order to simplify 

the problem it is assumed that a priori probabilities for these 

random events are unknown. The Neyman-Pearson criterion is 

suitable for the detection error and taking a decision for the 

next detection. The decision for the event m1 is based on the 

inequality of likelihood: 

 2

1 0( ; ,2 | ) ( ; ,1| )r x rf N m f N m     

The inequality (9) has an analytical solution and allows 

defining the decision boundary for a given threshold η and 

SNR: 



( , , )

1
1 ln 1 3

3 1

R

e

N

e

e

L N SNR

M SNR
N

N SNR M

 



 

    
      

     

 

The event “false alarm” is associated with the case, when there 

are no errors after detection from the first algorithm, but the 
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decision from (10) is false - the detection is done by the second 

algorithm. The probability for false alarm is: 


0 0( | ) ( ; ,1| )FA r

L

p L m f N m d



  


    

The correct decision is the event, where the estimation 

shows that there is a detection error from the first algorithm 

and it is taken the right decision for subsequent detection with 

the second algorithm. Probability of correct decision is 

determined by: 

 2

1 1( | ) ( ; ,2 | )D r x

L

p L m f N m d



   


    

The relation between pD and pFA is with ε and describes the 

response of the detector error. Such a response is shown on 

Fig.1 in the case Lε is obtained for Nе=1, QPSK and MIMO 

Nt = Nr = 4. As the probability pFA is smaller, the less will be 

applied the second detection algorithm and the average 

computational complexity of the combined detection will be 

close to that of the first algorithm. From Fig. 1, it is seen that in 

this case it reduces the probability of a correct decision pD, 

which means that it will reduce the accuracy of the detection of 

the combined algorithm. For large signal-to-noise ratios 

detection error accuracy is high and the average computational 

complexity of the combined algorithm is close to that of the 

first detector. 

Based on (10), (11) and (12), it can be determined the 

detector responses for different M-array modulation schematics 

and different number of channels in the transmitter and 

receiver. The threshold η is chosen by the detector response 

(Fig. 1), making a tradeoff between computational complexity 

and accuracy of detection algorithm. 

The decision boundary Lε is calculated by (10) and it 

appears that it changes with the change in SNR. SNR is known 

at the receiver and it is necessary to implement the MMSE 

filtering. It is recommended the parameter Ne is Ne = 1, 

otherwise the probability of correct detection of a single error 

will be small. 
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Figure 1.  Error detector response 

VI. COMPLEXITY AND PERFORMANCE EVOLUTION 

The characteristics of the proposed algorithm are studied 
using a programming model in baseband in perfect 
synchronization between the transmitter and receiver. The 
parameters of the communication channel are the same as 
described in Section II. Fig. 2 shows the results of the BER 
performance depending on the ratio of the energy for 
transmission of one bit to the noise energy Eb/No. 
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Figure 2.  BER performance comparisons of the proposed CMMSE-OSIC 

detector with the classical MMSE, MMSE-OSIC and ML detectors when 

decision threshold η = 1,10,100,1000. 

It can be compared the characteristics of conventional ML, 
MMSE, MMSE-OSIC detectors with the proposed CMMSE-
OSIC method for a different decision threshold 
η = 1,10,100,1000. The characteristics at different parameter η 
can be evaluated with the same figure in the zoomed window. 
Fig. 3 shows graphs of the change in the relative number of 
references to the second detector MMSE-OSIC to as a function 
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of signal to noise ratio. The results for both figures refer to the 
QPSK modulation and the number of MIMO channels Nt = 4 
and Nr = 4. 

The results in Fig. 2 show that for the threshold η = 1, the 
noise immunity of the proposed method almost coincides with 
that of the secondary detector with higher computational 
complexity MMSE-OSIC. For all decision thresholds, it is 
observed that at low signal to noise ratio, the noise immunity 
tends to primary detector MMSE. The trend increases with 
increasing the decision threshold, but at the expense of 
reducing the average computational complexity, which is 
evident from Fig. 3. 
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Figure 3.  Relative number MMSE-OSIC calls versus Eb/No. 

For large SNR and for all tested thresholds, the differences 

between noise immunity of the proposed method and 

conventional MMSE-OSIC detector are negligible.  The loss 

of BER performance at Eb/No = 12dB has a maximum at 

η = 1000 and it is equal to 1.2dB. 

The average computational complexity can be estimated by 

the results shown on Fig. 3. The relative number nOSIC is a 

statistical evaluation and it is defined as the ratio of the 

number of requests to the secondary MMSE-OSIC detector to 

the total number of combined detector. If OMMSE is the 

computational complexity of the first detector and OMMSE-OSIC 

is the second, the computational complexity of the combined 

algorithm is OC: 

 ( )C MMSE OSIC MMSE OSIC MMSEO O n O O    

From (13) and from the presented figures it can be seen that 

the average computational complexity of the combined 

process is much smaller than that of the conventional MMSE-

OSIC, while at high SNR it is close to that of the primary 

coarse MMSE detector. The noise immunity is comparable to 

that of the secondary more accurate MMSE-OSIC detector. It 

should be noted that the actual computational complexity of 

the combined method is smaller than that of (13), because the 

MMSE-OSIC detector uses a filter matrix that has already 

been determined by the first detector. This is the reason to 

propose a combination of these two detection methods. The 

relative number nOSIC requests to the second detector are much 

smaller than that obtained in [7], because the derived 

inequality (10) allows adaptive change the decision boundary. 

The results validate the analytical formulas in Section V from 

the detection characteristic in Fig.1. The choice of the decision 

boundary controls not only the probability of false alarm and 

correct solution, but the computational complexity and noise 

immunity.  

VII. CONCLUSION 

This paper proposes a new detector in MIMO systems, 

which is a combination of MMSE and MMSE-OSIC 

algorithms through an estimation of the detection error. The 

obtained dependencies and the results allow, in practical 

applications, a compromise to determine the decision 

boundary, and to obtain the average computational 

complexity, which is close to that of the MMSE equalizer and 

noise immunity is comparable to the conventional MMSE-

OSIC detector. The adaptive change of the derived decision 

boundary depends on SNR and allows minimizing the average 

computational complexity for satisfactory BER performance 

and can be applied in various other combined detector 

schemes.   
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