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Abstract— We consider a class of linear singular 

perturbation ODE-BVP associated with, the common 

Dirichlet boundary condition, as one of the most 

comprehensive and difficult boundary conditions which 

with boundary layers at end points or interior layer. A 

new improvement of general form of Shishkin piecewise 

uniform fitted mesh technique applied, of adjustable 

width. Taking into consideration the locating process to 

find, the true locations of the fine subintervals in which 

corresponding to singular boundary layers (viscous 

parts) or interior layers, occur in their solutions using 

some well known easy analytical and/or applied 

techniques, then the fine subinterval also divided to two 

other a little bit different distance subintervals because 

of  the different rate of convection and diffusion 

phenomenon in the solutions, as alternative of the well 

known uniform or equidistant mesh for backward finite 

difference method, to introduce what a known by a fitted 

mesh.  So 9 standard problems solved and then 

compared with versus numerical solution of uniform 

mesh and Shishkin mesh inside backward finite 

difference method for different choices of 𝜺  and N . In 

addition to presenting illustrative Matlab plots of most 

of the mesh constructions, the solutions and the epsilon 

convergence for each case separately in order to show 

the verification of progress and efficiency of the new 

method relative to both methods. 

Keywords- Singularly perturbed problems, Mesh 

generation and refinement, Finite differences method 

 

I. INTRODUCTION 

A singularly perturbed differential equation (SPDE) 

problem is a differential equation problem with a small 

parameter 𝜀 multiplying some or all of the terms involving 

the highest order derivatives. The physical properties 

associated with a solution containing a boundary layer 

function are reflected by the mathematical properties of the 

solution of (SPDE), as 

−𝜀𝑢′′ 𝑥 + 𝑏 𝑥 𝑢′ 𝑥 + 𝑐 𝑥 𝑢 𝑥 = 𝑓 𝑥                 (1𝑎)     

for 𝑥 ∈  0,1 , 𝑢 0 = 𝑢 1 = 0, 0 < 𝜀 ≪ 1.   (1𝑏) 

 When 𝑐 = 0 this is known as a convection-diffusion 

problem, whereas if 𝑏 = 0 and 𝑐 ≠ 0, it is of reaction-

diffusion type.  

Solution  𝑢(𝑥, 𝜀) of (1) and its derivatives approach a 

discontinuous limit as 𝜀 approches zero. These problems are 

characterized by the property that the solution has different 

asymptotic expansions in distinguished sub domains of the 

entire given domain. They present layers where the solution 

changes abruptly. We consider the convection-diffusion 

equation through imagine a river flowing, strongly and 

smoothly, and some ink pours into the water at a certain 

point will lead to two physical processes operate: 

 1) Convection alone would carry the ink along a one-

dimensional curve on the surface. If the flow is fast, this is 

the dominant mechanism. 

 2) The ink diffuses slowly through the water, it makes 

curve spread out gradually. 

Classical convergence theory for finite-difference method, 

which is method involving difference quotient 

approximations for derivatives can be used for solving 

certain second-order boundary value problems, is based on 

the complementary concepts of consistency and stability 

consistency+stability⇒convergence. 

But for singularly perturbed problems, if any discretization 

technique is applied, need to analyze carefully the 

dependence on the parameter 𝜀 of those constants that arise 

in consistency, stability and error estimates. Truncation 

error may depend on 𝜀. The most common anomalous 

behavior that appears when finite-difference schemes are 

used is forward or backward difference operator on uniform 



International Journal of Computer and Information Technology (ISSN: 2279 – 0764)  

Volume 04 – Issue 03, May 2015  

 

www.ijcit.com                                                                                                                                                                                                       600 

 

meshes does not necessarily give satisfactory numerical 

solutions. Usually the pointwise error of such solutions 

increases as the mesh is refined, to a stage where the mesh 

parameter (h) is of the same order of magnitude as the 

singular perturbation parameter 𝜺. One obvious 

requirement for a numerical method being applied to these 

kinds of problems is that the pointwise errors of its solutions 

be bounded independently of  𝜀 and that they decrease as the 

mesh is redefined, at the rate which should also be 

independent of 𝜀. Such requirements are not special, and for 

problem (1) we know some results about the analytical 

behaviour of the solution, that justify such requirements. 

The maximum principle provides a simple proof of the 

stability inequality, showing that the solution is bounded 

 𝑢 ∞ ≤ 𝐶 𝑓 ∞, 
C independent of  𝜀, with problem (1) satisfying 𝑏(𝑥) ≥
𝑏0 > 0. 
Also the maximum principle with some techniques helps us 

to prove that 𝑢(𝑥; 𝜀), solution of (1), satisfies. Considering 

finite difference methods, two approaches have been taken, 

in order to construct ε-uniform numerical schemes; the first 

is fitted operators approach which is not our field of study in 

this paper and the second is fitted meshes approach by 

adapting meshes to the nature of the differential operator, 

Where the meshes are taken such that are not uniform with 

highly non equidistant grids or logarithmic grids as that of 

Bakhvalov and the convergence analysis for these schemes 

is, not well clarified, at the moment. 

 [1] ,[2] ,[3] ,[4] ,[5] ,[6] 

II. USAGE AREAS 
The study of singular perturbation problems is 

exceptionally useful because they describe the physics 

of many things of academic, in fluid flows like 

pollution, convective heat or mass transport problems 

and economic interest. They may be used to model the 

weather, ocean currents, water flow in a pipe, the air’s 

flow around a wing, and motion of stars inside a galaxy. 

Equations are ubiquitous in mathematical problems in 

science and engineering. Examples include the Navier–

Stokes equations of fluid flow at high Reynolds 

number, the equations governing flow in a porous 

medium, the drift–diffusion equations of semiconductor 

device physics, fluid mechanics, elasticity, quantum 

mechanics, plasticity, oceanography, meteorology, 

reaction–diffusion processes, and mathematical models 

of liquid materials and chemical reactions. [7], [8] [9] 

  
III. GOAL OF MESH REFINMENT 

For stiff problems, the goal of most of strategies as well as 

our own is the same: the construction of a mesh on which 

all features of the solution are locally smooth. [7] 

IV. SURVEY OF PREVIOUS STUDIES 

The fundamental paper by Courant, Friedrichs and Lewy 

(1928) was on the solutions of the problems of mathematical 

physics by means of finite differences. A finite difference 

approximation was first defined for the wave equation and 

the Courant–Friedrichs–Lewy condition (CFL condition) 

was shown to be necessary for convergence. Error bounds 

for difference approximations of elliptic problems were first 

derived by Gerschgorin (1930) whose work was based on a 

discrete analogue of the maximum principle for Laplace’s 

equation. This approach was pursued through the 1960s and 

various approximations of elliptic equations and associated 

boundary conditions were analyzed. Independently of the 

engineering applications, a number of papers appeared in 

the mathematical literature in the mid-1960s which were 

concerned with the construction and analysis of finite 

difference schemes by the Rayleigh-Ritz procedure with 

piecewise linear approximating functions. The history of 

numerical methods for convection-diffusion problems 

begins about 30 years ago, in 1969. In this year, two 

significant Russian papers by A.M. Il’in and A.S. 

Bakhvalov analyzed new numerical methods for convection-

diffusion ODEs. Bakhvalov considered an upwind 

difference scheme on a layer-adapted graded mesh. Such 

meshes are based on a logarithmic scale. In 1990 the 

Russian mathematician Grisha Shishkin showed that instead 

one could use a simpler piecewise uniform mesh. This idea 

has been propagated throughout the 1990s by a group of 

Irish mathematicians: Miller, O’Riordan, Hegarty and 

Farrell. Late 20th-century mathematicians who have worked 

on numerical methods for convection-diffusion problems 

include Goering, Tobiska, Roos, Lube, Felgenhauer, John, 

Matthies, Risch and Schieweck [10]. With the advance of 

unprecedented computing power, there has been a flow of 

literatures on numerical solutions from the nineteen eighties. 

Miller, O’Riordan and Shishkin constructed the Shishkin-

type mesh to gain the independence of error estimation with 

respect to the singular perturbation parameter.  Schultz and 

his students [11], successfully developed the stabilized high 

order finite difference methods. Lin, Schultz and Zhang 

developed boundary layer detection theory from improved a 

priori bounds for quasilinear singular perturbation problems. 

Zhang, Schultz and Lin developed sharp a priori bounds for 

semi-linear singular perturbation problems including ones 

with multiple boundary layers. [7], [8], [9] 

V. A FIRST ORDER FINITE DIFFERENCE METHOD 

The finite difference techniques are based upon the 

approximations that allow to replace the differential 

equations by finite difference equations. These finite 

difference approximations are in algebraic form, and the 

unknowns solutions are related to grid points. Thus, the 

finite difference solution basically involves three steps: 

1. We define the sequence of the meshes on the solution 

domain [a, b]=[0,1]. 

2. We approximate the given differential equation by the 

system of difference equations that relates the solutions to 

grid points. 

3. We solve the above algebraic system of the equations. 

Let 
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 Ω u
N =  xi = a + ih, i = 0, … , N, h =

b−a

N
  

be an equidistant mesh, where N ∈ R, h is the step-size of 

mesh. If we use  the forward-difference formula  xi
′ =

xi+1−xi

h
  or the backward-difference formula xi

′ =
xi−xi−1

h
  

with xi
′′ =

xi+1−2xi +xi−1

h2   in equations (1) we will get the first 

order finite difference method however ε = 1.[12] 

VI. THE PROBLEM (Uniform meshes inappropriateness 

for upwind operator)  

Let take for simplicity linear convection-diffusion in one 

dimension with Dirichlet boundary conditions: 

𝐿𝜀𝑢𝜀 = 𝜀𝑢𝜀
" + 𝑏 𝑥 𝑢𝜀

′ = 𝑓 𝑥 , 𝑥 ∈ Ω                   (2a) 

𝑢𝜀 0 = 𝐴, 𝑢𝜀 1 = 𝐵,           (2𝑏) 

Where  

𝑏,𝑓 ∈ 𝐶2 Ω , b x ≥ β > 0, 𝑥 ∈ Ω .  Where the Ω 𝑢
𝑁 is the 

uniform mesh on the interval [a, b]=[0,1] impose a uniform 

mesh  𝑥𝑖 = 𝑎 + 𝑖𝑕, 𝑖 = 0, 1, … , 𝑛 + 1, 
The parameter h is called the mesh-size, and the points 𝑥𝑖  

are the mesh points.  Ω 𝑢
𝑁 =  𝑥𝑖 =

𝑖

𝑁
, 𝑖 = 0, … , 𝑁  

The backward-difference formula is the following: 

Theorem: Let 𝐿𝜀  be the differential operator in (2a) and 

𝑣 ∈ Ω .  If 𝑣 0 ≥ 0, 𝑣 1 ≥ 0 𝑎𝑛𝑑 𝐿𝜀𝑣 𝑥 ≤ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈
Ω, 𝑡𝑕𝑒𝑛 𝑣 𝑥 ≥ 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ Ω . 

Proof: found out in p.14 of the reference [6] 

We see that the exact solution 𝑢𝜀(𝑥) of (2a-b) for 𝑥 ≠ 0, in 

general 𝑣0 0 ≠ 𝑢𝜀 0 , 𝑓𝑜𝑟 𝜀 > 0 and so boundary layer 

occurs at the boundary point 𝑥 = 0, and 𝑢𝜀  and its 

derivatives, for all integers 𝑘 ≥ 0, satisfy the bounds  

 𝑢𝜀
 𝑘 (𝑥) ≤ 𝐶 1 + 𝜀−𝑘𝑒−𝛽𝑥 𝜀  ,𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ Ω .       (3) 

Where C is constant independent of 𝜀. It follows that, 

outside the small open neighborhood (0, 𝑘𝛽−1𝜀 ln 1 𝜀  ) of 

the boundary point 𝑥 = 0, in other words outside the 

boundary layer, the solution and its derivatives are 𝜀-

uniformly bounded in the sense that, for all k, 

sup
𝑥≥𝛽−1𝜀ln⁡(1 𝜀 )

 𝑢𝜀
 𝑘 (𝑥) ≤ 𝐶,                    (4) 

Where C is independent of 𝜀, and  

𝜀−𝑘𝑒−𝛽𝑥 𝜀 ≤ 𝜀−𝑘𝑒−ln⁡(1 𝜀 )𝑘 = 1     (5) 

On other hand, for 𝑥 ≤ 𝜀, the derivative grow without as the 

parameter  𝜀 tends to zero. At 𝑥 = 0 it self we see that  

 𝑢𝜀
 𝑘 (0+) ≤ 𝐶𝜀−𝑘  

Upwind finite difference operator on uniform mesh for 

problem (2): 

𝐿𝜀
𝑁𝑈𝜖 = 𝜀𝛿2𝑈𝜖 + 𝑏 𝑥 𝐷+𝑈𝜖 = 𝑓 𝑥𝑖 , 𝑥𝑖 ∈ Ω𝑢

𝑁 ,
  6𝑎  

𝑈𝜀 0 = 𝑢𝜀 0 , 𝑈𝜀 1 = 𝑢𝜀 1 ,                             ( 6𝑏)  
Where the Ω 𝑢

𝑁 is the uniform mesh   

Ω 𝑢
𝑁 =  𝑥𝑖 =

𝑖

𝑁
, 𝑖 = 0, … , 𝑁                                    ( 6𝑐) 

The non-zero entries of the system matrix 𝐴𝑁 associated 

with this finite difference method are  

𝑎𝑖 ,𝑖−1 =
𝜀

𝑕2
, 𝑎𝑖 ,𝑖 =

𝜀

𝑕2
 2 + 𝜌𝑖 ,  𝑎𝑖 ,𝑖+1 =

𝜀

𝑕2
 1 + 𝜌𝑖 ,  

Where 𝜌𝑖 = 𝑎𝑥𝑖𝑕 𝜀 , here 𝐴𝑁 is irreducibly diagonally 

dominant and also that, irrespective of the value of 𝜀, the 

sign pattern of typical row of this tridiagonal matrix is (+,-

,+). This shows that −𝐴𝑁 is an M-matrix, and so the finite 

difference operator 𝐿𝜀
𝑁 in (6a) satisfies a discrete minimum 

principle. Also the discrete minimum principle established 

directly without system matrix through proving the theorem 

below by contradiction. 

Definition: The finite difference method with the associated 

system matrix AN is monotone if either AN or - AN is a 

monotone matrix. 

Definition: The finite difference 𝐿𝑁  𝑉 = 𝐴𝑁𝑉 = 𝑓 satisfies 

discrete minimum principle, if, for any mesh function V, the 

inequalities  

𝑚𝑖𝑛 𝑉 𝑥0 ,𝑉 𝑥𝑁  ≥ 0 and 𝐿𝑁  𝑉(𝑥𝑖) ≤ 0  for all 𝑥𝑖 ∈ Ω𝑁 , 
imply that  

𝑉 𝑥𝑖 ≥ 0 for all 𝑥𝑖 ∈ Ω 
𝑁

, 
Theorem: The upwind finite difference operator 𝐿𝜀

𝑁 in (3a) 

satisfies the discrete minimum principle. 

Proof: found out in the p.23 of reference [6]. 

   If we use the method (2) to solve the specific problem     

𝜀𝑢𝜀
′′ + 2𝑢𝜀

′ = 0, 𝑥 ∈ Ω, 𝑢𝜀 0 = 0, 𝑢𝜀 1 = 0          (7𝑎) 

with the exact solution: 

𝑢𝜀 𝑥 =
𝑒−2𝑥/𝜀 − 𝑒−2/𝜀

1 − 𝑒−2/𝜀
                    ( 7𝑏) 

Then  

𝑈𝜀 𝑥𝑖 =
𝜆𝑖 − 𝜆𝑁

1 − 𝜆𝑁
, where 𝜆 =

1

1 + 2/𝜀𝑁
. 

It is clear that 0 < 𝜆 < 1, and that 𝑈𝜀 𝑥𝑖  is monotone 

decreasing with increasing 𝑥𝑖 , which implies that no 

oscillations occur. However, despite of absence of 

numerical oscillations, this method is not satisfactory in the 

sense that it is not an 𝜀-uniform method. To see this we 

consider the error at the first mesh point 𝑥1 = 1/𝑁. This is 

given by 

𝑈𝜀 𝑥1 − 𝑢𝜀 𝑥1 =
𝜆 − 𝜆𝑁

1 − 𝜆𝑁
−

𝑟 − 𝑟𝑁

1 − 𝑟𝑁
, 𝑤𝑕𝑒𝑟𝑒 𝑟 = 𝑒−2/𝜀𝑁  

Taking 𝜀𝑁 = 1 and letting 𝑁 → ∞, we see that this error 

tends to non-zero quantity 1 3 − 𝑒−2 = 0.197998, which 

proves that method (2) is not an 𝜀-uniform for problem (3) 

and that the maximum pointwise error is about 20% no 

matter how large N is.[6] 

VII. CONVERGENCE OF UNIFORM MESH 

BACKWARD FINITE DIFFERENCE METHOD 
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With regard to norm which is used in these types of 

problems like equation (1), the reference [6], resolved by the 

favor of the use of any Norm, doesn't involve averaging 

namely maximum norm, which is defined by  
 𝑢 ∞ = max

𝑥∈[0,1]
 𝑢 𝑥  .               ( 8) 

In this norm we see that differences between distinct 

functions are detected, irrespective of how small 𝜀 is, which 

means that the maximum norm is an appropriate norm for 

the study of boundary layer phenomena. The forward or 

backward difference formula has an error of the order O(h). 

But if a finite difference technique applied for singularly 

perturbed problems like (1) the order of convergence differ 

to the normal cases of linear boundary value problem 

without the parameter 𝜀. [13 INT]  

A finite difference method is a discretization of the 

differential equation using the grid points xi, where the 

unknowns ui (for i=0, …, N) are approximations of the 

values u(xi).  

Classical convergence theory for finite difference methods 

is based on complementary concepts of consistency and 

stability first formally we write (1) as: 

𝐿𝑕𝑢𝑕 = 𝑓𝑕 ,                        9  
Where  𝐿𝑕  is a matrix, 

𝑢𝑕 = (𝑢𝑕 𝑥0 ,𝑢𝑕 𝑥1 ,… , 𝑢𝑕 𝑥𝑁 )𝑇 = (𝑢0,𝑢1,… , 𝑢𝑁)𝑇 , 
And 𝑓𝑕 = (𝑓 𝑥0 ,𝑓 𝑥1 , … , 𝑓 𝑥𝑁 )𝑇 . Functions defined on 

the grid, such as 𝑢𝑕 ,𝑓𝑕 , are called grid functions. The 

restriction of a function 𝑣 ∈ (0, 1) to a grid function is 

denoted by 𝑅𝑕𝑣, 𝑣𝑖𝑧 𝑅𝑕𝑣 = (𝑣 𝑥0 , 𝑣 𝑥1 , … , 𝑣 𝑥𝑁 ). We 

some time omit 𝑅𝑕  when the meaning is clear. The discrete 

maximum norm on the space of grid functions is   
 𝑣𝑕 ∞,𝑑 = max

𝑖
 𝑣𝑕 𝑥𝑖              ( 10) 

Under the assumption 𝑢 ∈ C4[0,1] , the central difference 

scheme (9) is consistent of order two, also a discrete 

problem 𝐿𝑕𝑢𝑕 = 𝑓𝑕 , is stable in the discrete maximum 

norm, if there exist a constant K (the stability constant) that 

is independent of h, such that 
 𝑢𝑕 ∞,𝑑 ≤ 𝐾 𝐿𝑕𝑢𝑕 ∞,𝑑           11   

for all mesh functions 𝑢𝑕 . The main result of classical 

convergence theory for finite difference method is: 

Consistency+stability ⇒ convergence. For all sufficiently 

small h, the backward difference scheme for the boundary 

value problem (1) is stable in the discrete maximum norm. 

One can clearly combine consistency and stability to obtain 

a first-order convergence result. [6], [3] 

VIII. CONVERGENCE OF PIECEWICE UNIFORM 

MESH BACKWARD FINITE DIFFERENCE 

METHOD 
 Consider a family of mathematical problems parameterized 

by a singular perturbation parameter ε, where ε lies in the 

semi-open interval 0< ε≤1. Assume that each problem in the 

family has a unique solution denoted by uε, and that each uε 

is approximated by a sequence of numerical solutions 

 𝑈𝜀 , Ω 
𝑁
 
𝑁=1

∞

where Uε is defined on the mesh Ω 
𝑁

 and N is a 

discretization parameter. Then, the numerical solutions Uε 

are said to converge ε-uniformly to the exact solution uε, if 

there exist a positive integer N0, and positive numbers C and 

p, where N0, C and p are all independent of N and ε, such 

that, for all N≥N0, 

sup
0<𝜀≤1

 𝑈𝜀 − 𝑢𝜀 Ω τ
N ≤ 𝐶𝑁−𝑝                     (12) 

or 

sup
0<𝜀≤1

 𝑈𝜀 − 𝑢𝜀 Ω τ
N ≤ 𝐶𝑕𝑝                         (13) 

Here p is called the ε-uniform rate or order of convergence 

and C is called the ε-uniform error constant. Classical finite 

difference methods cannot be expected to be ε-uniform on a 

uniform mesh if a standard upwind finite difference method 

is applied to the linear convection-diffusion problem (Pε) [6] 

We recall a result about the behavior with respect to ε of the 

exact solution of problems class (1) and its derivatives, 

which we will use in the convergence analysis. In [14], [15] 

it was shown that, with smooth enough data, the solution 

of (2) can be written as 𝑢 = 𝑣 + 𝑤, where the regular 

component v and the singular component w satisfy 𝐿𝜀𝑣 =
𝑓, 𝐿𝜀𝑤 = 0, respectively, with appropriate boundary 

conditions such that for 0 ≤ 𝑘 ≤ 𝑙 (l is an integer depending 

on the regularity) it holds equation(2) 

 𝑣𝑘(𝑥) ≤ 𝐶,  𝑤𝑘(𝑥) ≤ 𝐶𝜀−𝑘𝑒−2𝛼(1−𝑥)/𝜀              (14) 

Consider a family of singularly perturbed boundary value 

problems ODE (1) denoted by Pε depending on a small 

parameter ε. Under many conditions, a solution 𝑢𝜀(x) of Pε 

can be constructed by the well-known method of 

perturbation i.e., as a power series in ε with first term u0(x) 

being the solution of the problem as ε=0 i.e., 

−𝑏𝑢′ +  𝑐𝑢 =  𝑓   𝑖𝑛   0, 1 ,   𝑢 0 = 𝛾0,
𝑢 1 =  𝛾1                  (15) 

The main unifying features of problems having two or more 

limit process expansions is that certain terms in the 

governing differential equation will change their orders of 

magnitude depending on the domain in x. Often, the highest 

derivative in the differential equation will be multiplied by 

the small parameter ε, and this term will be small 

everywhere except near special points, e.g., boundary 

points. The difficulty near x= 0 arises from the fact that the 

differential equation with ε→0 is first order, so that the 

initial conditions, cannot both be satisfied. The loss of an 

initial or boundary condition in a problem leads, in general, 

to the occurrence of a boundary layer [16]. Hence when 

such an expansion converges as ε→0 uniformly in x, we 

have a regular perturbation problem. When uε(x) does not 

have a uniform limit in x as ε→0, i.e. [17]                       

lim
𝑥→0

 lim
ε→0

𝑢𝜀 𝑥  = 𝑢0 0 ≠ lim
𝜀→0

 lim
𝑥→0

𝑢ε 𝑥  = 𝛼0   16  

 For error analysis in [18], [19] and [20 INT] a priori 

parameter explicit bounds on the solution of singularly 

perturbed elliptic problems of convection–diffusion type are 

established and parameter-uniform numerical methods for a 

singularly perturbed elliptic problem with parabolic 

boundary layers in the solution are analyzed. We have 

inserted the Shishkin refined strategy blow into a Matlab 

http://www.sciencedirect.com/science/article/pii/S0377042703006538#EQ1
http://www.sciencedirect.com/science/article/pii/S0377042703006538#EQ1
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program of backward finite difference with basically 

uniform mesh, namely in the book [1] based on a class of 

Boundary Value Methods as in equation (1) and on a 

linearization strategy.  

IX. ASSIGNING THE TYPE OF THE LAYER  

Moreover, we shall assume that in [0,1], c(x) and 𝑓(𝑥) are 

continuous and, for simplicity, 𝑏(𝑥) is differentiable. The 

behavior of the solution depends, of course, on the 

properties of the functions 𝑏(𝑥) and 𝑐(𝑥). There exist 

subintervals inside [0, 1] where the solution vary rapidly 

(layers), they may be localized either at the extreme points 

of the interval [0,1] (boundary layers) or near the roots 𝑥𝑖  of 

𝑏(𝑥), which are called turning points (interior layers), and 

the special case of this last (centered layer).  

X. NOTE 

1- If 𝑏 𝑥 = 0, ∀𝑥 ∈ [0, 1] here the problem in equation 

(1) called reaction diffusion, but if 𝑏 𝑥 ≠ 0 𝑜𝑟 ∃𝑥 ∈
 0, 1  𝑠. 𝑡 𝑏 𝑥 = 0,  the problem (1) called convection-

diffusion and the zeros called turning points of the 

problem. 

2- We can verify the existences, types and locations of 

subintervals of [0, 1] where the solution vary rapidly 

(layers), essentially taken from 𝑏 𝑥 , 𝑏  𝑥 and 𝑐(𝑥) 

signs, in class of problems as in equation (1) as in 

follows table: 

Table(1): Existences, types and locations of layers about 

problems as terms of equation (1). 

𝑏 𝑥 ≠ 0; 

0 ≤ 𝑥 ≤ 1 

𝑏 𝑥 < 0, boundary layer at 𝑥
= 0                      

𝑏 𝑥 > 0, boundary layer at 𝑥 = 1 

𝑏 𝑥 = 0; 
𝑐 𝑥 > 0 , boundary layer at 𝑥 = 0 and 𝑥 = 1

𝑐 𝑥 < 0, rapidly oscillatory solution              

 𝑐 𝑥  changes sign,  turning points                   

 

𝑏  𝑥𝑖 ≠ 0,  

𝑏 𝑥𝑖 = 0 

𝑏  𝑥𝑖 > 0 no boundary layers,          
 interior layer at 𝑥𝑖                                

𝑏  𝑥𝑖 < 0 possible boundary layers,
no interior layer at 𝑥𝑖                            

 

 

3- The transformation 𝑥 → 1 − 𝑥 reduces the case 𝑏 < 0 

to 𝑏 > 0. [6],[21],[22]  

 

XI. DESCRIPTION OF THE METHOD 

We now describe the Shishkin mesh for convection-

diffusion problem as in equations (1). Let 

𝑞 ∈  0,1  𝑎𝑛𝑑 𝜍 > 0 be two mesh parameters. We define a 

mesh transition point 𝜆 by 

𝜆 = 𝑚𝑖𝑛  𝑞,
𝜍𝜀

𝛽
𝑙𝑛 𝑁                                (17) 

where 

𝛽 = minbnd
0≤𝑥≤1

𝑏(𝑥) 

Then the intervals [0, 𝜆] 𝑎𝑛𝑑 [𝜆, 1] are divided into 𝑞𝑁 and 

(1 − 𝑞)𝑁 equidistant subintervals (assuming that 𝑞𝑁 is an 

integer). This mesh may be regarded as generated by the 

mesh generating function 

𝜑 𝜉 

=

 
 

 
𝜍𝜀

𝛽
𝜑  𝜉  𝑤𝑖𝑡𝑕  𝜑  𝜉 = ln 𝑁

𝜉

𝑞
for 𝜉 ∈  0, 𝑞 ,

1 −  1 −
𝜍𝜀

𝛽
𝑙𝑛 𝑁  

1 – 𝜉

1 –  𝑞
    for     𝜉 ∈  𝑞, 1 

      (18)    

if q ≥ λ; Again the parameter q is the amount of mesh 

points used to resolve the layer.  The mesh transition point λ 

has been chosen such that the layer term exp(−βx/ε) is 

smaller than N−α on [λ, 1]. Typically σ will be chosen equal 

to the formal order of the method or sufficiently large to 

accommodate the error analysis. [23 INT] The course part of 

this Shishkin mesh has spacing h=(1-q)(1- 𝜆)/N, so   N-1≤h≤ 

qN-1. The fine part has spacing  h = q𝜆/N = 𝑞(
σ

β
)εN−1lnN, 

so h ≪ ε. Thus there is a very abrupt change in mesh size as 

one passes from the coarse part to the fine part. The mesh is 

not locally quasi-equidistant, uniformly in ε. On the mesh 

𝑥𝑖 = 𝑖𝑕 𝑓𝑜𝑟 𝑖 = 0, … , 𝑁/2 and xi = 1 −  N − i h for 

i =
N

2
+ 1, … , N.    

A key property, nonequidistant of the Shishkin mesh, for 

convection diffusion-problems are some time described as 

"layer resolving" meshes. One might infer from this 

terminology that wherever the derivatives of u are large, the 

mesh is chosen so fine that the truncation error of the 

difference scheme is controlled. But the Shishkin mesh does 

not fully resolve the layer: for  

 𝑢′(𝑥) ≈ 𝐶𝜀−1𝑒−𝑏 1 (1−𝑥)/𝜀  

so 

 𝑢′(1 − 𝜆) ≈ 𝐶𝜀−1𝑒−2𝑙𝑛𝑁 = 𝐶𝜀−1𝑁−2 

Which in general is large since typically 𝜀 ≪ 𝑁−1 that is 

 𝑢′(𝑥)  is still large on part of the first coarse-mesh interval 

 𝑥𝑁 2 −1, 𝑥𝑁 2  .[21] 

XII. CONSTRUCTION THE PIECEWICE UNIFORM 

SHISHKIN FITTED MESH [24], [3], [25]  

We will use four construction of Shishkin piecewise 

uniform fitted mesh ,as decoding of the Shishkin function in 

equation (18) , each of, which is a mesh vary depending on 

the location of the singularity, as follows: 19a, 19b, 19c and 

19d , below represents mapping to fix the location of 

boundary and interior layers, puts fine part of the mesh, of 

thickness not exceeding the value of transition point 

indicator  𝜆 as in equation(17), at the  left, the right, the 

center, and both extreme points (left and right) respectively. 

𝑥𝑖 =
𝜆

𝑞𝑁
𝑖, 𝑥𝑗+𝑞𝑁 = 1 − 𝜆 +

(1 − 𝜆)

(1 − 𝑞)𝑁
𝑗, 𝑖 = 0, 1, … , 𝑞𝑁, 𝑗

= 0, 1, … ,  1 − 𝑞 𝑁   (19𝑎) 
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𝑥𝑖 =
 1 − 𝜆 

 1 − 𝑞 𝑁
𝑖, 𝑥𝑗+ 1−𝑞 𝑁

= 1 − 𝜆 +
𝜆

𝑞𝑁
𝑗            (19𝑏)  

𝑖 = 0, 1, … ,  1 − 𝑞 𝑁, 𝑗 = 0, 1, … , 𝑞𝑁 

 

𝑥𝑖 =
 1 − 𝜆 

 1 − 𝑞 𝑁
𝑖, 𝑥

𝑗+
 1−𝑞 

2
𝑁

=
1 − 𝜆

2
+

𝜆

𝑞𝑁
𝑗 , 𝑥

𝑖+
1+𝑞

2
𝑁

=
1 + 𝜆

2
+

𝜆

𝑞𝑁
𝑖           (19𝑐) 

𝑖 = 0, 1, … ,
 1−𝑞 

2
𝑁, 𝑗 = 0, 1, … , 𝑞𝑁

 

𝑥𝑖 =
𝜆

𝑞𝑁
𝑖, 𝑥

𝑗+
𝑞
2
𝑁

=
𝜆

2
+

1 − 𝜆

(1 − 𝑞)𝑁
𝑗 , 𝑥

𝑖+(1−
𝑞
2

)𝑁

= 1 −
𝜆

2
+

𝜆

𝑞𝑁
𝑖           (19𝑑) 

𝑖 = 0, 1, … ,
𝑞

2
𝑁, 𝑗 = 0, 1, … , (1 − 𝑞)𝑁 

 
XIII. THE OUTLINE 

To find the approximation solution to the problem of 

equation (2) with Shishkin fitted Mesh:  

1- Decide on how many mesh points (sub intervals 

multiplicand number N), 

2- Determine the Shishkin transition point indicator λ as in 

equation (17). 

3-  Allocate fine part of Shishkin mesh on the interval 

[0,1], corresponding to singularly boundary layer 

dropping on X-axis, which is easy process by one of 

these options: 
a- Going on the non equality (16) at both extreme 

points. 

b- Going on b x , b  x  and c(x) signs as in the 

equations as in table(1). 

c- Otherwise we can deducing it through applying, 

uniform mesh with the backward finite difference 

method numerical solution, once and observing 

the plot of  the exit solution with the boundary 

conditions to discover lineament of location of  the 

singular (stiff) layers. 

4- The first improvement is by little tuning the value of 𝜍 

in equation (17) until the solution became softer. The 

second improvement let 0 < 𝑣 < 1 be arbitrary real 

number and  [f1,f2] be the fine subinterval with length 

𝐷 = 𝑓2 − 𝑓1: 

 a- For equations 19a, 19b and 19d we divide the fine 

subinterval to two another non equal subintervals as follows: 

 𝑓1,𝑓2 =  𝑓1,𝑓1 + 𝑣𝐷 ∪ [𝑓1 + 𝑣𝐷, 𝑓2] 

Then the fine subinterval itself is divided into fine and 

coarse regions depending on the value of v in the 

arrangement and intensity without a change in the total 

length D since  𝐷 = 𝑣𝐷 + (1 − 𝑣)𝐷, in the case of  if  

𝑣 = 1 then the mesh will return to normal construction of 

the Shishkin mesh.   

b- For equations 19c we divide the fine subinterval let 

denote it by [f1,f2] to three another non equal subintervals as 

follows: 

 𝑓1, 𝑓2 =  𝑓1,𝑓1 +
𝑣

2
𝐷 ∪ [𝑓1 +

𝑣

2
𝐷, 𝑓2 −

𝑣

2
𝐷]

∪  𝑓2 −
𝑣

2
𝐷, 𝑓2  

Then the fine subinterval itself is divided into three (two of 

them same) fine and coarse regions depending on the value 

of v in the arrangement and intensity without a change in the 

total length D since   

𝐷 =
𝑣

2
𝐷 +  1 − 𝑣 𝐷 +

𝑣

2
𝐷,  in the case of  if  𝑣 = 1 then 

the mesh will return to normal construction of the Shishkin 

mesh. 

5- Apply the steps of bacward finite difference method 

to find the approximation solution. 
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XIV. FLOWCHART OF THE NEW METHOD 

 

XV. TEST PROBLEM [26] 

1) −𝜀𝑢′′  𝑥 + 𝑢′ 𝑥 −  1 + 𝜀 𝑢 𝑥 = 0, 𝑢 −1 = 1 +
𝑒−2,𝑢 1 = 1 + e−2(1+𝜀)/𝜀 

𝑢𝐸 𝑥 = 𝑒(𝑥−1) + 𝑒−(1+𝜀)(1+𝑥) 𝜀  

2) −𝜀𝑢′′  𝑥 + 𝑢′ 𝑥 = 0, 𝑢 0 = 1, 𝑢 1 = e−1/𝜀 

 𝑢𝐸 𝑥 = 𝑒−
𝑥

𝜀 

3) −𝜀𝑢′′  𝑥 − 𝑢′ 𝑥 = 0, 𝑢 0 = 1, 𝑢 1 = 0,  

𝑢𝐸 𝑥 = (1 − 𝑒 𝑥−1 𝜀 )  1 − 𝑒−1 𝜀   . 

4) −𝜀𝑢′′  𝑥 − 𝑢 𝑥 = 0, 𝑢 0 = 1, 𝑢 1 = 0 

𝑢𝐸 𝑥 = 𝑒−𝑥  𝜀 −
𝑒((𝑥−2)  𝜀 )

1 − 𝑒−2  𝜀 
. 

5) −𝜀𝑢′′  𝑥 + 𝑢 𝑥 = −1, 𝑢 0 = 0, 𝑢 2 = 0 

𝑢𝐸 𝑥 = −𝑥 +
2𝑒

2
𝜀

𝑒
2
𝜀 − 1

−
2𝑒

2
𝜀

𝑒
2
𝜀 − 1

𝑒−
𝑥
𝜀  

6) – 𝜀𝑢′′ 𝑥 − 𝑥𝑢′ 𝑥 − 𝑢 𝑥 = − 1 + 𝜀𝜋2 cos 𝜋𝑥 −
𝑥sin 𝜋𝑥 ,𝑢 −1 = −1,𝑢 1 = −1 

𝑢𝐸 𝑥 = cos  𝜋𝑥 . 

7) – 𝜀𝑢′′ 𝑥 +
4𝑥

𝜀+𝑥2 𝑢
′ 𝑥 +

2

𝜀+𝑥2 𝑢(𝑥) = 0, 𝑢 −1 =
1

1+𝜀
, 𝑢 1 =

1

1+𝜀
. 

𝑢𝐸 𝑥 =
1

𝜀 + 𝑥2
. 

8) – 𝜀𝑢′′ 𝑥 + 𝑥𝑢′ 𝑥 = 0, 𝑢 −1 = 0, 𝑢 1 = 2 

𝑢𝐸 𝑥 = 1 +

𝑥𝑒𝑟𝑓  
𝑥

 2𝜀
 

𝑒𝑟𝑓  
1

 2𝜀
 

 

9) – 𝜀𝑢′′ 𝑥 − 𝑢(𝑥) = − 1 + 𝜀𝜋2 cos 𝜋𝑥 , 𝑢 −1 =
0, 𝑢 1 = 0 

𝑢𝐸 𝑥 = cos 𝜋𝑥 + 𝑒
(𝑥−1)

 𝜀 + 𝑒
−(𝑥+1)

 𝜀  

XVI. NNUMERICAL RESULT 

We present the computational performance of a Matlab 

implementation on a set of 270648 singularly perturbation 

BV (𝑡𝑒𝑠𝑡 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 ×  𝜀 × 𝑁 × 𝑎𝑙𝑔𝑜𝑟𝑖𝑡𝑕𝑚) as in table (2). 

The Matlab implementations based on the implementation 

of the first order (backward) finite difference method-

uniform mesh provided by [27], [28] without slightest 

changes in composition of the backward finite difference 

operator except the mesh was changed three time; uniform 

mesh represented in equation(10b); as (algorithm1), 

Shishkin mesh represented in equations(19); as algorithm 2 

and the new proposed improvement mesh represented in 

step(4) of the outline; as (algorithm 3). The comparisons of 

algorithms based on maximum error as in the equation (3). 

Table (2): Total number of implementation 

No. of No. of No. of No. of Total No. of 

Prob. Algorithms 𝜀 values N values Implementation 
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9 3 28 358 270648 

 

 

Deta

ils of 

table 

(2) 

are 

give

n in 

the 

follo

wing 

cont

ext arranged in table (3): 

 

 

 

 

 

 

Table (3): Context of the choice of each of the fine layer location, perturbation parameter ε, Shishkin ratio q and sub intervals 

multiplicand number N in the numerical results and comparisons. 

Prob. 

No. 

Type of 

layer 
𝜀 q N #N 

1 

Boundary 

at x=0 & 

x=1 

1.00E-01 

 1/2 

8 56 104 152 200 
  

5 

1.00E-02 8 16 24 32 … 208 216 

 

27 

1.00E-03 200 208 216 224 … 272 280  11 
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XVII. SOME MATLAB PLOTS OF MESHES 

CONSTRUCTION

2 
Boundary 

at x=0  

1.00E-02 

 1/2 

104 112 120 128 … 192 200  13 

1.00E-03 120 128 136 144 … 192 200  11 

1.00E-04 144 152 160 168 ... 216 224 11 

1.00E-05 488 496 504 512 … 560 568  11 

1.00E-06 
 

1560 1568 1576 1584 … 1632 1640 11 

3 
Boundary 

atx=1 

1.00E-01 
 1/2 

8 16 24 32 … 72 80  10 

4.64E-02 88 96 104 112 … 152 160 10 

4 
Boundary 

at x=0 

1.00E-01 

 1/2 

8 16 24 32 40 48  56 7 

1.00E-02 48 56 64 72 … 104 112  9 

1.00E-03 40 48 

 

56 64 … 104 112 10 

1.00E-04 8 16 24 32 … 152 160  20 

1.00E-05 8 16 24 32 … 152 160  20 

1.00E-06 160 176 192 208 … 464 480 21 

1.00E-07 56 72 88 104 … 216 232 12 

5 
Boundary 

at x=0 

1.00E-01 
 1/2 

8 16 24 32 … 112 120  15 

1.00E-02 8 16 24 32 … 112 120  15 

6 
Boundary 

at x=1 

1.00E-01 
 1/2 

80 88 96 104 … 152 160  11 

1.59E-02 88 96 104 112 … 176 184  13 

 7 Centered 
1.00E-01  1/8 280 288 296 304 … 352 360  11 

1.00E-02 1/2 1552 1560 1568 1576 1584 1592 1600 7 

8 
Boundary 

at x=1 

1.00E-01 

 1/8 

400 408 416 424 … 472  480 11 

1.00E-02 400 408 416 424 … 472  480 11 

1.00E-03 880 960 1040 1120 … 1520 1600 10 

9 

Boundary 

at x=0 & 

x=1 

11.006E-05 
 1/2 

800 808 816 824 … 864 872 10 

11.006E-06 360 368 376 384 … 544 552 25 

Number of taken values of  N 358 
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XVIII. MATLAB PLOTS ILLUSTRATE SOLUTIONS 

OF THE NEW ALGORITHM TOGETHER WITH 

THE EXACT SOLUTIONS 
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XIX. MAMTLAB PLOTS COMPARE THE 

CONVERGENCE OF THE THREE ALGORITHMS 
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