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Abstract—Biodiesel, an alternative diesel fuel made from a 

renewable source, is produced by the transesterification of 

vegetable oil or fat with methanol or ethanol. In order to 

control and monitor the progress of this chemical reaction with 

complex and highly nonlinear dynamics, the controller must be 

able to overcome the challenges due to the difficulty in 

obtaining a mathematical model, as there are many uncertain 

factors and disturbances during the actual operation of 

biodiesel reactors. This paper proposes controllers, namely 

artificial intelligent controllers; online iterative learning 

controller updating the fuzzy logic controller, inverse adaptive 

neuro-fuzzy inference system controller and Genetic Algorithm 

(GA) with ANFIS model is used for PID parameter tuning. 

These are used as real-time control system for industrial 

microwave reactor to produce biodiesel from waste cooking oil 

and animal’s fats. The controllers are used to automatically 

and continuously adjust the applied power supplied to the 

microwave reactor under different perturbations. A LabVIEW 

based software tool is used for measurement and control of the 

full system, with real time monitoring.  

Keywords-ANFIS; FLC; ILC;GA; LabVIEW. 

I.  INTRODUCTION 

A. Production of Biodiesel from Waste Oil 

Biodiesel, a derivative from plant oils or animal fats, has 
gained widespread acceptance in recent years as a 
sustainable alternative fuel to petroleum diesel due to its 
environmental benefits, renewability, its non-toxicity and 
biodegradable characteristics [1]. With increasing world 
crude oil prices, the focus of research is to produce biodiesel 
fuels from very poor quality, waste cooking oil [2]. Oils are 
generally poured down the drain, resulting in problems for 
waste water treatment plants and energy loss [3].  

According to the first UK Renewable Fuels Agency 
report on fuels supplied under the Renewable Transport 
Fuels Obligation for April to May 2008, biofuels accounted 
for 2.14% of all UK road fuel with biodiesel achieving 
3.43% of the diesel market and bioethanol 0.6% of the 
gasoline market [4]. The majority of biodiesel sold in the UK 
was imported, with 50% of the total amount coming from an 

unknown origin and 16% of the total being sourced from 
unknown feedstocks. The current blended-limit for forecourt 
biodiesel in the UK is 5% though levels up to 30% are 
possible while still complying with the fuel standard EN 590. 

Although there are several different ways in which 
biodiesel can be used or formulated as a fuel such as direct 
blending, microemulsions and thermal cracking, the most 
widespread remains the alkyl esters of fatty acids obtained 
through transesterification of the oils or fats [5]. In 
transesterifcation triglycerides which are the main chemical 
in oils or fats are converted into esters through reaction with 
simple alcohols. The physical and chemical properties of the 
esters obtained by this process are very similar to those of 
the petroleum diesel. Fig. 1 shows the schematics of 
biodiesel production from waste cooking oil. 

The quality of the biodiesel produced is closely related 
to the performance of the biodiesel reactors, and their proper 
control poses a number of challenges. These arise from the 
presence of multiple chemical reactions, the complex heat 
and mass transfer characteristics [6], as well as from 
nonlinearities due to fluctuations of reactant concentration, 
reactant temperature, coolant temperature, ambient 
temperature, instrumentation noise, or miss-calibration [7]. 
The control design of the biodiesel reaction is different from 
plant to plant and basically depends on the production 
technology adopted [8]. 

 

Figure 1. Schematics of biodiesel production from waste cooking oil. 
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B. Use of Fuzzy Controllers 

Fuzzy controllers have been widely used in industrial 
control due to their capability to deal with highly non-linear 
and ill-defined systems [9], and are based upon a number of 
very important fuzzy rules describing the reaction of the real 
time system under control [10]. These rules are based on 
experience, operator’s control action and a fuzzy model of 
the plant [11]. 

Classical controllers show significant difficulties when 
trying to control the system automatically. Controllers can 
be: artificial intelligent controllers (Fuzzy logic controller 
(FLC), online Iterative learning controllers (ILC) updating 
the Fuzzy logic controller and inverse Adaptive Neuro-Fuzzy 
Inference System (ANFIS) controller. FLC can incorporate 
expert human judgment to define the system variables and 
their relationships which cannot be defined by mathematical 
relationships. FLC has to be tuned to deliver the desired 
response by online updating the membership functions 
(MFs) using Iterative Learning Control (ILC). And inverse 
ANFIS controller consists of components of a fuzzy system 
except that computations at each stage are performed by a 
layer of hidden neurons and the neural network’s learning 
capability is provided to enhance the system knowledge.  

Therefore, the design of these controllers requires the 
construction of a decision table and MFs, which increase 
with system complexity and number of controller inputs. 
Efficient and low complexity controller is designed using 
self-updating FLC by utilizing membership function 
modification. Complexity of the controller has been reduced 
with an overall improvement in performance, particularly in 
difficult operating conditions. This controller was compared 
with conventional FLC and inverse ANFIS controller to 
evaluate the robustness of this controller under online 
nonlinear real time chemical system application. 

Logic rules and membership functions are two key 
components of a FLC [12]. The challenging task associated 
with FLC design has always been to choose appropriate 
MFs and minimum rule base. For this reason FLC has to be 
tuned to deliver the desired response. Many techniques have 
been applied including neural networks and type2 fuzzy 
[13]. So far these methods are complex and difficult in 
implementation, although ILC with FLC as self tuning FLC 
or self learning FLC was considered [14], most of them in 
theoretical research. 

II. NOVEL APPROACH TO BIODIESEL REACTOR 

CONTROL 

However, the approach followed here is based on the 
tuning parameters of standard FLC by adding online 
gradient adaptation factor with width adaptation of 
membership function using ILC at each time instant 
according to the error between the setpoint and output 
temperatures. This technique gives the hybrid controller 
more range to change in MFs with respect to the real time 
error and gives the advantages to reduce the number of MFs 
and the logic rules.  

In this work the hybrid controller reduced the MFs from 
5 MFs for each control input and 7 MFs in output, to only 3 
MFs (for each error, change of error and the output), and 
reduced the rules from 25 rules to 9 rules only. Another 
novel approach design is PID ccontroller updated genetically 
by using ANFIS model for microwave biodiesel reactor. 

There are a number of ways to produce heating to assist 
biodiesel production, for example, splate heater, muffle 
furnace or microwave oven [15] In this work a microwave 
system has been used as a heating source [16] for the reactor 
to produce biodiesel from waste cooking oil and animal fats. 
Microwaves at a frequency of 2.45 GHz were used to reduce 
the chemical reaction time, from hours under conventional 
heating, to minutes for the same volume of waste input. This 
novel microwave reactor is capable of operating at 
commercial production rates (kg/hr) instead of laboratory 
scale (g/day). All the changes in the control system could be 
observed in real time and user commands could be accepted 
during the process. Developed biodiesel system is shown in 
Fig. 2. 

 

Figure 2. Developed biodiesel system. 

  

Figure 3.Block-diagram of the process, where microwave power supplied 

to flow reactor is regulated by a controller via temperature/power sensors 

of feedback loop. 

Automated the monitored and controlled system was 
developed using laptop computer and National Instrument’s 
Data Acquisition (DAQ) with LabVIEW software interface. 
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LabVIEW stands for Laboratory Virtual Instrument 
Engineering Workbench, and is a graphical programming 
language which was used to receive the signals from the 
transducers through the DAQ, to process the signals and 
send the output signals to the controlled equipment. All the 
changes in the control system could be observed in real time 
and user commands could be accepted during the process, as 
shown in Fig. 4.  

 

 

Figure 4. LabView control of the biodiesel reactor operation. 

III. CONTROLLERS DESIGN 

A. Standard Fuzzy logic controller (FLC) 

Many of chemical reactions are sensitive to temperature, 
and temperature control has a key role in most chemical 
processes [17]. In addition, precision and quality control of 
temperature (with minimum overshoots and undershoots, fast 
rise and settling times) is desirable [18, 19]. Interestingly, 
craziness based particle swarm optimization (CRPSO) is 
claimed [19] to be moderately fast algorithm that yields true 
optimal gains and minimum overshoot, minimum undershoot 
and minimum settling time of the transient response for any 
system, also the feasibility of this approach is yet to be 
tested. 

Classical control theory usually requires a mathematical 
model for designing the controller [20]. In order to control 
and monitor the progress of the chemical reaction with 
complex and highly nonlinear dynamics in biodiesel 
chemical reaction, the controller must be able to overcome 
the challenges due to the difficulty in obtaining a 
mathematical model. Inaccurate mathematical modeling of 
the plants usually degrades the performance of the controller, 
especially for nonlinear and complex control problems [21]. 
Hence the process needs an alternative control mechanism 
that assures precision and quality control for even non linear 
and time varying systems. FLC offers an advantage over 
traditional adaptive control systems, as this alternative 
control mechanism assures precision and quality for even 
non-linear and time varying systems [22]. Fuzzy control 
which is based on human expert decision making do not 
require mathematical model of the plants.  

A Fuzzy controller is composed of three calculation steps 
[23] as shown in Fig. 5. First step, fuzzification, is a function 
of accepting input values and determining the degree of 
membership to some pre-selected linguistic terms. Fuzzy 
Inference consists of determining the relationships based 
upon If-Then rules used to obtain more weighted outputs. 
These outputs are also linguistic variables in nature and have 
a nonlinear relationship. Defuzzification involves converting 
the output term into a crisp value such that it is compatible 
with the system. 

The Fuzzy controller was based on the Mamdani Fuzzy 
logic Labview Toolkit. The first Fuzzy input represents the 
error between the measured temperature and the setpoint. 
The second Fuzzy input represents the change in error. Fig. 6 
shows the membership functions, (a) for the error and (b) for 
the change of error over the range of input variable values 
and linguistically describes the variables universe of 
discourse. Five membership functions were selected with 
triangle shape as follows: large positive, small positive, zero, 
small negative, large negative. The universe of discourse for 
the error and the change of error were -18 to 18 and -12 to 12 
respectively. The left and right half of the triangle 
membership functions for each linguistic label was chosen to 
provide a membership overlap with adjacent MFs. 

 

Figure 5. Basic block diagram for a fuzzy controller [3]. 
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 a) 

 b) 

Figure 6. Fuzzy inputs membership functions (a) error, (b) change of error. 

Fuzzy logic controller output is the delivered power 
which is applied to microwave reactor. Output variable is 
chosen to interval from -100 to 100 with seven triangle 
membership functions; large positive, medium positive, 
small positive, zero, small negative, medium negative, large 
negative. The rule base of the fuzzy controller gives the 
decision that in which of the five MFs have to fire. Rule 
evaluation part has 25 fuzzy rules as shown in Fig. 7. Table 1 
shows the fuzzy logic control rules developed for the 
proposed system. Note that e denotes the overall online 
system error, according to (1): 

e = Tset – Tout    (1) 

where TSet is the desired output temperature and Tout is the 
actual plant output temperature.  

 

Figure 7. Membership functions of the output linguistic variables. 

TABLE I.  FUSSY RULES FOR BIODIESEL SYSTEM 
 

    e 

e 

Lg neg Sm neg        Zero          Sm pos Lg  pos 

Lg neg Lg neg Med neg Med pos Med neg Sm pos 

Sm neg Med neg Sm neg Sm pos Zero Sm pos 

Zero Sm neg Sm neg Zero Sm pos Sm pos 

Sm pos Sm neg Zero Zero Sm pos Med pos 

Lg pos Sm neg Sm pos Zero Med pos Lg pos 

 

B. Iterative Learning Controller Design 

There are many desirable features that make ILC an 
attractive control strategy in solving real-time control 
problems [24], such as simple structure, control quality and 
reliability, it can fully use process information such as the 
past tracking error and past control signal over the entire 
operation, it is a memory based learning mechanism and 
memory devices are cheap with the present microprocessor 
technology, ability to achieve a perfect tracking both in the 
transient period and steady state with repeated learning, 
almost model-free nature in design and real-time execution, 
unlike many control methods that require system model 
knowledge [25] and ILC is the availability of non-causal 
signals for control compensation. ILC aim is to improve the 
transient control performance along the time domain.  

However, ILC has a poor response in the iteration 
domain. This disadvantage and the complexity of fuzzy 
controller can be mitigated by combining these two 
controllers into a single so called hybrid controller. 

The proposed controller is designed by integrating 
MATlab into LabVIEW successfully. First hybrid controller 
(FLC with ILC) input represents the error between measured 
temperature and setpoint. The second fuzzy input represents 
the change in error. The general block diagram of the hybrid 
controller is shown in Fig. 8.  

 

Figure 8. Self-learning Fuzzy Logic controller using ILC. 

Three reduced MFs are selected with triangle shape as 
follows: positive, zero and negative for the inputs variable: 
error (e) and change in error (Δe); and for output variable: 
delivered power which is applied to microwave reactor (P) as 
shown in Fig. 9. The universe of discourse for the error and 
change of error are from -30 to 30 and -12 to 12 respectively. 
The interval of output variable is chosen to be from -100 to 
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100. In this case, rule evaluation part has 9 reduced fuzzy 
rules. 

 

Figure 9. Integrating MATlab into LabVIEW for biodiesel system: 

2 inputs, 1 output, 9 rules. 

Table 2 presents the self-learning fuzzy logic control 
rules. The proposed tuning algorithm is illustrated in Fig. 10. 
The end points of zero range for linguistic variable (e, Δe, P) 
are labeled (-Mk, Mk). These points are also representing the 
centers for negative and positive ranges of triangular MFs for 
linguistic variable (e, Δe, P). Due to the symmetry of MFs, 
one learning control law is needed for each variable. The 
location of point M is updated along the linguistic variable; 
depends on tracking online system error. The modifications 
for all MFs are by changes in the width of zero range and 
slops for positive and negative ranges.  

TABLE II.  SELF-LEARNING FUSSY RULES FOR BIODIESEL SYSTEM 

 

 

Figure 10. Triangular MFs modification according to the ILC law. 

The end points of zero range for linguistic variable (e, 
Δe, P) are labeled (-Mk, Mk). These points are also 
representing the centers for negative and positive ranges of 

triangular MFs for linguistic variable (e, Δe, P). Due to the 
symmetry of MFs, one learning control law is needed for 
each variable, according to (2). The location of point M is 
updated along the linguistic variable; depend on tracking 
online system error. Due to this updating, the modifications 
have been happened for all MFs by changes the width of 
zero range and slops for positive and negative ranges. 

e 

where M is the modification point for each linguistic variable 
(e, Δe, P), k is the current iteration and ϕ is the learning step. 

The proposed controller is stable and converges due to 
the following reasons:  

a) the desired output signal is repeatable over a finite 
time interval;  

b) the system is stable under FLC without ILC;  
c) the control input signal is bounded;  
d) the universe of discourse for the error, change of error 

and deliver power is not modified, and is chosen according 
to experts of the plant to ensure the stability of the system;  

e) the modifications of MFs give a good width for zero 
MF in small value of error to minimize steady state error 
with symmetry in positive and negative triangular shape for 
MFs in large value of error;  

f) there are three learning steps ((ϕe, ϕΔe, ϕP)) for each 
linguistic variable (e, Δe, P) respectively, and they are 
chosen to ensure good tracking performance even in the 

presence of uncertainty so that Tout Setpoint as k. 

Fig. 11 illustrated the modification steps of MFs for error 

in 300 ml/min flow rate: (a) at inlet temperature, (b) at 30 C 

setpoint, (c) at 35 C. 

C. Adaptive Neuro- Fuzzy Inference System control 

Within the multitude of adaptive control schemes, the 
self-tuning approach has received considerable attention [7, 
26] along with the proportional-integral-derivative (PID) 
control algorithms [27]. PID controllers have been used in 
most of the feedback loops of process industries despite 
continual advances in control theory. These controllers are 
preferred because of their versatility, simple structure, high 
reliability and easy implementation on analog or digital 
platforms. Nowadays, around 90% of industrial objects are 
controlled by PID controllers [28]. 

Fuzzy logic controllers are fuzzy rule-based systems 
comprising expert knowledge in form of linguistic rules. 
These rules are usually constructed by an expert in the field 
of interest who can link the facts with the conclusions. 
However, this way to work sometimes fails to obtain an 
optimal behavior [29]. An intelligent control system is 
expected to possess inbuilt adaptation/learning and decision-
making capability so that it is able to meet desired 
performance over a very wide range of uncertainty. To 
overcome the limitations of traditional computing paradigm, 
the researchers are searching for new computational 
approaches that can be used to model, partially, the 

e 

 e Neg Zero Pos 

Neg Neg Zero pos 

Zero        Neg Zero pos 

Pos Neg Zero Pos 
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functioning of neural system and can be used to solve real 
world problems efficiently [30]. One of these intelligent 
methods is artificial fuzzy method.  

a) 

b) 

 c) 

Figure 11. Modification steps of MFs for error in 300ml/min flow rate: (a) 

at inlet temperature, (b) at 30 C setpoint, (c) at 35 C. 

There are many advantages of fuzziness, one of which is 
the ability to handle blur data. Fuzzy methods provide 
linguistic labels for complex system modeling [31, 32]. 
Adaptive Neuro fuzzy Inference System (ANFIS) is an 
intelligent control technology, provides a systematic method 
to incorporate human experience and implement nonlinear 
algorithms, characterized by a series of linguistic statements, 
into the controller [33]. 

ANFIS is widely used in complex system studies for 
modeling, control or parameter estimating [31]. ANFIS is a 
fuzzy Sugeno put in the framework of adaptive systems to 
facilitate learning and adaptation. Such frameworks make 
fuzzy logic more systematic and less relying on expert 
knowledge [34]. The objective of ANFIS is to optimize the 
parameters of a given fuzzy inference system by applying a 
learning procedure using a set of input-output training data. 

Combinations of the least square and back-propagation 
methods are used for training a fuzzy inference system to 
enhance its performance [35].  

ANFIS is designed as a first order Sugeno fuzzy model 
so the consequent part of the fuzzy rules is a linear equation 
with generalized bell-shaped membership functions of the 
inputs, which contain three fitting parameters; centre and 
half of the width and slope. Two membership functions were 
chosen on each input; usually this number is determined 
experimentally. 

The Initialization of the primes parameters of the ANFIS 
network are set so that the centers of the membership 
functions are equally spaced along the range of input 
variable, where the initial value of consequent parameters are 
assumed zero. The inverse model control approach was used, 
in which the controller is the inverse of the plant. In this 
method a learning task is needed to find the inverse model of 
the advanced biodiesel microwave system so ANFIS inverse 
learning for control purpose is performed as shown in Fig. 
12.  

The training data were obtained from real experiments to 
reflect input-output characteristics of the biodiesel reactor. In 
the application phase, the obtained ANFIS inverse model 
was used to generate the control action. Fig. 13 shows the 
ANFIS controller output under different operation conditions 
at controller sample interval equal to 5000 ms. 

 

Figure 12. Block diagram for inverse control method. 

 

Figure 13. ANFIS controller output under different operation conditions. 
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D. PID Controller 

The proportional, integral, derivative (PID) controller has 
use in many process control applications [36], due to its 
simplicity in structure, robustness in a wide range of 
operating conditions. The implementation of PID controllers 
retunes their three-term parameters. However, PID controller 
performs well only at a particular operating range and it is 
necessary to retune the PID controller if the operating range 
is changed. The PID controllers do not provide contented 
results for nonlinear process [37]. The paper presents an 
adaptive PID controller design. Controller parameters are 
updated by using ANFIS model and Genetic Algorithm (GA) 

The online genetic algorithm proved difficult to test due 

to the fact that the simulations cannot be run in real time. To 

prevent any unstable controllers being implemented by the 

genetic algorithm, the ANFIS model for the microwave 

biodiesel reactor was used, so now the GA is used as offline 

stage for tuning the PID parameters based on the model 

which it is has online updating for changes as shown in 

Fig.14. 

 

Figure 14. GA use as offline stage for tuning the PID parameters based on 

ANFIS mode 

 

Figure 15. Comparison between adaptive PID and conventional PID 

controllers (setpoint equal to 30°C) 

 

By tuning the three constants by GA, the controller can 

provide control action designed for specific process 

requirements. The response of the controller can be 

described in terms of the responsiveness of the controller to 

an error, the degree to which the controller overshoots the 

setpoint and the degree of system oscillation Fig.15 shows 

the comparison between the adaptive PID genetically and 

conventional PID controller for microwave biodiesel reactor 

at 30°C setpoint, 5000ms sample interval and 300ml/min 

flow rate. 

 

1) ANFIS Microwave Biodiesel Reactor Model 

The ANFIS network is designed to model the microwave 
biodiesel reactor. In this case the learning task is needed to 
find the model of the microwave biodiesel system from the 
real training data (inlet oil temperatures, inlet oil flow rate, 
delivered microwave power, output temperature and 
reflected power), so ANFIS is learning for model purpose as 
shown in figure16. 

 

                
Figure 16. ANFIS model for Real time biodiesel reactor 

1) Genetic Algorithms 

A GA is typically initialised with a random population 
for large number of individuals. This population is usually 
represented by a real-valued number or a binary string called 
a chromosome. How well an individual performs a task is 
measured is assessed by the objective function. The objective 
function assigns each individual a corresponding number 
called its fitness. The fitness of each chromosome is assessed 
and a survival of the fittest strategy is applied. In this project, 
the magnitude of the error will be used to assess the fitness 
of each chromosome. There are three main stages of a 
genetic algorithm; these are known as reproduction, 
crossover and mutation. The GA process in microwave 
biodiesel reactor is shown in Fig.17 

IV. EXPERIMENTAL RESULTS 

It was experimentally demonstrated that the controllers 
can successfully track the demands of reactor temperature 
setpoint in 5000 ms control sample interval at 300 ml/min 
flow rate.  

The comparison of the controllers subjected to setpoint 
tracking beginning from inlet oil temperature is illustrated in 
Fig. 18. Alternatively, multiple setpoint tracking beginning 

from the nominal temperature value of 30 C, then rising to 

35 C and followed by going back down to 30 C are shown 
in Fig. 19.  
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Figure 17. GA process in microwave biodiesel reactor 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 18. Controllers setpoint tracking comparison from inlet temperature, 

(a) Self-learning using (ILC) controller and conventional fuzzy controller, 

(b) ANFIS and conventional fuzzy controller, (c) ANFIS and Self-learning 

using (ILC) controller, (d) ANFIS, conventionaFLC, and PID. 

 

(a) 

Create population: for PID parameters 

Measure fitness:  

Which the chromosome that gives a minimum error 

value between the setpoint and ANFIS output, by make 

offline simulation to the ANFIS model with PID 

controller at these chromosomes values 

Select fitness 
 

Reproduction: Crossover between these 

selected chromosomes to get another values. 

Optimum PID parameters 

Applied these Values on PID controller for real 

time microwave system 
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b) 

c) 

d) 

Figure 19. Controllers comparison on multiple sepoint tracking from 

nominal temperature value, (a) Self-learning using (ILC) controller and 

conventional fuzzy controller, (b) ANFIS and conventional fuzzy 

controller, (c) ANFIS and Self-learning using (ILC) controller, (d). ANFIS, 

conventiona FLC, and PID. 

It is evident from these results that the controllers can 
successfully track the demands of reactor temperature 
setpoints. The ANFIS and self-learning fuzzy controller 
improves the conventional fuzzy controller response in three 
stages: speed to reach the setpoint, the overshoot and steady 
state error [3].  

The developed novel controllers were also tested under 
an introduced disturbance in the feed to the flow rate of the 
reactor. After the start up of the processes, the reactor 
temperature was left regulated by the controllers at 30◦C. The 
disturbance was then introduced. When the nominal feed in 

flow rate was reduced by 20% and 10% then sudden rising 
by 30%, it was observed that the controllers were able to 
bring back the process to its initial setpoint of 30◦C. ANFIS 
and self-learning show a good ability to reject these 
disturbances with less effect as shown in Fig. 20. 

(a) 

 (b) 

 (c) 

 (d) 

Figure 20. Disturbance rejections for the controllers: (a) Conventional 

fuzzy controller, (b) Self-learning using (ILC) controller, (c) ANFIS, (d). 

Adaptive PID controller. 

In three different flow rates (250, 300, and 350) ml/min, 
a performance response of the controllers was tested. Fig. 21 
shows that the Neuro-Fuzzy (ANFIS) controller in small 
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value of flow (250 ml/min) can keep on its behavior with 
small change in its response. That indicates a good 
repeatability response of the controller at different flow 
values. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 21. Performance of the controllers under different flow rate, (a) 

Conventional fuzzy controller, (b) Self-learning using (ILC) controller, (c) 

ANFIS, (d). Adaptive PID controller. 

V. CONCLUSIONS 

Three types of intelligent controllers (conventional fuzzy 
logic, self-learning fuzzy using ILC and ANFIS inverse 
controller) are online implemented; for real time temperature 
control in advanced biodiesel microwave reactor. A unique 
tuning procedure for MFs of fuzzy logic control is proposed 
using iterative learning technique with small number of rules 
and straightforward implementation.. A LabVIEW software 
tool was used for online monitoring. Experimental results 
reported in this paper indicate that the self-learning using 
ILC control reduced the order of conventional fuzzy 
controller with improvements in tracking performance 
characteristics and disturbances rejection as compared with 
fuzzy logic and inverse ANFIS. 

Adaptive PID controller) genetically by using ANFIS 
model was online implemented;. The experimental results 
illustrate that the proposed controllers give good control 
performance. 
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