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Abstract—Relational clustering with heterogeneous data objects 

has impact in various important applications, such as web 

mining, text mining and bioinformatics etc. In this paper, we 

build a star-structured general model for relational clustering. It 

is formulated as an orthogonal tri-nonnegative matrix 

factorization. The model performs matrix approximation among 

all different data types to look for hidden cluster structure. 

Under this model, we propose a multiplicative update algorithm 

to minimize the matrix approximation error for simultaneously 

clustering of heterogeneous relational objects. The proposed 

algorithm tries to retain the orthogonality of indicator matrices, 

which make it easier for result interpretation. We also prove the 

correctness and convergence of the algorithm under the proposed 

iterative update rules. Experiments demonstrate the effectiveness 

of the proposed algorithm and the ability to co-cluster different 

data objects. 
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I.  INTRODUCTION 

Clustering divides data objects into groups or clusters of 

similar objects. It achieves simplification by representing 

complex data objects by a few clusters such that data objects 

within the same cluster are similar while data objects in 

different clusters are dissimilar. It is also called unsupervised 

learning in machine learning. Existing algorithms include k-

means [24], maximum likelihood estimation [14] and spectral 

clustering [2, 33]. Most of the conventional algorithms require 

the data objects to be homogeneous. For example, graph 

partitioning can be viewed as single-type relational data 

clustering on a graph affinity matrix, which has homogeneous 

relations. Relational data consist of objects (representing 

people, places, and things) connected by links (representing 

persistent relationships among objects). However, inter-related 

heterogeneous data objects have practical importance in a 

wide variety of applications such as text mining [9, 19], web-

log mining [39], market-basket data analysis [9, 19], and 

biological microarray data analysis [21]. In such scenarios, 

using previous methods to cluster each type of objects 

independently may not work well since the similarities among 
one type of objects sometimes depend on the other type of 
objects, thus traditional clustering methods cannot pass the 

hidden relational information along the relation chain by 
considering only one type of object at a time. 

Algorithms for clustering on bi-type relational data (bi-

clustering) has been proposed by Dhillon et al.[9]. In this 

algorithm, authors model inter-relationship as a bipartite graph 

and seek to find the minimal normalized cut in the graph with 

spectral relaxation. Some information-theory based algorithms 

have also been proposed. [15] uses an agglomerative hard  

clustering version of the Information bottleneck method [35] 

to cluster documents and then words. Dhillon et al. [10] 

propose an information theoretic co-clustering algorithm to 

monotonically increase the preserved mutual information by 

intertwining both the row and column clustering at all stages. 

Later, a more generalized co-clustering framework based on 

Bregman divergence is presented by Banerjee et al.[4]. Except 

those, approximation algorithms [34, 1] are also proposed for 

co-clustering problems. [31] presents a hierarchical Bayesian 

model for simultaneously clustering documents and terms, 

where each document is modeled as a random mixture of 

document topics and each topic is a distribution over some 

segments of the text. Another soft co-clustering algorithm [32] 

is also proposed which is able to work with any regular 

exponential family distribution and corresponding Bregman 

divergences. 
In many real applications, relationships among multiple 

data objects usually involve more than two types of data 
objects, such as transcription factor-gene-tissue specification 
[16], query-webpage-user [37] and category-document- term 
[26], etc. Some research efforts have been dedicated to 
generalize bi-clustering to more than two types of data objects. 
In [37], authors propose an approach called Recom 
(Reinforcement Clustering of Multi-type Interrelated data 
objects) to iteratively improve the cluster quality of 
interrelated data objects through a reinforcement clustering 
process. Gao et al. [17] formulate a semi-definite 
programming algorithm to partition a k-partite graph. A 
spectral relational clustering (SRC) [26] algorithm iteratively 
embeds each type of data objects into low dimensional spaces 
and benefits from the interactions among the hidden structures 
of different types of data objects. Long et al. [25] propose a 
family of algorithms to identify the hidden structures by 
approximation of a k-partite graph under a broad range of 
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distortion measures. A probabilistic framework [28] is 
proposed for relational clustering to unify various clustering 
tasks including attributes-based clustering and co-clustering. 
[8] extends and generalizes information-theoretic framework 
for high-order relational clustering. In [3], authors propose a 
multi-way relational clustering by accurately approximating 
the set of tensors corresponding to the various relations. [5] 
uses tensor to model the multi-type relationships existing in 
heterogeneous datasets and then derive a clique expansion 
algorithm to find the solution for normalized hypergraph cut. 

Nonnegative matrix factorization (NMF) can be traced 

back to 1970s and Paatero’s work [29]. Lee and Seung[22] 

brought much attention to NMF in data mining and machine 

learning. NMF has been shown effective in many applications 

such as pattern recognition, text mining etc. The hidden 

structure of a data matrix can be explored by factorization [27, 
22]. [27] and [23] introduce matrix factorization to co-
clustering optimization problem. [27] proposes an EM-like 
algorithm based on multiplicative rules. [23] proposes a hard 
clustering algorithm for binary data. NMF bi-clustering 
algorithms are also proposed by [30] and [6] in unsupervised 
and semi-supervised settings respectively. [30] presents a 
general framework for co-clustering large datasets utilizing 
sampling based matrix decomposition methods. A theoretic 
study shows the equivalence between NMF and kernel K-
means/spectral clustering [11]. 

Overall, the research on relational data clustering has 

attracted substantial attention, but there are still limited efforts 

on general relational clustering with NMF. In this paper, we 

attempt to extend orthogonal NMF and derive an algorithm for 

general multi-type relational clustering based on inter-

relational matrices. 

II. PROBLEM FORMULATION 

An undirected graph consists of a data set of homogeneous 

s points and a set of edges measuring the similarities between 

points. W is an adjacency matrix for the graph with     

  denoting edge weight (similarity) between points i and j. It 

has already been shown [19, 2] that for all partitions E into R 

clusters, the R-way normalized cut is equal to minimize 

           
 

    
 

       where    denotes matrix trace 

operator, D is a diagonal matrix with               

 ,  ∊  ×  is any matrix, with the following restrictions: (1) 

the columns of         are piecewise constant with respect to 

the clusters E. (2)    has orthonormal column          .    is 

actually a scaled indicator matrix for all s points. A spectral 

relaxation can be used to obtain the clustering by computing 

the eigenstructure of            . In a bipartite graph, there 

are two kinds of heterogeneous data points X and Y. We can 

define a new similarity matrix as follows: 

 

   
  
   

     (2.1) 

 

 

where A is interrelational matrix and       denotes edge 

weight (similarity) between points    and   . We see that the 

bipartite graph is actually a special case of a regular graph. By 

applying the above result for R-way normalized cut, we are 

able to co-cluster heterogeneous data points X and Y 

simultaneously. 

In this paper, we consider multiple heterogeneous data 

objects, whose relationships form a star structure. In 

particular, given N + 1 sets of data objects, 

              ,       
    

      
   , where      , 

       ,       and     represents the number of 

members in a set. There exists relation between each pair of X 

and    denoted by     
   , where an element   

  
denotes 

the relation between    and   
 
. Figure 1 shows an example of 

start-structured multi-type relational data. The model can be 

considered as a bipartite, tri-partite or k-partite graph if we 

take the central data type X and different number of data 

objects   . The data in Figure 1 can be denoted by four 

relational matrices R1, R2, R3 and R4. We are interested in 

simultaneously clustering X into k and   into    disjoint 

clusters. We call it general multi-type relational data 

clustering. 

The objective of spectral clustering is to minimize the 

normalized cut and maximize          
 

    
 

     . Ding et 

al. [11] showed that that spectral clustering is equivalent to 

NMF with orthogonality restriction based on the normalized 

adjacency matrix. 

 

THEOREM 1. Minimization of normalized cut is equivalent to 

NMF with the orthogonality restriction. 

    

        Proof. Normalized cut minimization is to maximize: 

 

   
            

                       

 

        Let               , it can be written as: 

 

      
            

              

               =                         
 
                     

 
 

               =                               
 
 

 

          This completes the proof.           

 

Further, in the case of bipartite graph, we can extend 

theorem 1 to have the following theorem for inter-relational 

matrix A. 
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Figure 1: Star-structured multi-type relational data 

 

THEOREM 2. In the bipartite graph modeled in Eq. (2.1), let 

   and    be scaled cluster indicator matrices for objects in X 

and Y.    and    are diagonal matrices, the diagonal 

elements are the row sums of A and   respectively. Then 

Theorem 1 can be transformed to the following orthogonal 

NMF: 

   
          

   
    

   
    

       
 
                      

 

    Proof. 

                              
    

   
    

 

                                
   

    
   

    

  
    

   
    

 
  

    

    We have             , then 

 

                       
 
 

       =      
   

    
   

    

  
    

   
    

 
    

 

  
             

 

    It is obvious to see that the equation above is equivalent to: 

 

   
          

   
    

   
    

       
 
                      

 

Theorem 2 detaches the heterogeneous objects X and Y and 

allows us to treat different objects separately. 

Consider general multi-type relational data clustering. We 

choose to formulate it as a sum of N X – Yi clustering 

subproblems, and X should have same partition in all 

subproblems. If we put in inter-relational matrix Ri, based on 

theorem 2, we can write general multi-type relational data 

clustering as: 

                   
 
 

      
 
 

       
  

 

 
                            (2.2) 

                
 

where     , is a weighting parameter for each X – Yi graph, 

   and     are scaled indicator matrices for objects in X and Yi ,  

   and     are diagonal matrices and diagonal elements are 

row sum of    and   
  respectively. 

Eq. (2.2) is NMF with double orthogonality, which is very 

restrictive and gives poor matrix approximation. We introduce 

an extra factor Si to absorb the different scales and also allow 

some degree of freedom such that we can have different 

number of clusters in X and Yi. 

Let       
    

     
    

, Eq. (2.2) can be rewritten as a bi-

orthogonal tri-factorization NMF. We want to minimize the 

following objective function: 

                                  
  

  
                        (2.2) 

 

           
                             

III. PROOF OF ALGORITHMIC CONVERGENCE AND 

CORRECTNESS 

In this section, motivated by [13], we propose an algorithm 

to co-cluster multiple relational objects and prove the 

correctness and convergence of the algorithm. The algorithm, 

called Orthogonal NMF Relational Clustering (ONRC), is 

summarized in Table 1. 

 
TABLE I ORTHOGONAL NMF RELATIONAL CLUSTERING 

 

Orthogonal NMF Relational Clustering 

1. Input: Number of clusters k,    for central object X and Yi 

 Relational matrices Ri and graph weight wi for each X-Yi 

graph 

2. From matrices       
    

     
    

 

3. Initialize        by K-means, then set 

        + 0.2 

         + 0.2 

              
4.  repeat 

   update    
 

           
            

     
 
   

         
        

  
       

                                  (3.4) 

   for i=1 to N do 

     update        
 

              
            

           
       

                                          (3.5) 

 
                

   
        

       
   

        
                                          (3.6) 

   end for 

 until convergence 

5. Cluster membership analysis 

 for each object    in X 

                   

 for each object   
 
 in    
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A. Correctness  

The update rules in Eqs. (3.4) - (3.6) ensures the 

convergence of the algorithm and the solutions satisfy the 

KKT complementarily condition. 

We introduce Lagrangian multipliers μ0, μi, μi+N,   ,    and 

minimize the following Lagrangian function from Eq.(2.3): 

                               ) 

 

               =               
  

  
                                        (3.7) 

 

                        
        

       
              

   
    

 

                         
              

         
    

      

Based on KKT complementarily conditions 
  

   
  , 

  

   
  , 

and 
  

    
  , we can get the following equations, 

 

            
         

     
              

         (3.8) 

       
                  

            

       
                

 
                       

KKT conditions give 

                                                       = 0               (3.9) 

where   is the Hadamard product operator. Substitute Eq. (3.8) 
into Eq. (3.9), we have the following equations: 

             
         

     
        

 
              (3.10) 

       
                  

              

        
                

 
                        

   and    can also be computed [13], 

         
        

     
      

   
                                     (3.11) 

         
   

            
 
           

Based on Eqs (3.10, 3.11), we can derive the updating rules of 
Eqs. (3.4 – 3.6). We can prove that Eq (3.10) are satisfied if X, 

Si and     are locally minimized. 

B. Covergence 

In this section, we prove hat               
 
 
 

 
    is 

decreasing monotonically under the update rules Eqs. (3.4 – 

3.6). 

A function                is called an auxiliary function of 

           if it satisfies                            and 

                          for any         and      when     
and     are fixed. If we define 

                                
then we have 

                                                   
then          is monotonically decreasing or nonincreasing. 

We have 

                     
  

 

   

          
             

  

 

   

             
      

       
              

 

   

 

We can show that the following function is an auxiliary 

function of           . 

                

        
 

 

   

         
             

    

 

     

  
               

   
     

 
    

  
    
      

    
   

  

 

It is obvious that when               the equality holds 

                         . Second, we can show that the 

inequality                           holds. The third term in 

               is always greater than or equal ti the third term 

in           . If we take the gradient and set it to sero, we can 

obtain the minimum of               . 

                 

     
     

               
    

 

     

   
               

   
     

 
    

  
    
     

    
   

  

   

If we substitute    in Eq. (3.11) into the above equation, we 

can derive the update rule of Eq. (3.4) for X. Thus we have 

                             . Therefore, under this update 

rule,          decreases monotonically when    and    are 

fixed. 

Similarly, we can also prove that the update rules of Eqs. 

(3.5, 3.6) are also monotonically decrease. Obviously, since 

Eq. (2.3) is bound from below, the algorithm will converge. 

C. Initialization 

We may use K-means to initialize. The rules can be 

defined as follows: 

(1)    : run K-means on rows of any of Qi with cluster 

number k, then we set   ←    + 0.2. 

(2)    : run K-means on columns of Qi with cluster number 

ki, then we set    ←    + 0.2. 
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(3) For each Si, set the derivative 
  

   
   in Eq. (2.3), we 

obtain            . 

IV. DISCUSSION 

In this section, we discuss the relationships between 

ONRC, spectral graph clustering and other related multi-type 

relational data clustering algorithms. 

 

A. Graph Clustering 

Graph clustering is an important problem in many fields. 

Existing algorithms are based on different definitions of graph 

cut, such as minmax cut [12], ratio cut [20], NCut [33] etc. 

Spectral graph clustering is equivalent to NMF on a pairwise 

similarity matrix [11]. ONRC is based on this idea, and further 

extract the relation information between different data objects 

by matrix approximation on inter-relational matrices. Dhillon 

et al. [9] propose bipartite spectral graph partitioning to co-

cluster relational data. The algorithm is converted to a singular 

value decomposition. In ONRC, the matrix factorization for 

each bipartite graph is          
   , , if we restrict    to be 

diagonal, the matrix factorization is equivalent to SVD. 

Because of the diagonality, bipartite spectral clustering can 

only have same number of clusters in different type of objects. 

In ONRC, the restriction is removed so that ONRC could have 

different number of clusters in different types of data objects. 

Gao et al. [17] propose a consistent bipartite graph co-

partitioning (CBGC) algorithm for heterogeneous data co-

clustering. CBGC is a tripartite graph partition algorithm and 

tries to find a consistent partition in the common data objects 

shared by both bipartite graphs. The algorithm is based on 

graph clustering theory and seeks to minimize sum of 

normalized cuts of two bipartite graphs. In this sense, ONRC 

is equivalent to CBGC with Si be identity matrices, but CBGC 

formulates graph cut minimization as an SDP problem which 

is known for high computation cost. 

B. Other relational ClusteringAlgorithms 

Several relational data clustering algorithms have been 

proposed, such as SRC [26], relational summary network 

(RSN) [25], mixed membership relational clustering (MMRC) 

[28] etc. SRC has an objective function: 

     
  

       

                
 
 

where Ci is indicator matrix. This formula is similar to 

Eq.(2.3). SRC uses spectral decomposition by taking the 

leading eigenvectors to minimize the objective function, while 

ONRC uses orthogonal NMF by multiplicative update, but the 

computation of eigenvectors is always expensive. SRC has to 

use K-means or other post-processing methods to extract 

cluster structure, which increases both computation cost and 

clustering errors. 

RSN tries to approximate a k-partite graph to a hidden 

relation summary network by minimizing 

                  

       

 

where Ci is an indicator matrix, D is a distance function. The 

distance function is generalized as Bregman divergence. RSN 

can be considered as a generalized K-means on k-partite 

graphs with various Bregman divergences. If we choose D as 

euclidean distance, the objective function of ONRC is 

equivalent to that of RSN with normalized relational matrices 

and orthogonality. 

MMRC is based on a probabilistic model for relational 

clustering. Membership vector of each object is assigned 

based on parameters which denote the probability the object 

associates with each latent class. MMRC seeks to maximize a 

log-likelihood function which is an estimation of the 

parameters for latent variables. It has been shown that the 

edge-cut based graph clustering is equivalent to MMRC model 

under normal distribution with the diagonal constraint on 

parameter matrix[28]. In hard version of MMRC, by omitting 

the soft membership parameters, the maximization of a log-

likelihood function of hard clustering on a heterogeneous 

relation matrix is equivalent to minimize            
 

, 

where D is a distance function,  is relational representative 

matrix. 

V. EXPERIMENTAL EVALUATION 

A. Tri-type Relational Data Clustering 

In this section, we evaluate the effectiveness of the ONRC 

algorithm on tri-type star-structured data as shown in Figure 1. 

The data sets used in the experiments are from the 20-

Newsgroup data 

(http://people.csail.mit.edu/˜jrennie/20Newsgroups). We use 

text classification package Rainbow 

(http://www.cs.cmu.edu/˜mccallum/bow/rainbow/) to 

preprocess the data by removing stop words and file headers 

and selecting words with more than 5 counts. The document-

word matrix is based on tf-idf. The document-category matrix 

R was built as follows. The rows correspond to categories, and 

columns to documents. Rij indicates the relation between 

category Ci and document dj. If dj belongs to k categories C1, 

C2, . . . ,Ck, the weights R1j ,R2j , . . . ,Rkj are set to 1/k. All 

other elements of this column are set to 0. Three data sets, 

News-1, News-2 and News-3 are listed in Table II. The 

documents in each data set are generated by sampling 100 

documents from each category. 

The number of clusters for documents and categories are 2, 

3 and 4 for News-1, News-2 and News-3, respectively. For the 

number of word clusters, we adopt the real number of 

categories, 5, 6 and 8 for three datasets. To check for 

document-word co-clustering, we pick News-2 and use 3 as 

number of clusters for both documents and words. We simply 

use equal weight wi for each Ri and set wi = 1. If we set weight 

for one X − Yi be 0, then it will reduce tri-type to bi-type, 

which is essentially a bipartite clustering. 

We put ONRC, SRC, RSN and spectral co-clustering [18, 

9] in comparison. The spectral clustering can only have same 
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numbers of row and column clusters, we choose the number of 

document clusters in experiments. We use the Normalized 

Mutual Information (NMI) and cluster error rate to evaluate 

the clustering quality. 
 

TABLE II TAXONOMY STRUCTURE FOR THREE DATA SETS 

 
 

B. Performance 

Table III shows error rates and NMI scores of the three 

algorithms on all the data sets. Best values are in bold. The 

comparison shows that ONRC is an effective algorithm to 

identify the cluster structure of star-structured multi-type 

relational data. CBGC can generate similar cluster quality as 

ONRC on News-1, but the running time is much longer when 

we use SDPT3 solver [36], so we didn’t continue to test. It’s 

been shown that SRC runs slower than tri-NMF [7]. We see 

that ONRC is an efficient way for multi-relational clustering. 

 
TABLE III ERROR RATE AND NMI COMPARISONS OF ONRC, 

SRC AND RSN ALGORITHMS 

 

C. Document-words Co-clustering 

To check for the co-clustering quality, we calculate the 

mutual information [38] for each word in each category 

(comp, rec.sport and sci) from News-2. If a category c and a 

term t have probabilities P(c) and P(t), then their mutual 

information I(t, c) is defined to be: 

           
      

         
     

      

         
 

 

We then sort those words based on the mutual information 

values. We check if words with higher value of mutual 

information have been correctly clustered with corresponding 

category. Table IV shows the percentage of top 100 words 

correctly co-clustered with corresponding category. We 

observe high rate of correct co-clustering. Table V lists 15 

words with highest mutual information in each category. 
 

TABLE IV PERCENTAGE OF TOP 100 WORDS FROM NEWS-2 IN 

MUTUAL INFORMATION CO-CLUSTERED WITH CORRESPONDING 

CATEGORY 

.  
TABLE V TOP 15 WORDS SORTED BY MUTUAL INFORMATION 

FROM NEWS-2 

 

 
 

VI. CONCLUSIONS 

In this paper, we present a model for clustering multi-type 

relational data based on inter-relational matrices. This model 

is essentially a matrix factorization. Under this model, we 

propose an algorithm ONRC to cluster multi-type interrelated 

data objects simultaneously. Objective function relaxes the 

strict double orthogonal bi-NMF of graph cut minimization to 

orthogonal triNMF. ONRC exploits successive updates to 

minimize the matrix approximation error and also keeps the 

orthogonality of indicator matrices. The correctness and 

convergence are also proved in this paper. We observe ONRC 

performs better than SRC, RSN and spectral co-clustering 

algorithm. ONRC also reveals the abilities to co-clustering 

different data objects. 
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