
 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 03, May 2013

www.ijcit.com 364

Hybrid Particle SWARM Optimization for Solving

Machine Time Scheduling Problem

A. A. El-sawy

Computer Science Dept.,

Faculty of Computers and Information, Banha University,

Elqalubia, Egypt.

E-mail: ahmed_el_sawy {at} yahoo.com

A. A. Tharwat

Decision Support Dept.,

Faculty of Computers and Information, Cairo University,

Cairo, Egypt,

Abstract— A hybrid particle swarm optimization (PSO) for

multi-machine time scheduling problem (MTSP) with multi-

cycles is proposed in this paper to choose the best starting time

for each machine in each cycle under pre-described time window

and a set of precedence machines for each machine; to minimize

the total penalty cost. We developed hybrid algorithm by using a

combination between PSO and Genetic Algorithms (GA),

precisely the GA operators’ crossover and mutation. Based on

experimental results for the developed hybrid algorithms, we can

conclude that, the algorithm that combines PSO with mutation

gives best solution for MTSP.

Keywords- Machine Time Scheduling, Particle SWARM

optimization, Genetic Algorithm, Mutation, Crossover, Time

Window

I. INTRODUCTION

Machine Time Scheduling Problem (MTSP was
investigated in [20] as a parameterized version of the MTSP,
which was defined in [9], with penalized earliness in starting
and lateness in the completion of the operation. The authors in
[20] applied the optimal choice concept which is given in [17]
and some theoretical results from [18] to obtain the optimal
values of the given parameters.

In [4] the authors investigated two cycles MTSP and
introduced an algorithm to find the optimal choice of
parameters, which represent the earliest possible starting time
for the second cycle. In [3] an algorithm was developed to
solve a multi-cycles MTSP which found the starting time for
each machine in each cycle by using the max-separable
technique. The processing times in the previous researches
were considered deterministic. Authors in [15] discussed how
to solve the MTSP when the processing time for each machine
is stochastic, and they suggest the Monte Carlo simulation
technique to solve the problem. A generalization was
introduced in [2] to overstep the cases at which an empty
feasible set of solutions is described by the system.

In [1] introduced an algorithm by using the PSO and GA to
solve MTSP, and compressions were made between PSO, GA
and max-separable technique (using numerical example). The
Authors found that PSO algorithm reach to the best solution
faster than both the GA and the max-separable technique. In
this paper we will introduce a three hybrid algorithms. The first

one combines PSO with both the crossover and the mutation
operators (HPSOCM-MTSP), while the second algorithm
combines PSO with only the crossover operator (HPSOC-
MTSP), and the third combines PSO with the mutation
operator only (HPSOM-MTSP). The introduced experimental
results show that the third combined algorithm HPSOM-MTSP
gives the best result among the other algorithms and also
superior of the algorithm that developed in [1]. In other words,
the HPSOM-MTSP found the best starting time for each
machine in each cycle under the pre-described time windows
the set of precedence machines to minimize the total penalty.

II. PROBLEM FORMULATION

In multi-machine time scheduling problem with multi-

cycles, there are n machines, each machine carries out one

operation j with deterministic processing time pj

for },...,1{ nNj  , the machines work in k cycles, and the

processing time for each machine does not depend on the

cycle number. Let xjr represents the starting time of the j
th

machine in the r
th

 cycle Nj , },...,1{ kKr  (k yhe

cycle’s number). Machine j can start its work in cycle r only

after a predecessors set of machines )()(, jj NN N had

finished their work in the (r-1)
th

 cycle, so we can define the

starting time in the (r-1)
th

 cycle as follows:

KrNipxx jrjr
i

Nj
ir 



 ,)(max
)(1 (1)

Assuming that the starting time xjr is constrained by a

time intervals [ljr, Ljr] for each Nj , Kr and, hence the

set of feasible starting times xjr can be described by the

following system (for each Kr):

NjLxl

Nixpx

jrjrjr

irjrjr
Nj i



 


,)(max 1)(

 (2)

Assume also that for some ecological reasons there are a

given recommended time windows [ajr, bjr], Ni , Kr

so:

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 03, May 2013

www.ijcit.com 365

],,[],[jrjrjjrjr bapxx  (3)

The violation of the equation (3) will be penalized by the

following penalty function

 Krxfxf jrjr
Nj




min)(max)((4)

Where the penalty function in a certain cycle r is given by:

Nj

pxfxfxf jrjrjrjrjrjrjr



 }0),(),({max)()2()1(

(5)

Where RRf jr :)1(
 is a decreasing continuous function such

that)()1(

jrjr af = 0, and
)2(

jrf :R R is an increasing continuous

function such that)()2(

jrjr bf = 0

Based on the above discussion, the main objective of the

proposed problem is

“The minimization of the maximum total penalty among

all cycles”

That leads to solve the following optimization problem:

NjLxl

Nixpx

tosubject

xf

jrjrjr

irjrjr

Nj
i











1)(max

:

min)(

)(

 (6)

III. CROSSOVER AND MUTATION:

GA maintains a set of candidate solutions called

population and repeatedly modifies them. In each iteration of

the GA algorithm, some individuals are selected from the

current population to parent and use them for producing the

children for the next generation. Candidate solutions are

usually represented as strings of fixed length, called

chromosomes. A fitness or objective function is used to reflect

the goodness of each member of population [15]. Two

operators in GA have been used to generate next generation

called crossover and mutation.

In crossover, pairs of strings are picked at random from

the population to be subjected to crossover. The simplest

approach is the single-point crossover that assuming that L is

the string length, it randomly chooses a crossover point that

takes values in the range 1 to L - 1.

The portions of the two strings beyond this crossover

point are exchanged to form two new strings [8]. Another

approach for the crossover is the two-point crossover, it is

usually used if the crossover points are i and j all the

parameter pairs between i and j have to do the crossover and

the new solutions has been generated. The third approach for

crossover is the uniform crossover, first a random crossover

point is generated and the crossover process is done from this

selected point to either the end point or the start point of the

solution, which is randomly selected [19].

By mutation individuals are randomly altered. These

variations (mutation steps) are mostly small. They will be

applied to the variables of the individuals with a low

probability (mutation probability or mutation rate). Normally,

offspring are mutated after being created by recombination.

For the definition of the mutation steps and the mutation

rate two approaches exist: in the first one, both parameters are

constant during a whole evolutionary run. In the second, one

or both parameters are adapted according to previous

mutations.

In mutation, a bit involves during flipping it: changing a

0 to 1 or vice versa. The parameter Pm (the mutation rate),

gives the probability that a bit will be flipped. The bits of a

string are independently mutated that is, the mutation of a bit

does not affect the probability of mutation of other bits. For

example, suppose all the strings in a population have

converged to a 0 at a given position and the optimal solution

has a 1 at that position. Then crossover cannot regenerate a 1

at that position, while a mutation occurred [8].

IV. PARTICLE SWARM OPTIMIZATION

The PSO method is a member of wide category of Swarm

Intelligence methods for solving the optimization problems. It

is a population based search algorithm where each individual

is referred to as particle and represents a candidate solution.

Each particle in PSO flies through the search space with an

adaptable velocity that is dynamically modified according to

its own flying experience and also the flying experience of the

other particles. Further, each particle has a memory and hence

it is capable of remembering the best position in the search

space ever visited by it. The position corresponding to the best

fitness is known as pbest and the overall best out of all the

particles in the population is called gbest [16].

The modified velocity and position of each particle can be

calculated using the current velocity and the distance from the

pbestj to gbest as shown in the following formulas:

)(

)(

)(

,

)(

22

)(

,,
)(

11

)(

,

)1(

,

t

gjg
t

t

gjgj
tt

gj

t

gj

xgbestrc

xpbestrcwvv





 (7)

)1(

,

)(

,

)1(

,

  t

gj

t

gj

t

gj vxx (8)

With j =1, 2, …,n and g =1, 2, …, m

n = number of particles in a group;

m= number of members in a particle;

t = number of iterations (generations);
)(

,

t

gjv = velocity of particle j along the g
th

 dimension at

iteration t;

w = inertia weight factor;

c1, c2 = cognitive and social acceleration factors respectively;

r1, r2 = random numbers uniformly distributed in the range (0,

1);
)(

,

t

gjx = current position of particle j

along the g

th
 dimension at

iteration t;

pbest
(t)

j,g = is the best previous position along the g
th

dimension of particle j in iteration t

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 03, May 2013

www.ijcit.com 366

gbest
(t)

g = is the best previous position among all the particles

along the g
th

 dimension in iteration t

The index of best particle among all of the particles in the

group is represented by the gbest. In PSO, each particle moves

in the search space with a velocity according to its own

previous best solution and its group’s previous best solution.

The velocity update in a PSO consists of three parts; namely

momentum, cognitive and social parts. The balance among

these parts determines the performance of a PSO algorithm.

The parameters c1 & c2 determine the relative pull of pbest and

gbest and the parameters r1 & r2 help in stochastically varying

these pulls [16].

[13] Describes evolutionary optimization algorithm that is

based on particle swarm but with addition of crossover which

is one of the evolution operators in genetic algorithm. A

comparison between “PSO” and “PSO that includes

Crossover” will be made. PSO is known to find global optima

for a given solution; while GA is also a search heuristic that

finds solution to a given problem. Experiments were discover

that for some problems “Standard PSO” works better while in

other problem “PSO and Crossover” improve PSO in finding

global optima.

[7] Propose a simple modification to the particle swarm

algorithm in which, at each generation, a small number of

particles are mutated and are allowed to hill climb. The

mutation has the effect of randomly bouncing particles

towards other parts of the search space, while the effect of

hill-climbing is to greatly increase the effective size of the

“target” region of interest around the global optimum. We

provide results for a selection of well-known test functions,

and demonstrate that our modification improves the ability of

the swarm to find the global optimum.

A novel approach based on Particle Swarm Optimization

(PSO) for scheduling jobs on computational grids introduced

in [6]. The proposed approach is to dynamically generate an

optimal schedule so as to complete the tasks within a

minimum period of time as well as utilizing the resources in

an efficient way. When compared to genetic algorithm (GA)

and simulating Annealing (SA), an important advantage of the

PSO algorithm is its speed of convergence and the ability to

obtain faster and feasible schedules.

[11] Presented a new mutation operator called the

Systematic Mutation (SM) operator for enhancing the

performance of Basic Particle Swarm Optimization (BPSO)

algorithm. The SM operator unlike most of its contemporary

mutation operators do not use the random probability

distribution for perturbing the swarm population, but uses a

quasi random Sobol sequence to find new solution vectors in

the search domain. The comparison of SM-PSO is made with

BPSO and some other variants of PSO. The empirical results

show that SM operator significantly improves the performance

of PSO.

Mutation operation was combined with basic particle

swarm optimization (BPSO) in [5] let’s called PSOM. and in

[12] and [10] combined crossover with BPSO, let’s called

PSOC. In [14] used mutation and crossover with BPSO to

make a new algorithm, let’s called PSOMC. The authors in

[5], [12], [10] and [14] proved that their new algorithms are

better than BPSO algorithm by tested benchmark functions.

The common benchmark functions between these papers as

following:

1- Sphere function

Min 



n

i

ii xxxf
1

2

1 21.521.5)(

2- Rosenbrock function

Min



 
n

i

iii xxxxf
1

222

12)1()(100)(

(9)

3030  ix

3- Ackley’s function

Min

)
1

2.0exp(2020)(
1

2

3 



n

i

ix
n

exf





n

i

ix
n 1

))2cos(
1

exp(

3232  ix
(10)

Table (1) represents the mean fitness for each function in

each algorithm. We found that PSOC gives best value for f1

and PSOCM gives best value for f2 and PSOM gives best

value for f3.

TABLE I. THE OBTAINED RESULTS FOR PSOM, PSOC AND PSOCM

FOR F1, F2 AND F3

 Mean fitness

 PSOM PSOC PSOMC

f1 3.327 E-9 8.517991 E-43 3.4003 E-40

f2 106.939 8.608759 E-19 7.15891 E-29

f3 3.152 E-12 6.292307 E-10 0.00

With a detailed study for the above results; we found that one

can’t grantee which algorithm gives the best result. So, three

hybrid algorithms are develop for solving MTSP. In the first

algorithm, we combine PSO with crossover and mutation

operators (HPSOCM-MTSP). While in the second algorithm,

the combination was made between PSO with crossover

operator (HPSOC-MTSP). Finally in the third algorithm, PSO

combined with mutation operator (HPSOM-MTSP).

V. HYBRID PSO ALGORITHM FOR SOLVING MTSP

In this section, the combination of a crossover procedure

and/or mutation procedure with a PSO algorithm to develop

hybrid PSO algorithm

A. Hybrid PSO Algorithm (HPSO)

First, the particle defines as a set of starting times for the

machines in all cycles. The particle is represented by D-

dimensional, where D equal to N multiplies by K (where N

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 03, May 2013

www.ijcit.com 367

number of machine and K number of cycles). The xirpt is the

starting time (particle member) for machine i in cycle r in

particle p, Qp ,..,2,1 in iteration t, Tt ,..,2,1 (where Q is

number of particles in the SWARM and T is the number of

iterations) which satisfy the constraints in (P).

The main steps of the algorithm that solves MTSP by

PSO as follows:

1- Reformulation:

 For each machine j, calculate the set of successors

Uj. Then calculate the minimum of the upper bounds for the j
th

machine’s successors, and also calculate the difference

between the calculated minimum and its processing time.

Therefore the new upper bound of the j
th

 machine will be

reformulated as the minimum between its old upper bound and

the calculated difference.

2- Initial iteration:

 The value of xirpt generated randomly

where irir Hxh irpt  . The xirpt must satisfy the second

constrain which is)(max
)1()(j

ptrji
Nj

irpt pxx 


. Determine the

pbestp which is the best position of particle p that make the

best value of the objective function. Then determine the gbest

which is the best particle that make the best value of the

objective function in all iterations.

3- New PSO iteration:

 The next iteration created by modifying the velocity of

each particle by the following equation:

)(

)(

22

11)1(

irptir

irptirpirpttirp

xgbestrc

xpbestrcwvv




Then the particle

position will be update by the following equation:

)1()1(  tirpirpttirp vxx

The new iteration has been created with new position of

SWARM.

4- Calculate the objective function then find the pbestp and

gbest.

5- Execute a Crossover operator and/or a Mutation operator

on the particles.

6- Repeat step 3 to step 5 until reaching the given number of

iterations T.

Crossover operation:

 The swarm divided into pairs, in each pair there are two

particles, divide each particle at a certain position s, and then

swap between the s to k members in both particles, where k

represents the total number of members in a particle.

Mutation operation:

Use the uniform mutation, which

means that, each member in the particle has the same chance

to be mutated. The symbol A represents the number of mutated

particles and the symbol E represents the number of mutated

members in each particle. The obtained value of the mutated

members will be generated randomly based on its boundaries.

Three proposed hybrid algorithms and a comparison

between them based on the value of objective function is

going to introduced.

B. HPSOCM-MTSP algorithm:

 This hybrid algorithm combines the crossover and

mutation with PSO as follows (see the flowchart in Appendix

A):

1- Reformulation: machine boundaries.

2- Initial iteration: generate the particles randomly based on

new machines boundaries.

3- Next PSO iteration: modify the velocity and position of

particles.

4- Calculate the objective function then find the pbestp and

gbest.

5- Crossover the particles with each others.

6- Mutation the particles

7- Repeat step 3 to step 6 until the T.

HPSOCM-MTSP Algorithm:

A1: Reformulate the boundaries for each machine in each

cycle as follows:

N
ikik

iLH Put , Nj
jr

jr lh  ,

))min(,(min
1

j
irjUi

jrjr pHLH 


Where 1,2,...,1}:{
)(

 krNjNiU
i

j

A2: Put t = 1.

A3: Put p = 1.

A4: Put r = 1.

A5: Put i = 1.

A6: If 1r then)(max
)1()(

j
ptrji

Nj
ir pxh 



.

A7: Generate random number for xircp

where irir Hxh ircp  .

A8: If i < n then i = i + 1 go to A6.

A9: If r < k then r = r + 1 go to A5.

A10: pbestp = f(xirpt) KrNi ,..,1,,..,1  .

A11: If p < Q then p = p + 1 go to A4.

A12: find min(f(pbestp)) .,..,1 Qp 

A13:
minppbestgbest 

A14: t = t + 1.

A15: Put p = 1.

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 03, May 2013

www.ijcit.com 368

A16:
)(**

)(***

)1(22

)1(11)1(









tirp

tirpptirpirpt

xgbestrc

xpbestrcvwv

A17: irpttirpirpt vxx  )1(.

A18: if xirpt is not feasible then go to A20.

A19: if f(xirpt) > f(xirpt-1) then pbestp = xirpt

A20: If p < Q then p = p + 1 go to A16.

A21: if f (gbest) > f (
minppbest) then

minppbestgbest  .

A22: f (gbest t) < f (gbest t-1) then go to 15.

A23: Put p=1.

A24: Put r =trunc(s/N) + 1.

A25: Put i = rem(s/N).

A26: Swap between xirpt and xir(p+1)t.

A27: If i < n then i = i + 1 go to A26.

A28: If r < k then r = r + 1, i =1 go to A26.

A29: If p < Q then p = p + 2 go to A24.

A30: Generate random number A between 1 and Q.

A31: a=1.

A32: Put e = 1.

A33: Generate random number E between 1 and D.

A34: Put r =trunc(m/N) + 1.

A35: Put i = rem(m/N).

A36: Generate random number for xirat

where irir Hxh irat  .

A37: if e < E then e = e + 1 go to A33.

A38: if a < A then a = a + 1 go to A32.

A39: if f (gbest) > f (xirat) then gbest = xirat.

A40: If t < T then go to A15.

A41: The solution is gbest.
trunc(): function return the integer part of divided operation.

rem(): function return the remaining value divided operation.

VI. NUMERICAL EXAMPLE:

Consider a problem with the following values of

parameters n = 5 so N = {1,2,3,4,5}, p = {2,4.5,6.25,4,5},

TABLE II. UPPER AND LOWER BOUNDARIES FOR THE MACHINE’S

STARTING TIME

Cycle (r) r = 1 r = 2 r = 3

lir
 i =1,2,.,5

{1,0,0,3,1} {4,6,6,5,6} {10,11,12,9,11.5}

Lir
 i =1,2,.,5

{5,4,3,5,6} {6.5,7,7.5,7.25,6.5} {13,12,15,12,14}

TABLE III. MACHINE’S PREDECESSORS AND MACHINE’S SUCCESSORS

i 1 2 3 4 5

N(i) {1,2,3} {2} {2,3} {1,4,5} {1,3,5}

Uj {1,4,5} {1,2,3} {1,3,5} {4} {4,5}

Assume further that

Njbpxxaxf jrjrjrjrjrjrjr )0,,(max)(Where aj, bj

are for all Nj  given constants to represent the end points of

the tolerance interval for each machine [ajr , bjr], so that we

have in our case for all Nj 

jrjrjrjrjrjr

jrjrjrjr

bpxpxf

xaxf





)(

)(

)2(

)1(

Input values of air and bir for each cycle are given in table (4).

TABLE IV. THE END POINTS OF THE TOLERANCE INTERVALS FOR THE

MACHINE’S STARTING TIME

Cycle (r) r = 1 r = 2 r = 3

air
i =1,2,.,5

{1,1,1,3,3} {5,7,6,5,7} {11,12,11,10,13}

bir
i =1,2,.,5

{4,6,8,5,5} {8,9,8,6.5,8} {13,15,14,12,14}

After running the program 100 trials and taking the

average of objective function’s values and call it averageF

(values calculated for each iteration in each trial), it is found

that; the best parameters for the HPSO are: the swarm size

equals 80, the value of w equals 0.5 and the values c1 and c2

equal 1.7. concerning the cutting point in the a particle to

crossover, it is found that the best position of cutting point is

33% of the particle size, that means, the cutting should be

occurred between cycles. Concerning the mutation, it is found

that the mutation probability equals 10% of particle size and

also the number of particles which will be mutated should

equal 20% of the swarm size.

The proposed hybrid HPSOCM-MTSP algorithm which

combines the crossover and mutation procedures with the

HPSO has been applied on the illustrative example (scenario I)

and it is found that the minimum value of averageF which is

33.08 arises after 4400 iterations as shown in the figure 1

(with no improvement of the value whatever the number of

iterations increases).

HPSOCM-MTSP

31

32

33

34

35

36

1 401 801 1201 1601 2001 2401 2801 3201 3601 4001 4401 4801

Iterations

A
v
e
ra

g
e
F

HPSOCM-MTSP

Figure 1. The solution of HPSOCM-MTSP

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 03, May 2013

www.ijcit.com 369

When HPSOCM-MTSP without the mutation operation

has been applied (i.e by applying the crossover operation only)

on the same example (scenario II), it is found that the

minimum value of averageF which is 34.97 arises after 220

iterations as shown in the figure 2 (with no improvement of

the value whatever the number of iterations increases).

HPSOC-MTSP

33

33.5

34

34.5

35

35.5

36

36.5

1 17 33 49 65 81 97 113 129 145 161 177 193 209 225 241

Iterations

A
v
e
ra

g
e
F

HPSOC-MTSP

Figure 2. The solution of HPSOC-MTSP

Finally HPSOCM-MTSP without the crossover operation

has been applied (i.e by applying the mutation operation only)

on the same example (scenario III), it is found that the

minimum value of averageF which is 32.83 arises after 380

iterations as shown in the figure 3 (with no improvement of

the value whatever the number of iterations increases).
HPSOM-MTSP

31

32

33

34

35

36

37

1 32 63 94 125 156 187 218 249 280 311 342 373 404 435 466 497

Iterations

A
v
e
ra

g
e
F

HPSOM-MTSP

Figure 3. The solution of HPSOM-MTSP

So the best starting times that are given by applying

(scenario III) is represented in table (5) with the best value of

averageF (which is 32.83)

TABLE V. THE BEST STARTING MACHINE’S STARTING TIME FOR 5

MACHINES AND THREE CYCLES

Machine

Cycle

M1 M2 M3 M4 M5

C1 1.74 1.7 0.02 3 1.39

C2 6.27 6 6.27 7 6.39

C3 12.52 11.25 12.52 11.39 12.52

Now assume that the cost value is $α, then the penalty

cost in our case equals $32.83α, with a difference $2.14α if the

crossover operation only has been applied, and with a

difference $0.25α if both the crossover operation and the

mutation operation have been applied.

It is worth to mention that the convergence of HPSOM-

MTSP which combines the mutation procedure with PSO

algorithm has been examined in [4], the authors conclude that

the algorithm speed up the convergence for the hardest test

functions.

It is very important to mention also, according this article,

one can say that, the proposed hybrid algorithm is considered

the best one only for this type of problems (MTSP).

VII. CONCLUSION:

A proposed hybrid algorithm HPSOCM-MTSP was

developed, and after applying three different scenarios

numerically, it is found that the HPSOCM-MTSP algorithm

(with applying the Mutation operation only) gives the best

result among the three applied scenarios, for solving the

proposed machine time scheduling problem, with penalty cost

value $32.83α. Moreover the HPSOCM-MTSP proposed

algorithm gives a better result comparing with the results that

obtained by applying PSO-MTSP algorithm [1], GA-MTSP

algorithm [1] and max-separable technique [3]. Figure 4

represents the comparative study between the penalty function

values for the proposed algorithm with its three scenarios and

the other three algorithms.

MTSP

32

32.5

33

33.5

34

34.5

35

35.5

36

36.5

1 424 847 1270 1693 2116 2539 2962 3385 3808 4231 4654

Iterations

A
ve

ra
ge

F

PSO-MTSP

HPSOM-MTSP

HPSOCM-MTSP

HPSOC-MTSP

GA-MTSP

max-separable

Figure 4. Comparison between HPSOM-MTSP algorithm and other different

algorithms

REFERENCES:

[1] A. A. Sawy and A. A. Tharwat, "Comparison of Particle SWARM
Optimization, Genetic Algorithm and Max separable Technique for
Machine Time Scheduling Problem ", International Journal of Computer
Information Systems, Vol. 1, No. 3, pp. 46-52, 2010.

[2] A. Tharwat and A. Abuel-Yazid, "Generalized Algorithm For Muulti-
Cycle Machine Time Scheduling", Proceeding of The third Assiut
University Int. Conf. On Mech. Eng. Advanced Tech. For Indus. Prod.
December 24-26 (Meatip3), Egypt, pp. 602 – 608, 2002.

[3] A. Tharwat and A. Abuel-Yazid: “Multi-Cycles Machine Time
Scheduling Problem”, International Journal of Intelligent Computing &
Information Science (ICIS) vol. 2, No. 1, pp. 78-84, 2002.

[4] A. Tharwat and K. Zimmermann: “Optimal Choice of Parameters in
Machine Time Scheduling Problems Case I,” Conference MMEI,
Liberc, Czech Republic, ISBN 80-7083, 338,6, pp. 107-112, 1998.

[5] Andrew Stacey, Mirjana Jancic, Ian Grundy “ Particle Swarm
Optimization with Mutation” Proceedings of the IEEE Swarm
Intelligence Symposium SIS03 IEEE Press, Vol. 2, pp. 1425-1430, 2003

[6] H. Liu, A. Abraham and C. Grosan, "A Novel Variable Neighborhood
Particle Swarm Optimization for Multi-objective Flexible Job-shop
Scheduling Problems", IEEE International Conference on Digital
Information Management, Lyon, France, IEEE Press, USA, ISBN 1-
4244-1476-8, pp. 138-145, 2007

[7] I. H. Grundy and A. Stacey, “Particle swarm optimization with
combined mutation and hill climbing” Proceedings of 7th Asia-Pacific
Conference on Complex Systems, Cairns, Australia, vol. 12, pp.1- 10,
2004.

http://www.softcomputing.net/icdim07_2.pdf
http://www.softcomputing.net/icdim07_2.pdf
http://www.softcomputing.net/icdim07_2.pdf
http://www.softcomputing.net/icdim07_2.pdf
http://www.softcomputing.net/icdim07_2.pdf

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 03, May 2013

www.ijcit.com 370

[8] M. Srinivas, Motorola India Electronics Ltd. Lalit M. Patnaik, Indian
Institute of Science tlmization and search methods ... 0018-9162/QM
"Genetic Algorithms: A Survey", IEEE, pp.17-24, 1994.

[9] M. Vlach and K. Zimmermann, “Machine Time Scheduling
Synchronization of Starting Times”, the Proceeding of the MME’99
Conference, Prague, Czech Republic, 1999.

[10] Millie Pant, Member, IAENG, Radha Thangaraj, Member, IAENG, and
V. P. Singh “Particle Swarm Optimization with Crossover Operator and
its Engineering Applications” IAENG International Journal of Computer
Science, Vol. 36, No. 2, on line publication, 2009

[11] Millie Pant, Radha Thangaraj, V. P. Singh and Ajith Abraham, "Particle
Swarm Optimization Using Sobol Mutation", International Conference
on Emerging Trends in Engineering and Technology, ICETET 2008,
IEEE Computer Society Press, USA, ISBN 978-0-7695-3267-7, pp. 367-
372, 2008.

[12] Millie Pant, Radha Thangaraj and Ajith Abraham “A New PSO
Algorithm with Crossover Operator for Global Optimization Problem”
INNOVATIONS IN HYBRID INTELLIGENT SYSTEMS Advances in
Soft Computing, Vol. 44, pp. 215-222, 2007.

[13] Olapeju Latifat Ayoola "Particle Swarm Optimization and Crossover"
COMP40580 Natural Computing- Mini-Project Papers, on line
publication, 2006.

[14] Qing Zhang, Changhe Li, Yong Liu and Lishan Kang “ Fast Multi-
swarm Optimization with Cauchy Mutation and Crossover Operation”
ADVANCES IN COMPUTATION AND INTELLIGENCE Lecture
Notes in Computer Science, Vol. 46, pp. 344-352, 2007.

[15] S. A. Hassan, A.A. Tharwat, I.A. El-Khodary, A. A. El-Sawy "Using
Monte Carlo Simulation to Solve Machine Time Scheduling Problems
With Stochastic Processing Time", Mathematical Methods in Economics
conference: MME’2003, Prague , Czech Republic , pp. 103 – 110, 10-12
Sept 2003.

[16] S. Panda and N. P. Padhy, "Comparison of Particle Swarm Optimization
and Genetic Algorithm for TCSC-based Controller Design",
International Journal of Electrical and Electronics Engineering 1:5 2007,
Vol. 1, No. 5, pp. 305-313 2007

[17] S. Zlobec: “Input Optimization I: Optimal Realizations of Mathematical
Models,” Mathematical Programming, Vol. 31, pp.245-268, 1985.

[18] S. Zlobec: “Input Optimization III: Optimal Realizations of
Mathematical Models,” Mathematical Programming, Vol. 17, No. 4, pp.
429-445, 1986.

[19] Shun-Fa Hwang, Rong-Song He "Improving real-parameter genetic
algorithm with simulated annealing for engineering problems" Advances
in Engineering Software, Vol. 37, No. 6, pp. 406-418, 2006.

[20] Y. Sok and K. Zimmermann: “Optimal Choice of Parameters in
Machine Time Scheduling Problems with Penalized Earliness in Starting
Time and Lateness”, AUC- Mathematica et Physica, Vol. 33, No. 1, pp.
53-61, 1992.

http://www.softcomputing.net/icetet2008.pdf
http://www.softcomputing.net/icetet2008.pdf
http://www.springerlink.com/content/?Author=Millie+Pant
http://www.springerlink.com/content/?Author=Radha+Thangaraj
http://www.springerlink.com/content/?Author=Ajith+Abraham
http://www.springerlink.com/content/978-3-540-74971-4/
http://www.springerlink.com/content/1615-3871/
http://www.springerlink.com/content/1615-3871/
http://ncra.ucd.ie/COMP40580/
http://www.springerlink.com/content/?Author=Qing+Zhang
http://www.springerlink.com/content/?Author=Changhe+Li
http://www.springerlink.com/content/?Author=Yong+Liu
http://www.springerlink.com/content/?Author=Lishan+Kang
http://www.springerlink.com/content/978-3-540-74580-8/
http://www.springerlink.com/content/0302-9743/
http://www.springerlink.com/content/0302-9743/
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V1P-4HBTDCS-1&_user=5413195&_coverDate=06%2F30%2F2006&_alid=1298248224&_rdoc=3&_fmt=high&_orig=search&_cdi=5680&_sort=r&_docanchor=&view=c&_ct=79375&_acct=C000067180&_version=1&_urlVersion=0&_userid=5413195&md5=6f4c6c68eae88fc659c4432f5db80de6
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V1P-4HBTDCS-1&_user=5413195&_coverDate=06%2F30%2F2006&_alid=1298248224&_rdoc=3&_fmt=high&_orig=search&_cdi=5680&_sort=r&_docanchor=&view=c&_ct=79375&_acct=C000067180&_version=1&_urlVersion=0&_userid=5413195&md5=6f4c6c68eae88fc659c4432f5db80de6

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 03, May 2013

www.ijcit.com 371

Appendix A

HPSOCM-MTSP Algorithm Flowchart

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 03, May 2013

www.ijcit.com 372

HPSOCM-MTSP Algorithm Flowchart (cont'd)

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 03, May 2013

www.ijcit.com 373

HPSOCM-MTSP Algorithm Flowchart
(cont'd)

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 03, May 2013

www.ijcit.com 374

HPSOCM-MTSP Algorithm Flowchart
(cont'd)

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 03, May 2013

www.ijcit.com 375

HPSOCM-MTSP Algorithm Flowchart (cont'd)

