
International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 01– Issue 02, November 2012

 www.ijcit.com 129

Automatic code generation by model transformation

from sequence diagram of system’s internal behavior

EL BEGGAR Omar, BOUSETTA Brahim*,GADI Taoufiq

LAVETE Laboratory

FSTS, Hassan 1st University

Settat, Morocco

Abstract—Software engineering process aims to help leading an

IT project from requirements specification to code

implementation in a specific platform. Such process can be

improved by the model driven architecture (MDA) proposed by

the OMG. Indeed, during the whole development process a set of

models are used to represent different views of system and which

can be enriched by additional information and transformed from

more abstract into more concrete ones by applying a set of

model-to-model transformation. Moreover, the MDA allows also

the code generation from platform specific models (PSM) by the

means of generators that automatically transform models into

source code for the chosen platform.

Within this context, this presents code generator that allows

generating source code from the sequence diagram of system’s

internal behavior platform independent model by the mean of a

set of model transformations. An intermediate structural model

representing the Java PSM is generated instead of the source

code directly to allow the extension of target platform by

enabling the transformation of this model after. To illustrate this

feature, we have extended the JAVA platform with the enterprise

java beans capabilities by applying an Ecore Meta Facility profile

for EJB to produce persistent entities and session beans that

provide an interface for different data access operations. Also,

the persistent entities can be used to create the different tables of

the schema corresponding to those entities, thereby another

contribution of this work. Also since the sequence diagram

implements the MVC design pattern, we will generate controllers

with the detail implementation of their methods that allows to

coordinate system’s objects to execute the use case.

The main objective of the approach is to concentrate the entire

efforts on the system’s abstraction and business logic by building

different views of systems through PIMs or PSMs and feed the

generator with this knowledge to be able to transform those

abstract models automatically to implementation code.

 Keywords-component; Model Transformation; Code generation;

software process; EMF profile; sequence diagram.

I. INTRODUCTION

Throughout the software development a set of models are
used to represent different views of the system. Those models
are generally enriched by additional information and
transformed from more abstract into more concrete ones by

applying a set of model-to-model transformation, one of the
features of the model driven architecture (MDA) [1] proposed
by the Object Management Group (OMG) [2]. Moreover, the
MDA allows also the code generation from platform specific
models by the mean of generators which automatically
transforms models into source code for the chosen platform.

Within this context, this paper aims to provide a code
generator that allows generating complete source code for the
Java platform from the sequence diagram of system’s internal
behavior (SDSIB) which is a platform independent model
(PIM) by the mean of set of model transformations. An
intermediate structural model representing the Java platform
specific model (PSM) is generated before getting the source
code. The goal of generating such structural representation
(model JAVA) of the target code instead of the source code
directly is to improve readability as well as efficiency of
generated code and to enable the transformation of the code’s
model after generation allowing thus the extension of the target
language with more features. Some authors state that the final
application “should not be the main goal of code generation”
[3]. For example of these features, we have extended the JAVA
platform with the enterprise java beans (EJB3) capabilities by
applying an Ecore Meta Facility (EMF) profile [4] for EJB3.
The main objective of the approach is to concentrate the entire
efforts on the system’s abstraction and business logic by
building different views of systems through PIMs or PSMs and
feed the generator with this knowledge to be able to transform
those abstract models automatically to implementation code.

The core idea of this approach is the code generation for the
JAVA platform starting from the PIM SDSIB through the PSM
of Java model. Firstly, the different model classes
corresponding to the objects that are involved in the execution
of the uses case and presented in the SDSIB are transformed to
a JavaClasses in the generated structural model of the Java
platform. Supplementary details of these JavaClasses such as
the different attributes and mapped association are gathered
from the Domain Class diagram (CDC). Secondly, different
operations from SDSIB that are sent during the interaction
between the system’s objects and that are expressed in formal
syntax with a precise semantic defined by the Extended Post-
condition Matrix (EPM) toolset will be transformed to the
corresponding java methods based on their semantic according
to this toolset. These methods are generated with complete

* Corresponding author. Tel : +212668640231/+212660623211

 E-mail address: ibbousetta@gmail.com

 Permanent address: N° 21, Rue el okhouane hay raha 20200 Casablanca

Morocco

mailto:ibbousetta@gmail.com

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 01– Issue 02, November 2012

 www.ijcit.com 130

detail such as the full signature and body source code. Thirdly,
since the SDSIB implements the MVC design pattern to
produce software that is easy to extend and to maintain, we will
generate the different controller’s methods with their full
body’s code that will coordinate the system’s business objects
to execute the use case. Finally, we will extends the JAVA
platform with the EJB capabilities by applying the EJB profile
[5,6] to produces a persistent Entities session beans that
provide an interface to use the different
Create/Retrieve/Update/Delete (CRUD) operations. Thus
javaClasses will be annotated with different annotations to map
tables from the database including the relationships such as
OneToOne, OneToMany… Moreover, the generated
configuration file for the persistence can be modified to use the
JPA API to generate the different tables corresponding to the
Entity classes if they are not yet created, thereby another
contribution of this work. The Figure 1 below illustrates the
approach.

This paper subscribes with our previous works [7,8,9] in a
global approach that attempt to automate a software
engineering process starting from Computational Independent
Model (CIM) - business requirements – to code
implementation in a specific platform. However, in [9] we
have focused only on automating the generation of the most
important increment of the design phase: Sequence Diagram of
system’s internal behavior (SDSIB) which shows the system’s
objects interaction needed to accomplish the expected
functionality which is obtained automatically by a model
transformation using as a source models: (1) the sequence
diagram of system’s external behavior (SDSEB) that represents
actor’s actions and their corresponding system’s responses;
each action or message initiates interactions between system’s
objects that can be identified over (2) the domain class diagram
(DCD) which is an UML class diagram that contains only
classes and their attributes without methods; (3) the extended
operations contract (EOC) that use the extended post-
conditions matrix (EPM) the new toolset proposed to extend
the original LARMAN operation contract (LOC) [9] by
integrating new elements and proposing an improved formal

syntax to determine correctly the operations and their
concerned objects source and target present in the expected
SDSIB model of the transformation. This paper uses this
generated SDSIB as the principle source model to generate the
code. Therefore, the messages represented in the SDSIB later
will have a precise semantic according to this EPM that will
help us to generate full method’s body code.

A running example concerns buying items uses case in e-
commerce web site is given throughout this article to illustrate
our approach. The used SDSIB is the one that were generated
in our previous work by applying the EPM toolset. At the end
of this work a complete java files are generated for this running
example.

The remainder of this paper is structured as follows: In the
next section we present the most relevant related work to the
topic of the proposal and a motivation of this work is also
given, Section III gives an overview of the proposed approach
to automate the software engineering process. In this section
we introduce also the operation contract of LARMAN and its
extended version that was proposed in our previous work as
well as the EPM toolset. Section IV concerns SDSIB that
represents the source PIM model for this model transformation.
An overview of this important design model, it’s metamodel
and the generated one using the EPM toolset for the running
example will be given in this section. The following section is
dedicated to present the approach to generate the source code
for the java platform by applying model transformation. In this
section, we first present the java metamodel, then the different
rules that are used to perform the transformation for
instantiating this java metamodel. Then, after giving a brief
introduction to UML and EMF profiles, we will present the
EJB profile that is applied to extend the generated structural
mode of the java platform to enrich it with necessary
annotation for JPA persistence and generate session beans
allowing different CRUD operations; the detail code
implementation for these methods is given. In section VI we
evaluate the generated code with the proposed approach.
Finally we end with a conclusion to discuss what has been
done and give some prospects.

Figure 1: Different transformations performed to generate the code starting from the SDSIB.

 Structural model of

JAVA (PSM)

Code

Applying the EJB profile

Java model profiled with EJB

Performing a model-to-

model transformation

SDSIB (PIM)

Performing a model-to-

code transformation

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 01– Issue 02, November 2012

 www.ijcit.com 131

II. RLATED WORK

Various works in the field of code generation domain have
been conducted during the last few years, and these works are
interesting in the context of the present paper. Although all the
works in this field are important for industrial and scientific
communities, some projects and research groups/institutions of
high relevance will be highlighted.

The first Kind of code generator is based on code
generation from Petri-Nets which has a long tradition.
However, unlike methods for the analysis and simulation of
Petri-Nets, code generation is not yet considered a standard
feature. An extensive review of existing work in the area of
automatic code generation from Petri-Nets is given in [3]. Most
of the approaches in this review focus on code generation from
(extended) low-level Petri-Nets, e.g. for the generation of
controllers [10, 11]. Even though the review also lists
approaches for code generation from high-level Petri- Nets, the
work in this area is not based on object-oriented principles, and
in consequence not applicable to more complex systems. A
frequent use of approaches to automatic code generation from
Petri-Nets is the validation of requirements in systems
engineering.

In contrast to this view, [12] shed some light on Petri-Net
based code generation based on MDA by considering models
as a central means not only for the capturing and validation of
requirements, but for the whole development process in
systems engineering. It introduces an approach based on a class
of object-oriented Petri-Nets in order to be applicable also for
complex systems and it intend to support the use of models
throughout the entire systems development process and not
only for validation purposes. It also gives an evaluation of
different strategies for automatic code generation from Petri-
Nets with the focus on their general applicability as well as the
readability, extensibility and efficiency of generated code.

The second kind of code generator is generation of code by
model transformation. These approaches treat code as a model,
while most MDE approaches generate code through the use of
textual template engines, which produce plain text, not
amenable to further transformation. By treating generated code
as a model, it is possible to extend the target language and add
convenient language features such as partial classes and
methods, and interface extraction. Some other approaches have
generated partial artifacts through the use of partial classes,
which are then combined by the regular compiler for the target
language. Warmer and Kleppe [13] describe experiences with
such an approach. These approaches rely on the target language
to support this features. Generation of partial artifacts has also
been applied by Huang and Smaragdakis [14] by use of Meta-
AspectJ [15]. There have been other approaches that aspect
weaving at the model level rather than using this feature in the
generated code [16, 17].

In [18] a code generator by model transformation was
presented. Also, it have been demonstrated how generator
concerns can be better separated and showed how
transformation rules can be made more concise and
modularized by extending the target language. Several ways of

combining type analysis with rewriting have been discussed
and introduce the approach of three-phased type analysis and
transformation, in which name resolution, constraint checking,
and rewriting can all be specified as strictly separate concerns.
When additional language abstractions are introduced, they can
take advantage of the open extension points provided by the
generator. These extension points, allow the extension to easily
plug into the type analysis, model transformation and code
generation subsystems. A number of language extensions into
the generator have been built, most notably the access control
and workflow extensions, which are entirely built by plugging
into the extension points mentioned. In this approach, the
feature of partial classes and methods has been overlaid
directly on the output language. This overlay definition can be
used across different applications, i.e. other code generators
that produce Java code. In contrast, using the more typical
approach of strictly separating model transformation and code
generation (using templates), as applied in [16, 17], a very low-
level, general-purpose model representation would have to be
used to achieve the same result.

Stratego/XT [19] provides another development
environment for creating standalone transformation systems. It
combines Stratego [20], a language for implementing
transformations based on the paradigm of programmable
rewriting strategies, with XT [21], a collection of reusable
components and tools for the development of transformation
systems. In general, Stratego/XT is intended for the analysis,
manipulation and generation of programs, though its features
make it useful for transforming any structured documents. In
practice, Stratego/XT has been used to build many types of
transformation systems including compilers, interpreters, static
analyzers, domain specific optimizers, code generators, source
code refactorers, documentation generators, and document
transformers.

In [23] an approach for simplifying the specification of
conceptual schemas (CSs) was presented. It provides a way for
modeling the operations that define the system behavior by
providing a method that automatically generates a set of basic
operations that complement the static aspects of the CS and
suffice to perform all typical life-cycle create/update/delete
changes on the population of the elements of the CS. The
proposed method guarantees that the generated operations are
executable, i.e. their executions produce a consistent state with
the most typical structural constraints that can be defined in
CSs (e.g. multiplicity constraints). In particular, this method
takes as input a CS expressed as a UML class diagram
(optionally defined using a profile to enrich the specification of
associations) and generates an extended version of the CS that
includes all necessary operations to start operating the system.
If desired, these basic operations can be later used as building
blocks for creating more complex ones. While, [23] provide a
method for generating CRUD operations to manipulate
database data, [22] provides a tool for behavioral modeling. It
defined textual and visual notations for UML actions and built
supporting editors. Furthermore, it defined also a mapping
from UML actions to Java and model compilers were built,
which support the generation of complete and compile-ready
applications including their behavioral parts.

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 01– Issue 02, November 2012

 www.ijcit.com 132

Regarding to web applications, many modeling languages
have been developed, including WebML [24], MIDAS [25],
OOWS [26], Netsilon [27], and UWE [28]. UWE generates
JSP code via a model representation conforming to a JSP
metamodel. Netsilon uses an intermediate language for code
generation in order to increase retargetability of the generator.
The other approaches use textual, usually template-based code
generation. WebML interprets its models rather than generating
code from them. Most approaches apply model transformations
with the purpose of retargetability, or with the purpose of
expressing “as many artifacts as possible using models as this
allows for processing these artifacts using model
transformations” [29]. Only Netsilon actually models the target
source code.

This paper subscribes in the second categories of code
generators which bases on code generation by model
transformation. We have also generated a structural model as in
[18] for the target platform to enable its extensibility. In spite
of this variety of approaches for code generation, so far there is
no complete tool to carry out an IT project according to a
software engineering process from requirements specification
up to code implementation. Approaches based on Petri nets are
still far to be a standard for code generation and still not yet
used in the different phase of modeling, usually used for
validation purposes. The motivation of this work is to complete
our previous work to completely automate the hybrid software
engineering process between UP and XP. In [9] we present the
entire approach with the different proposed metamodels and
the different transformation to connect them. However, in that
work only one analysis increment was generated, the SDSIB
which represents the most important increment of the design
phase in the proposed process. In [8], we proposed the
generation of a second increment, the design class diagram
from the state transition diagram. Thus another analysis- PIM
to Design-PIM- transformation has been done. This work aims
to realize the final stage of the process which the generation of
code from the SDSIB which was generated in [9] through a
model transformation.

III. OVERVIEW OF AUTOMATING SOFTWARE PROCESS

DEVELOPMENT

In our previous work [9], we have presented a software
engineering process with different proposed metamodels at
different phases of software development. We have also
performed a model transformation from a platform independent
model (the system’s sequence diagram of external behavior) to
another detailed platform independent model (the sequence
diagram of system’s internal behavior) by means of a toolset
which provides a rule set based on the post conditions of the
LARMAN’s operations contract: the extended post-condition
matrix toolset (EPM).

A. LARMAN Operations Contracts

A LARMAN Operation Contract (LOC) identifies system
state changes for each received incoming message and show
how the system objects will interact with each other in order to
respond to this message. Indeed, the main objective of this

contract is to highlight those interactions and describe
consequently the new system state. This contract describes
detailed system’s behavior in terms of state changes to objects
in domain model, after a system operation has been executed
[30]. It describes the system state changes, by determining the
pre-conditions and post-conditions: While the pre-conditions
consist in determining the initial state of the system or
otherwise the objects created underway before executing the
operation, the post-conditions describe the system objects state
after operation completion.

Craig LARMAN has predefined post-conditions as
following:

 Objects created or destroyed.

 Associations formed or broken.

 Attributes modified.

These post conditions determine what will happen after the
execution of the operation (creation, destruction, associations
of objects, attribute changes) without providing the object
responsible to do that. However, to draw a complete objects
interaction in SDSIB, the source object and the responsible one
are required. Thus, using only LOC to trace the SDSIB will be
not sufficient. Also the LOC does not indicate the post-
conditions regarding display or calculate, print and check
messages and their related operations. Therefore, it is
insufficient to draw complete interactions between objects and
deduce specific operations issued from some incoming
messages in the SDSEB like display, check or print.

for completing this operation contracts and allowing thus
drawing complete interaction in SDSIB we have extended the
LOC with new post conditions by providing the new toolset
Extended Post-condition Matrix (EPM).

B. Extended Operations Contracts

Generally, when using the LOC to describe system’s state
after the execution of an operation, designers have to apply
manually General responsibilities Assignment Software
Patterns (GRASP) to assign responsibilities to the object in
charge to achieve the post-conditions. To remedy these
shortcomings, we proposed a solution that extends the post-
conditions by presenting a new post-condition syntax which
includes GRASP and generating finally not only the
operations, but also deduces their objects source and target as
well as the post-conditions regarding display, print and check
messages were added by proposing a new solution the
Extended Post-conditions Matrix (EPM) allowing to generate
automatically the operations with their source and target
objects.

In the new EOC, the extended post-conditions are used to
determine automatically in common sense the interactions
between objects based on new formal syntaxes. Thus, EOC
allows designers to avoid design mistakes, by providing exact
source and target objects participant in the interaction and thus
improves the quality of modeling. Regarding display, print and
check messages, new extended post-conditions are created.

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 01– Issue 02, November 2012

 www.ijcit.com 133

C. The toolset: Extended Post-condition Matrix (EPM)

In order to generate automatically resulting interactions, we
have proposed the EPM matrix that extends the original post-
conditions by adding new details and defining new post-
condition syntax. For example, the creation post-condition as it
is defined by LARMAN: “Subject class was created” does not
determine the responsible object which will be charged to send
the operation “create” to the subject class in order to instantiate
it. However, the alternative syntax in EPM: "Subject class was
created by Responsible class" specify the element responsible
for the creation and integrate the GRASP known as (Creator)
which allow for deducing that the operation “create” has the
responsible object as source and the subject class as target.
Otherwise, the new syntaxes used in EPM incorporate the
GRASP concepts that represent the guidelines for assigning
responsibility to classes and objects in object-oriented software
system to determine correctly the interactions.

 To use the EPM toolset in order to determine completely
all system interactions, the designer is asked to respect the
formal syntax of the post-conditions. Thus, they can generate
the operations signatures and the interaction responsible
objects. Each post-condition has its own formal syntax and its
inputs could be optional or required. The post-condition has as
possible inputs: subject class, responsible class, associate class,
multiplicity, attribute and parameter.

The Table 1 represents the proposed EPM which takes all
the post-conditions already defined by LARMAN and offers a

new formal syntax for each one by integrating GRASP and
matching them to operations signatures. The EPM propose new
extended post-conditions “Display” “Check” and “Print” which
are not expressed before by LARMAN as post-conditions.

Concerning the new post-conditions added to the EPM, first
the post-condition display may simply be an on-screen display
or represents a calculation. For this post-condition, we must
indicate the subject class attribute that will be displayed and the
calculating attributes to accomplish the post-condition if it’s a
calculation. The Boolean attribute “Onscreen” in the meta-
model allow distinguish between those kinds of messages.

Finally, the post-condition check allows verifications of the
subject class attributes called “Checked” attributes with the
post-condition parameters entered through the GUI. However,
the post-condition print allows for identifying print operations
concerning the printable classes like tickets, commercials
orders and it has also parameters like order date, order number
etc.

With regard to the Associations and disassociations post-
conditions, in addition to objects responsible and subject, we
have to indicate the associate object. Sometimes you have to
retrieve the associate object in order to perform association or
break it. In this case, we must enter the search key which is
simply the parameter of the post-condition as well as the
responsible object where we can find the associate object.

Table 1: The EPM toolset

Name Description and generating operations

Creation

Creation of a subject class instance which defines two operations “create” results from controller to the responsible class
of creation and Constructor which has the same name as its subject class invoked by the responsible class to the subject
class

Modification
Modify the subject class attribute by taking as value the post-condition parameter. The type of parameter will be deducted
from the corresponding domain attribute.

Destruction
Destruction of a subject class instance from which results the destruct and Destructor in subject class which has the same
name as its subject class but it is prefixed by “$” .

Association Formed with
parameter

Association formed between the subject class and the associate class that must be found first by a parameter with the
operation “find” and an operation “set” will result from the controller to the subject class to perform the association

Association Formed without
parameter

Association formed between the subject and the associate class without an incoming parameter which is expressed by a
set or add operation depending on the max multiplicity of the association end between the associate object and the subject
class.

Disassociation with parameter
Association braked between the subject and the associate class. two operation are produced : “find” to retrieve the
associate object by the post-condition parameter; and “remove” break association

Disassociation without
parameter

Association braked between the subject and the disassociate class without an incoming post-condition parameter

Display
Display event allows displaying subject class attributes by calculating or simply displaying them on screen.

Check
Post-condition Check allows checks or verifications between its parameters and attributes of the domain classes

Print
Post-condition print allows identifying print operations concerning subjects classes which are printable like tickets,
commercials orders

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 01– Issue 02, November 2012

 www.ijcit.com 134

IV. SDSIB OVERVIEW:

While The sequence diagram of system’s external behavior
(SDSEB) is a UML sequence diagram that shows only
interactions between actors and the whole system as unique
entity which is represented by one lifeline without focusing on
system objects interactions, the SDSIB shows ordered
interactions between objects with their lifeline and the
exchange of messages between them. In addition to these
elements these sequence diagrams generally represent the
object activated by a rectangular lifeline. When an object is not
active, just existing, it has a dashed lifeline. Along the time
axis, timing notes or marks can be added. These timing marks
can be used to give constraints, like specifying the maximum
time a message exchange may take.

To obtain software that is easy to change and to maintain it
is recommended not to allow the actors to interact directly with
the business objects to avoid creating a strong coupling. This
can be resolved using the MVC design pattern.

It is to remember that the SDSIB used in this paper and
which is considered as the principle source model of the
transformation to generate the code is traced basin on the EPM
formal syntax, therefore each message has a precise semantic
the will lead us to generate the source code.

A. Meta-model of SDSIB

Figure 2 below shows the used source meta-model of
SDSIB that presents the different messages sent by the actors
implied in the uses case. For each incoming message a set of
operations that represents the exchanged messages or
interactions between objects will result. The operation may
have parameters and return a value and it is concerned by two

objects: source object that represents the object that will invoke
the operation and target object that will contain and execute the
operation. As it was mentioned above, we specify three types
of objects to implement the MVC design pattern: View,
Controller and Model. Each operation belongs to an interaction
operand that can be simple or a combined fragment (loop,
ALT…).

We can see that the used meta-model is slightly different
from the standard UML sequence diagram [32, 33, 34] without
opposing with it or with the Meta Object Facility (MOF) [35].
Indeed, the SDSIB is a particular sequence diagram that
contains whole interactions to respond to the message
incoming from actors to the system. On the other side, the
SDSIB meta-model presents several ordered operations. An
operation has parameters and a return value. Each operation
has also two extremities: source class and target class which
can be any kind of classes (view, controller or model). Each
operation concerns an incoming message trigged by an actor
which can be principal or secondary.

B. SDSIB of the running example

Figure 3 shows resulting model of the SDSIB according to
the running example “buy item” after the execution of the
model transformation that was based on the EPM toolset. We
can see that the whole operations regarding the post-condition
declared in EOC are generated with all details necessary to
draw the SDSIB. For example, the operation “findItem (code:
int): Item” according the post-condition association number 3
in EOC, has as source class: the object controller called:
“Handler_Buyitem”, as target class: Catalog. The order of the
operation is 3 related to its post-condition and it has code as
parameter. Finally, the operation returns an object Item.

Figure 2: Meta-model of the sequence diagram of system’s internal behavior

name : EString

View

PrincipalActor

operations operand

0..* 0..1

name : EString

Actor

SecondaryActor

1

1

actor sent

name : EString

 order : EInt

InMessage

name : EString

Parameter

0..*

1

1..*

name : EString

System

name : EString

Class

name : EString

Controller

name : EString

Model

name : EString

order :EInt

Operation

name : EString

Type

TypeWrapper

TypePrimitive

Alt

CombinedFragment

InteractionOperand

1..* operands

0..1 fragment

Loop

Opt

-clause :EString

Condition

guards 0..*

1

parameters

type

1

view

classes

1 1..*

1..*

source target 1 1

operations
1..*

1

return

access

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 01– Issue 02, November 2012

 www.ijcit.com 135

Figure 3-a: SDSIB of the running example.

Figure 3-b: SDSIB’s ecore diagram of the running example.

 : Shopper
LC: LineCart : View : Controller C: Cart Cat: Catalog It: Item

System

Add item to cart

C.addToCart(LC) :void

C.setTotal(T:float):void

LC.getAmount() :float

LC.computeAmount():float

LC.getQuantity():int

It.getPrice() :float

C.getTotal) :float

LC.setItem(It :Item):void

LC.setQuantity(qt :int)

displayTotal():float Display Cart amount

Loop

C.computeTotal():float

addItem(ref,qt)
LC=createLine()

LC=LineCart()

It=Cat.findItem(ref :int):Item

LC.setAmount(M):void

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 01– Issue 02, November 2012

 www.ijcit.com 136

V. CODE GENERATION BY MODEL TRANSFORMATION

Since UML has become a standard for object oriented
system modeling and used during the whole system
development process to represent its different views of
abstractions, it is interesting to investigate how we can generate
code from these models. However, UML remains largely
undefined from a semantic point of view because it is not made
for a domain specific language and thus the code generation is
too difficult. To overcome these problems, many works related
to this topic have been done to customize UML with new
formal basis to adjust it to a domain specific language (DSL)
thus allowing the code generation.

In this paper we present a model transformation approach
to generate code from the sequence diagram of system’s
internal behavior (SDSIB) which is one of the most important
platform independent models of the design phase in software
development process. It shows how the systems objects
collaborate and interact to execute the uses case. However,
code generation from the sequence diagram as it is specified by
the OMG seems impossible. For that, we will use the SDSIB
generated using the EPM toolset in which operations are
defined according to a precise formal syntax. Indeed, this
toolset defines list of interactions between systems objects as
following: request for object creation or destruction, object
association or objects association break, check operation,
display operation and calculate operation. Understanding the
semantic of each one of these operations allows an easy code
generation for the suited platform. Moreover, since this SDSIB
implements the MVC design pattern to build a system that is
easy to maintain and to evolve, we will generate the code for
the controllers methods which contains the main code to
execute the use case which is generally a set of systems
object’s method calls, thereby another contribution of this
work.

The platform used in this paper is JAVA. However we will
generate a structural model for the suited platform instead
generating directly the code, i.e. we will first generate a
platform specific model (PSM) form the PIM SDSIB by the

means of a model-to-model transformation before generating
the code from this PSM by a model to code transformation.
Such intermediate models allow for extending the platform
with additional features before generating the plan text. To
illustrate this aspect, we will extends the JAVA platform to
support the EJB capabilities by applying EMF profile for EJB 3
to generate the code for data manipulation methods
(Create/Retrieve/Update/Delete). Finally, the code source will
be generated according to the JAVA Enterprise platform.

To perform these transformations we will use ATLAS
Transformation Language (ATL) [36, 37, 38] which is a
domain-specific language for specifying model-to-model
transformations. It is a part of the AMMA (ATLAS Model
Management Architecture) platform. ATL is inspired by the
OMG QVT requirements [39] and builds upon the OCL
formalism [31]. The choice of using OCL is motivated by its
wide adoption in MDE and the fact that it is a standard
language supported by OMG and the major tool vendors. It is
also considered as a hybrid language, i.e. it provides a mix of
declarative and imperative constructs.

In section A we present the metamodel of the JAVA
platform [5], and in the next one we will present the different
mapping rules performed to generate this JAVA model with
the method bodies. Section C is dedicated to controller’s
methods generation. Section D introduces the EMF profile for
the EJB 3 and CRUD operations generation.

A. Java meta model

The choice of the JAVA platform was arbitrary. Indeed, we
had to choose a platform supporting oriented-object
programming language. Also, the JAVA platform is a good
example to illustrate the possibility of extension by applying
profile. We have used the metamodel proposed by the OMG
consortium [5] in which all the elements of the Java platform
are represented with the same semantic as it specified by Sun
Microsystems such as JavaClass , types packages and methods.
The EClass Method was enriched by an additionally body
attribute to represent the body code of the generated method.

Figure 4: The JAVA metamodel [5]

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 01– Issue 02, November 2012

 www.ijcit.com 137

Since the Java platform allows only simple inheritance,
designer have to restrict their domain class diagram with
respecting this java metamodel, otherwise code generated will
not be compiled correctly. Designer can use interfaces and
other mechanism to fix this issue at the DCD metamodel level.
It is to remember that interfaces are generalized elements and a
class can implement any number of them.

B. Mapping rules for Java model generation

In this section we present the mapping rules that allowed us
to generate the java PSM from the PIM SDSIB. This last one is
build based on the EPM toolset which means that every
message or operation in this diagram has a specified semantic
as it was determined in that toolset allowing thus its body’s
code generation. Before generating the body code of the
methods, we will first generate the corresponding JavaClass
for the objects that interact in the SDSIB based on the Domain
Class diagram (DCD).

Every Model class in the SDSIB will be mapped to a
JavaClass with same name. The other information like
visibility, modifier, package name, supper class and fields are
retrieved (using the helper [helper context MMDCD!Class def:
getSuperClass : MMJava!JavaClass=]) from the DCD as
shown in Figure 5 below. The fields are mapped from the
Model class’s Attribute in the DCD with their Type that is
mapped also to the corresponding JavaType. If the package is
undefined, a default package called models is used. The helper
[helper def: getPackage(className:String):
MMJava!JavaPackage=] allows packages generations. To map
the various associations between classes which is represented
by the EReference Extremity (i.e. Association end) in the
DCD, a pseudo field of the same type as the object at the end of

the association will be created and assigned to the class if the
maximum multiplicity is less than or equal to 1, otherwise it
will be mapped with a field of type array of the same type as
the object at the end of this association.

To implement the design Pattern MVC a controller and at
least a view will be created for each use cases. For the running
example and regarding to the EPM toolset controller are
prefixed by the term “Handler_” and Views by “View_”. Also,
we have opted for choice of one controller by uses case.

Referring to the operations which represent the interactions
between objects, they are mapped to Java methods and their
parameters to a JavaParameter with the corresponding
JavaType. It is to remember that the operations are predefined
and each one has a very accurate semantics allowing thus to
generate automatically the source code for most of them. These
operations are: find, set, add, remove, get, create, calculate,
display, check and constructor.

Before generating the body code, first we have to determine
the kind of the operation, for this we have developed in ATL
the following helper [helper context MMSDSIB!Operation def:
getOperationKind: String=], then another helper [helper
context MMSDSIB!Operation def :getMethodSignature: String
=] allows us to get the method signature with full detail :
[visibility modifier returnType methodName(param1Type
param1,…)], finally, the method’s body will be generated with
the helper [helper context MMSDSIB!Operation def:
getMethodBody: String=]. This last one uses the
getOperationKind helper to determine method type and
generate then the code according to the semantic of this
operation. It uses also the getMethodSignature to get complete
name for the method including parameters and their types.

Figure 5: Mapping rules for Classes, attributes and association ends.

Source model : SDSIB

Model class is

mapped to

JavaClass

Simple attributes

are mapped to field

If no package is defined,

model sis default one

Association ends are

mapped to a simple field

with the same type as the

object at the end of it if

multiplicity is less than 1 Domain Class Diagram

Generated structural model

for java

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 01– Issue 02, November 2012

 www.ijcit.com 138

To generate the body of the method we need first to know
whether it is a constructor or not. Indeed, the operations in the
SDSIB do not specify this information. The helper [helper
context MMSDSIB!Operation def: isConstructor: Boolean=]
resolves this problem by analyzing the name of operation and
its return type. A constructor has an undefined type (not void or
anything else) and its name corresponds to a model class in the
DCD. Thus, the helper getMethodBody tests whether it is
constructor, if so then the body of the method will be in the
form:

The ClassName and constructor visibility are deduced
respectively from the target and visibility properties of the
operation. If the Model class subject to the constructor has a
supper class then the method will contains at the beginning a
call of the constructor of the supper class with the parameters
related to it.

For example in the running example, the operation +
LineCart has an undefined return type and corresponds to an
domain class, it will be mapped to a constructor for the class
LineCart.

The operation create consists in creating object according
to the Creator GRASP Pattern. The target object for this
operation is the responsible or the “creator” object for creating
contained objects. This method uses the Constructor of the
subject class to create and return the created object. The
operation createLineCart is an example of this kind (Figure 6).

In the case of add and set methods which are used to
express in term of EPM toolset a formed association. These
methods allow thus to associate an object to subject class
depending on the multiplicity of the association end. If this
multiplicity equals 1 then the association is mapped by a
simple field in the subject class with type of the associate
object. In this case the set method will be used, otherwise, the
association is mapped by field of type array and then a add
method is needed to associate the object. The method set can
be used also to express attributes modification i.e a simple
setter. For example, while the operation setQuantity is used to
modify the property quantity of the LineCart, setItem is used to
associate the object Item passed as parameter with the subject
class LineCart.

The operation set will thus generate a simple setter for
fields with primitive type and a customized setter for field with
type of JavaClass to express the association. Before
associating this last one to the subject class, we check if the
object is whether associated with another object, if so, we have
to break this association first by setting this property to null or
to remove it from the Collection property. The same algorithm
is applied to the add method. Figure 7 illustrates these
examples.

Operations remove and setNull are used to break an
association between an object and a subject class. While, the

remove is used when the associate object is mapped with a Set
or a collection (array type), the set Null is used when the
associate object is just a simple field. Thus, the remove method
consists in finding the related object passed as parameter and
removes it from the collection, but before that, it must be
dissociated from the subject class by eliminating its reference.
For example if we suppose that we want to dissociate the
object LineCart with the Cart having a field with type array of
LineCart, the generated code will be as following:

The setNull method allows dissociating the object from the
subject class in the case of a simple field. For example if we
want to dissociate the object Item from the subject class
LineCart the setNull method will use the setter for the property
item of the subject class and put it at null as following:

The find method allows retrieving objects by identifier. It is
used before associating or dissociating objects. To implement
this method the GRASP pattern Creator was applied which
assign the responsibility of finding objects to the subject class
that contains these objects. In other words, it has a field of
array type with this object. Finding the object by identifier is
then done by comparing the ID of each object of this array with
the key search. The first one that matches will be returned. The
generated code will be as following for the operation
findItem(int code):

The check operation is used to perform a logic test like
authentication, comparison and others. It allows executing a set
of logical test by comparing the parameters with the fields of
the subject class and returning a Boolean value. The owner of
the field is the responsible for the test as it is mentioned by the
Expert GRASP pattern. In order to build the condition to test,
we have first to determine the logical operator to use for each
parameter which depends on the parameter type itself. Indeed,
if the parameter type is a primitive type then the operator “==”
is used, otherwise, it is a wrapper type (String for example) and
then the “equals” operator is used.

public void removeLineCart(LineCart lineCart){

if(lineCart !=null){

 if(this.lineCarts.contains(lineCart)

 this.lineCarts.remove(lineCart);

 lineCart.setCart(null);

}

}

public void setNull(){

 item.getLineCarts().remove(this);

 setItem(null);

}

public Item findItem(int code){

 for(Item item: items)

 if(item.getCode()==code)

 return item;

 return null;

}

public ClassName (param1Type param1,…){

 this.param1=param1;

 …

}

public boolean checkAuth(String login, int code){

 return login.euals(this.login)&&

code==this.code;

}

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 01– Issue 02, November 2012

 www.ijcit.com 139

Figure 6: Generated code for constructor and create method.

Figure 7: Mapping rules for add and set methods.

Source model : SDSIB

Source model : SDSIB Generated structural model for java

public void setQuantity(int quantity){

 this.quantity=quantity ;

}
When the parameter has a

primitive type the operation is

mapped to a simple setter

public void setItem(Item item){

 if (item!=null){

 if

(!item.getLignearts().contains(this){

item.getLignearts().add(this);

 }

 this.item=item;

 }

}

When the parameter has a

wrapper type the operation is

mapped to setter with checking if

the object is associated to another

object or not.

public void addLineCart(LineCart

lineCart){

 if (lineCart!=null){

lineCart.getCart().getLineCarts().remove

(lineCart);

lineCart.setCart(this);

lineCarts.add(lineCart);

 }

}

The method add is used when the

subject class has Collection of the

object to be associated.

public LineCart(){

super() ;

}

public LineCart createLineCart(){

return new LineCart() ;

}

Source model : SDSIB

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 01– Issue 02, November 2012

 www.ijcit.com 140

Finally, the destructor method allows destructing objects.
Since we use Java as a platform to implement the code in this
paper, we must remember that this platform does not define its
own destructor. This task is delegated to a special process
called the Garbage collector. However, we will map this
operation with finalize method that is executed just before
destructing the objects. Thus, developer can implement some
code to free the resources used by the object or to dereference
other objects in order to implement the “composition”
association.

While the get operation is a simple getter of a given
attribute, the display and calculate operation are used to
express a methods that perform a complex or a business logic
treatment. Generating their code source will need more details
and a language to express it. The proposed generator generates
code skeletons from the structural models for these methods
and the programmers could complete their behavior manually
by writing code in a specific programming language and for a
specific technology platform. However, this approach breaks
the portability, interoperability, and reuse objectives of MDA.
UML 2.0 addresses the shortcomings of the UML in behavioral
modeling by introducing UML action semantics, which defines
atomic behavioral units that allow behavioral modeling of
methods at the Platform Independent Modeling (PIM) layer.
Although UML 2.0 was released a few years ago, there is no
mapping from UML actions to any programming language and
there is also no tool for code generation from UML action
models. In [22] a tool for behavioral modeling was provided, it
defined textual and visual notations for UML actions and built
supporting editors. Further, it defined also a mapping from
UML actions to Java and model compilers were built, which
support the generation of complete and compile-ready
applications including their behavioral parts. There is also
many other works allowing the code generation for such
method based on the Petri nets or defining a special DSML.

C. Code generation for Controllers

The source model of the performed transformation
implements the design pattern MVC in order to produce
software that is easy to maintain and to evolve. Therefore,
besides model classes, we have a view and a controller classes.
Note that the designer may indicate that a model class is the
controller. The number of these controllers depends on the
strategy made by the designer which can be a unique controller
and here it is called the MVC2, it can be also a controller for
each actor. We opt for a controller for each use case. In this
paper we will generate also the code for these controller’s
methods to execute the use case.

Indeed, the used SDSIB as a source model for the
transformation by the means of the EPM toolset enriched with
many detail such as the source object which invokes the
operation and the responsible for this operation as well as the
order of this operation in the whole sequences and the different
interaction operand within it is used. Thereby, the body
generation of controller’s method is possible. The controller
coordinates the system objects to execute the use case, in fact
for each message coming from the view a controller method is
defined to provide a response. This method usually contains

only methods invocation, either for object creation, attribute’s
modification or other depending on the type of operation and
some control structure such as loops and conditions.

The code generator will generate for each use case a
controller if no domain class is referred as a controller with
methods corresponding for each incoming message (InMessage
in the SDSIB). The helper [helper context
MMSDSIB!InMessage def: getControlerMethodBody:String=]
is used to generate the body of these methods. It provides the
full signature with implemented code. Therefore, this helper
focuses only on resulting operations of the concerned incoming
message which have as source object attribute the controller.
These operations are sorted by their order and are processed
according to their return type. For example, before invoking a
method we have first to get the instance of the object into
which the method bellow, so we have to look first for the
predecessor method that return the instance of this object. Or if
the method needs a parameter, we have to look for it first from
the incoming message parameter, if it is not found then we
check of the returned parameter of the previous ones.
Concerning the interaction operands, that have to be mapped to
their corresponding control structure with the included code
block corresponding to interaction within this operand, the
helper getControlerMethodBody the helper [helper context
MMSDSIB!Operation def: startOfOperande: String=] which
for each operation insert the statement corresponding of the
type of the interaction operand at the correct place. For this it
uses the helper [helper context MMSDSIB!Operation def:

getPreviousInteractionOperand(): MMSDSIB!InteractionOperand=]
to check whether is this operation is the first one in the
interaction operand or not, if yes the structure is inserted here,
otherwise it is already inserted and no statement is placed here.
Also for each operation we have to check if it is the last one of
the block so we can place the bracket to indicate the end of the
block. For this we use the helper [helper context
MMSDSIB!Operation def: finOperande: String=] which uses
the getPreviousInteractionOperand() and
getNextInteractionOperand() to detect the end of the block and
also it is a recursive function because the interaction operand
can be simple or a Combined fragment of many interaction
operands so many brackets have to be placed correctly at end
of the block.

According to running example, we have generated one
controller with one method. Below the code that was
generated.

public static void add_item_to_cart(int code, int

quantity){

 LineCart lineCart =cart.createLinecart();

lineCart.setQuantity(quantity);

Item item =catalog.findItem(code);

 lineCart.setItem(item);

 cart.addLinecart(lineCart);

float Total =cart.getTotal();

GUI_Buyitems.displayTotal();

}

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 01– Issue 02, November 2012

 www.ijcit.com 141

D. Applying EJB profile

1.Introduction to profiles

UML is currently considered as the standard for object-
oriented systems modeling. However, it remains largely
undefined for specific domain. To resolve this problem,
Domain-Specific Modeling Languages (DSMLs) have been
introduced to provide designer modeling languages appropriate
to their business domain. However, DSMLs should
continuously evolve to adapt to the changing needs of the
domain they represent. Changing the metamodel is a very
costly process that requires changing its metamodel and
possible re-creating the complete modeling environment.

UML has avoided these problems by promoting the use of
profiles that provide a lightweight, language-inherent extension
mechanism to the UML by defining custom stereotypes, tagged
values, and constraints. Profiles allow for adaptation of the
UML metamodel for different platforms (such as J2EE or
.NET), or domains (such as real-time or business process
modeling) [35]. The profiles mechanism is not a first-class
extension mechanism. It does not allow to modify existing
metamodels or to create a new metamodel as MOF does.
Profile only allows adaptation or customization of an existing
metamodel with constructs that are specific to a particular
domain, platform, or method. It is not possible to take away
any of the constraints that apply to a metamodel, but it is
possible to add new constraints that are specific to the profile.
Metamodel customizations are defined in a profile, which is
then applied to a package. Stereotypes are specific metaclasses,
tagged values are standard metaattributes, and profiles are
specific kinds of packages.

One of the major advantages of UML Profiles is the ability
to systematically introduce further language elements without
having to re-create the whole modeling environment such as
editors, transformations, and model APIs. In contrast to direct
metamodel extensions, also already existing models may be
dynamically extended by additional profile information without
recreating the extended model elements. One model element
may further be annotated with several stereotypes (even
contained in different profiles) at the same time which is
equivalent to the model element having multiple types.
Furthermore, the additional information introduced by the
profile application is kept separated from the model and,
therefore, does not pollute the actual model instances.

2. EMF profiles

Since UML profile is located at the same level of
abstraction as UML itself, it can only used to extend UML
models. In this paper we use the EMF platform that uses the
ECORE metametalanguage to create different metamodels,
therefore we cannot use UML profiles to extend our DSML,
hence the need to use EMF profile [22]. Also, the model
transformation language ATL used in this proposal does not
support UML model, only models based on Ecore metamodel
can be used as a source models of the transformation.

The main objective of applying profiles in this paper is to
show how the generated structural model of the performed

transformation can be extended with new features before
generating the implementation code. As an example we have
applied the EJB3 profile [5, 6] that is presented in the next
section. The use of profiles has many advantages like the
ability of annotating model slightly as possible; hence, no
adaptation of existing metamodels should be required. Also, It
avoids polluting existing metamodels with concerns not
directly related to the modeling domain separating annotations
from the base model to allow importing only those annotations
which are of current interest for a particular modeler in a
particular situation.

To incorporate the profile mechanism into EMF, a language
for specifying profiles is needed as a first ingredient. This is
easily achieved by creating an Ecore-based metamodel which
is referred to as Profile MetaModel that will be instantiated to
create a specific profile, containing stereotypes and tagged
values. Once a specific profile is at hand, users should now be
enabled to apply this profile to arbitrary models by creating
stereotype applications containing concrete values for tagged
values defined in the stereotypes [35].

3. EJB3 profile

Here we provide an example for extending the generated
java model of the performed transformation by applying the
EJB 3 profile [5, 6, 40] established based on EMF profiles.
Thus, we can generate an additionally source code like CRUD
operation allowing persistence by the mean of the EJB entities
and the EJB sessions.

Figure 8 presents the different elements of this EJB profiles
represented by a set of Stereotypes and tagged values. We have
presented also the metaclasses of the Java metamodel that were
extended. For example, the stereotype “Field” is used to
extends the metaclass JavaField (java class attribute) with the
necessary information for the complete mapping of the related
column such as nullable or updatable constraints, whether the
field is an identifier or not and the column name that is
necessary if the attribute and the column have different names.
It defines both stateful which is a session bean that represents a
conversational session with a particular client, such session
objects automatically maintain their conversational state across
multiple client-invoked methods, and stateless session beans
that represent an EJB Bean without state for a client that will
invoke only one method. The client of a session bean may be a
local client, a remote client or a web service client depending
on the interface provided by the bean and used by the client.
An entity object represents a fine-grained persistent object. The
client of an entity bean may be a local client or the client may
be a remote client. An EJB Method is declared by a Java
Method declaration within an EJB Home or Remote Interface.
The EJB Method is an EJB Home Method, if declared within
an EJB Home Interface, or an EJB Remote Method, if declared
within an EJB Remote Interface. The declaration of an EJB
Remote Interface extends the declaration of a Java Interface
with EJB Deployment Descriptor elements for an EJB
Enterprise Bean. The name of the EJB Remote Interface and
the related EJB Home Interface are specified by remote and
home elements in the entity or session element for the EJB
Enterprise Bean.

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 01– Issue 02, November 2012

 www.ijcit.com 142

Figure 8: The EJB profile with the different extended metaclasses

The second transformation performed in this paper is a model-
to-code transformation that will allow for transforming the
generated structural model of the java model which has been
enriched by applying the EJB profile, the code source
according to the JAVA platform. Thus, for each Java class a
java file will be generated containing the source code of the
class including their methods (signature and body) and EJB
annotation for the JAVA class that are stereotyped with
“EJBEntity”. Moreover, for each persistent class, a Stateless
EJBSessionbean and its corresponding Remote or Home
interface will be generated implementing the detailed source
code of CRUD operation for data manipulation as well as the
configuration file for persistence “persistence.xml”. These
operation are : save() which perform an initial save of a
previously unsaved EntityClass entity; delete() to delete a
persistent EntityClass entity; update() which allows to persist
a previously saved EntityClass entity and return it or a copy of
it to the sender, a copy of the EntityClass entity parameter is
returned when the JPA persistence mechanism has not
previously been tracking the updated entity; the findById()
allowing the retrieve an EntityClass by identifier and the
findAll to retrieve all instance of this EntityClass.

The Figure 9 below shows the generated code for the
running example shown in Eclipse editor and Figure 10 shows
the generated stateless bean and Interface for an example of a
persistent Entity Class EntityClass.

Figure 9: The generated source code for the running example.

The Java metamodel

The EJB Profile

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 01– Issue 02, November 2012

 www.ijcit.com 143

Figure 10: A universal example of the generated session bean for an Entity
class

VI. EVALUATION

The best way to evaluate the presented generator is to
compare it with a successful framework in its cadre. In related
work section we present many tools and code generators
implementing MDA for code generation. So far, there are no
complete tools to manner the whole IT project using a software
engineering process. Moreover, the generator uses the SDSIB
that allows a true oriented object modeling for compartmental
behavior of system and implements the MVC design pattern
for easy software to maintain and evolve. Thus, system’s
objects with their methods body including controller’s methods
were generated. However, the generator does not allow the
generation for special method that performs some business
logic such as calculating and displaying. The result for some
systems such as management of book loaning in a library is too
impressing. In fact, in such systems, most operations are
association formed, association broken or attributes
modifications. Anyway, even the generator cannot generate
completely the code in some case it allows to generate a large
and important part of the software. This software ensures the
following quality criteria of software engineering:

Evolution: since, the SDSIB PIM used in the
transformation implements the design pattern MVC, the
generated software is thereby easy to maintain and evolve. The
resulting software is structured in many layers, so we can
separate concerns of application. This architecture enables
software evolution without affecting the whole structure. For
example, if we need to change the API for data access, all we
need to do is to change the DAO layer, other layers as GUI and
Business Object will not need any adaptation.

Maintainability: During the development process, if any
changes occur in the first increments such as Domain Class
Diagram or even in the nominal scenario of the uses case, the
first transformation will be executed to regenerate the SDSIB
and then the second transformation will be performed to
regenerate the source code automatically, especially that the
generation of the code from the SDSIB does not requires
designer involvement. Thus, we can reduce the time and cost of
software production. Also, with implementing MVC design
pattern the software became easier to maintain.

Extensibility: The approach we proposed to implement the
code generator use a structural model to represent the code for
the specified platform instead plain text. Thus the platform can
be extended by other features or customized for some to deal
with some constraint by applying an EMF profiles.

Table 2 below presents a comparison study of some code
generator based on criteria of the generated code details and the
architecture of the generator. We can see that the Stratego/XT
which is a language for creating generators cannot be used
directly for code generation. In fact we need first to create the
generator using this language and then implementing the
specific details for the chosen platform. While, classic code
generator based on Petri nets still not yet standardized and
used only for requirement validation purpose and not adapted
to complex Oriented object systems, [12] provides a code
generator that covers many phases of software development
process and supports complex O.O systems, but it does not

import javax.ejb.Stateless;

import javax.persistence.EntityManager;

import javax.persistence.PersistenceContext;

import javax.persistence.Query;

@Stateless

public class EntityClass implements

EntityClassLocal, EntityClassRemote {

@PersistenceContext

private EntityManager entityManager;

public void save(EntityClass entity) {

 try {

entityManager.persist(entity);

 } catch (RuntimeException re) {

 throw re;

 }

}

public void delete(EntityClass entity) {

 try {

 entity =

entityManager.getReference(EntityClass.class,

 entity.getId());

 entityManager.remove(entity);

 } catch (RuntimeException re) {

 throw re;

 }

}

public EntityClass update(EntityClass entity) {

 try {

 EntityClass result =

entityManager.merge(entity);

 return result;

 } catch (RuntimeException re) {

 throw re;

 }

}

public EntityClass findById(IDType id) {

 try {

 EntityClass instance =

entityManager.find(EntityClass.class, id);

 return instance;

 } catch (RuntimeException re) {

 throw re;

 }

}

public List<EntityClass> findAll() {

 try {

 final String queryString = "select model

from EntityClass model";

 Query query =

entityManager.createQuery(queryString);

 return query.getResultList();

 } catch (RuntimeException re) {

 throw re;

 }

 }

}

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 01– Issue 02, November 2012

 www.ijcit.com 144

Table 2: Comparison study of tools for code generation.

 Criteria

code generator

Don’t uses
concrete
syntax

Uses
structural
model

Support the
entire dev.
process

Supports O.
O. systems

Generates
CRUD
operations

Generates
Controllers

Generates
method
bodies

Generates
GUI
interfaces

Stratego/XT

WebDSL

Acceleo

Classic Tools based on Petri nets

code generation from high-level
Petri-Nets [26]

Generating operation
specifications [44]

WebML

The proposal

allows GUI interfaces, CRUD operation and controllers
generation. WebDSL is efficient code generator for only web
applications which allows the generation of the whole
application including GUI and CRUD operation. However, it
uses special concrete syntax and does not support the whole
development process and also it is not suitable for complex O.O
systems. WebML is also a code generator for web application
but it does not use a structured model nor supports the whole
development process. Acceleo is another relevant code
generator that allows the generations of almost of the source
code for the software, even it does not uses a structural model
instead generating directly the plain text which affects the
extensibility of the target language and it does not implements
the MVC design pattern. This comparison study shows also that
the proposal supports the whole development process and O.O
complex systems and allows generating code without using a
concrete syntax. It uses a structural model for the code to enable
the languages extensibility and generates automatically the
almost of the methods bodies including controllers. However, it
does not allow generating GUI.

The main advantage of the proposed generator is that it
covers the whole development process from requirement
specification to code generation. Thus the generated code
presents all the functional software quality criteria offered by
such process like validity and reliability and robustness. Also,
the increments are deduces automatically from each other. The
generator does not require the involvement of the designer for
generating every increment. For example, the code is generated
from the SDSIB automatically which is also generated
automatically from the SDSEB.

VII. CONCLUSION AND PERSPECTIVES

Due to the model driven architecture initiative of the OMG,
automatic code generation is nowadays a topic of major
interest. The main theme of this article is code generation by
model transformation. The core idea is generation of code for
the java platform from the SDSIB source model, one of the
most important diagrams of the design phase and which is

generated automatically by means of the EPM toolset
developed in our previous work that extends the operation
contract of LARMAN with a new semantic. The key idea
behind this transformation is generating an intermediate
structural model instead of the plain text directly. We have
demonstrated that generating such intermediate model has
many advantages like enabling extensibility of the target
platform. For an example we have extended the java model to
support EJB capabilities allowing thus generation of different
data access operations through the Java beans entity and java
session beans by applying an EMF profile for EJB3. The
generated code provides more details such as complete methods
signatures and methods body with full source code for the
almost operations. An introduction of UML profile and EMF
profile was also given in this proposal. We have also shown
how we can produce software that is easy to maintain and
evolve by implementing the design pattern MVC. Thus, the
code for the controllers was also generated in this paper. This
work this work crowns its predecessor that have presented an
approach for automating software development process from
the requirement specification to code generation.

In this paper, we described several techniques for code
generation and especially these subscribed in the MDA
approaches and concerns object oriented modeling. An
overview of the relevant works to our topic was introduced as
well as our previous works in which we have introduced an
approach to automate the whole software development process.
We have demonstrated that even there are several tools for code
generation; these tools do not really allow a true automatic code
generation for the whole software development process.

The proposed code generator is too efficient for true object
oriented systems where almost interactions between objects to
execute the uses case are creating or destructing objects,
association formed or broken and attributes modification. In
such systems the generator allows the generation of the totality
of the code. On the other hand, for systems where there are
many businesses methods such as calculating some values, the
generator does not allow code generation for such methods. As

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 01– Issue 02, November 2012

 www.ijcit.com 145

for future studies we intend to complete this code generator to
generate source code for such calculate methods by using for
example UML 2 action that allows representing compartmental
behavior of method in object oriented systems by means the
activity or state transition diagrams or in a specific DSML.
Also, we intend to improve this generator to support generating
GUI interfaces for different uses cases.

REFERENCES

[1] OMG: MDA GUIDE, Version 1.0.1 Object Management Group
document number omg/2003-06-01 available at
http://www.omg.org/docs/omg/03-06-01.pdf

[2] OMG :Object Management Group. www.omg.org
http://www.omg.org/docs/omg/03-06-01.pdf

[3] Girault, C., Valk, R., 2003. Petri-Nets for Systems Engineering.
Springer, berlin.

[4] Philip Langer, Konrad Wieland, Manuel Wimmer, and Jordi Cabot: "
From UML Profiles to EMF Profiles and Beyond " In Proceedings of the
49th Conference on Objects, Models, Components and Patterns
(TOOLS'11), 2011. LNCS 6705, Springer.

[5] OMG, Metamodel and UML Profile for Java and EJB Specification ,
February 2004, Version 1.0 formal/04-02-02

[6] EJB profile, Java Community Process under JSR-000026 (see
http://jcp.org/jsr/detail/26.jsp).

[7] EL BEGGAR Omar, BOUSETTA Brahim, GADI Taoufiq. Generating
methods signatures from transition state diagram : A model
transformation approach. Accepted for orale prsentation in Colloquim on
Information Science and Technology CIST 24-26/10/2012 à fez.

[8] Bousetta B., EL Beggar O., Gadi T., Krouile A., Transformation of
analysis class diagram to design class diagram using transition state
diagram : AN MDE approach, International Workshop on Information
Technologies and Communication, ENSEM 2011.

[9] EL BEGGAR Omar, BOUSETTA Brahim, GADI Taoufiq, Automating
software development process: Analysis-PIMs to Design-PIM model
transformation , Journal of Systems and Software - Manuscript ID JSS-
D-12-00721, under review.

[10] Uzam, M., Jones, A.H., 1998. Discrete event control system design using
automation Petri nets and their ladder diagram implementation.
International Journal of Advanced Manufacturing Systems 14 (10), 716–
728 (Special Issue on Petri Nets Applications in Manufacturing
Systems).

[11] Lee, G., Zandong, H., Lee, J., 2004. Automatic generation of ladder
diagram with control Petri Nets. Journal of Intelligent Manufacturing 15.

[12] Stephan Philippi, Automatic code generation from high-level Petri-Nets
for model driven systems engineering, The Journal of Systems and
Software 79 (2006) 1444–1455

[13] Warmer, J.B., Kleppe A.G.: Building a flexible software factory using
partial domain specific models. In: Domain-Specific Modeling
(DSM’06), Portland, Oregon, USA, pp. 15–22 (2006)

[14] Huang, S.S. Smaragdakis, Y.: Easy language extension with Meta-
AspectJ. In: ICSE ’06: Proceeding of the 28th International Conference
on Software Engineering, pp. 865–868. ACM, New York (2006)

[15] Zook, D., Huang, S.S., Smaragdakis, Y.: Generating AspectJ Programs
with Meta-AspectJ. In: Karsai, G. Visser, E. (eds.) Generative
Programming and Component Engineering: Third International
Conference, GPCE 2004, Vancouver, Canada, October 24-28, 2004.
Proceedings, volume 3286 of Lecture Notes in Computer Science, pp. 1–
18. Springer, Heidelberg (2004)

[16] Kulkarni, V., Reddy, S.: An abstraction for reusable mdd components:
model-based generation of model-based code generators. In: GPCE ’08:
Proceedings of the 7th International Conference on Generative

Programming and Component Engineering, pp. 181– 184. ACM, New
York (2008)

[17] Suzuki, J., Yamamoto, Y.: Extending UML with aspects: aspect support
in the design phase. Lecture Notes in Computer Science, pp. 299–299
(1999)

[18] Zef Hemel · Lennart C. L. Kats ·Danny M. Groenewegen · Eelco Visser,
Code generation by model transformation: a case study in
transformation modularity, Softw Syst Model (2010) 9:375–402

[19] E. Visser. Program transformation with Stratego/XT: Rules, strategies,
tools, and systems in StrategoXT-0.9. In C. Lengauer et al., editors,
Domain-Specific Program Generation, volume 3016 of LNCS, pages
216–238. Spinger-Verlag, June 2004.

[20] E. Visser. Stratego: A language for program transformation based on
rewriting strategies. System description of Stratego 0.5. In A.
Middeldorp, editor, Rewriting Techniques and Applications (RTA’01),
volume 2051 of LNCS, pages 357–361. Springer, May 2001.

[21] M. de Jonge, E. Visser, and J. Visser. XT: A bundle of program
transformation tools. In M. G. J. van den Brand and D. Perigot, editors,
Workshop on Language Descriptions, Tools and Applications
(LDTA’01), volume 44 of ENTCS. Elsevier, April 2001.

[22] Anis Charfi, Heiko Müller, Andreas Roth, Axel Spriestersbach, From
UML Actions to Java, IDM 2009, Actes des 5emes journées sur
l’Ingénierie Dirigée par les Modèles ,Nancy, 25-26 mars 2009

[23] Manoli Albert , Jordi Cabot , Cristina Gómez , Vicente Pelechano ,
Generating operation specifications from UML class diagrams: A model
transformation approach, Data & Knowledge Engineering 70 (2011)
365–389

[24] Brambilla, P.F.M., Comai, S., Matera, M.: Designing web applications
with WebML and WebRatio. In: Rossi, G. et al. (eds.) Web Engineering:
Modelling and ImplementingWebApplications, Human–Computer
Interaction Series. Springer, October (2007)

[25] Cáceres,B.V.P., Marcos, E.:AMDA-based approach forweb information
system development. In: Proceedings ofWorkshop in Software Model
Engineering (2003)

[26] Pastor, V.P.O., Fons, J.: OOWS: a method to develop web applications
from web-oriented conceptual models. In: Web Oriented Software
Technology (IWWOST’03), pp. 65–70 (2003)

[27] Pierre-Alain Muller, F.F., Studer, P., Bézivin, J.: Platform independent
web application modeling and development with Netsilon. Softw. Syst.
Model. 4(4), 424–442 (2005)

[28] Kraus, A.K.A., Koch, N.: Model-driven generation of web applications
in UWE. In: Model-DrivenWeb Engineering (MDWE’07), Como, Italy,
July (2007)

[29] Voelter, M., Groher, I.: Handling Variability in Model Transformations
and Generators. In: Domain-Specific Modeling (DSM’07) (2007)

[30] Craig Larman, Applying UML and Patterns, 3rd Edition, Prentice Hall,
2002, ISBN 0-13-148906-2

[31] OMG, « Object Constraint Language (OCL) Specification, version 2.0 »,
2006. http ://www.omg.org/spec/OCL/2.0/.

[32] Object Management Group, Inc. Unified Modeling Language (UML)
2.1.2 Infrastructure,November 2007. Final Adopted Specification.

[33] Object Management Group, Inc. Unified Modeling Language (UML)
2.1.2 Superstructure,November 2007. Final Adopted Specification.

[34] Rumbaugh, Jacobson, et al. - The Unified Modelling Language
Reference Manual - 1999

[35] Object Management Group, Inc. Meta Object Facility (MOF) 2.0 Core
Specification, January2006. Final Adopted Specification.

[36] Freddy Allilaire , Jean Bézivin , Frédéric Jouault , Ivan Kurtev, ATL –
Eclipse Support for Model Transformation (2006) : Proc. of the Eclipse
Technology eXchange Workshop (eTX) at ECOOP

http://jcp.org/jsr/detail/26.jsp

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 01– Issue 02, November 2012

 www.ijcit.com 146

[37] ATL - a model transformation technology, http://www.eclipse.org/atl/,
2012.

[38] F. Jouault, F. Allilaire, J. Bezivin, I. Kurtev, ATL: a model
transformation tool, Science of Computer Programming 72 (1–2) (2008)
31–39.

[39] Object Management Group, Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification, OMG Adopted Specification
ptc/05-11-01, 2005,

[40] Linda DeMichiel (Sun Microsystems), Michael Keith (Oracle
Corporation), JSR 220: Enterprise JavaBeansTM,Version 3.0, May,
2006

http://www.eclipse.org/atl/

