
 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)  

Volume 02– Issue 03, May 2013 

 

www.ijcit.com    364 
 

Hybrid Particle SWARM Optimization for Solving 

Machine Time Scheduling Problem 
 

A. A. El-sawy 

Computer Science Dept., 

Faculty of Computers and Information, Banha University, 

Elqalubia, Egypt. 

E-mail: ahmed_el_sawy {at} yahoo.com 

 

A. A. Tharwat 

Decision Support Dept.,  

Faculty of Computers and Information, Cairo University, 

Cairo, Egypt, 

 

 
Abstract— A hybrid particle swarm optimization (PSO) for 

multi-machine time scheduling problem (MTSP) with multi-

cycles is proposed in this paper to choose the best starting time 

for each machine in each cycle under pre-described time window 

and a set of precedence machines for each machine; to minimize 

the total penalty cost. We developed hybrid algorithm by using a 

combination between PSO and Genetic Algorithms (GA), 

precisely the GA operators’ crossover and mutation. Based on 

experimental results for the developed hybrid algorithms, we can 

conclude that, the algorithm that combines PSO with mutation 

gives best solution for MTSP. 
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I. INTRODUCTION  

Machine Time Scheduling Problem (MTSP was 
investigated in [20] as a parameterized version of the MTSP, 
which was defined in [9], with penalized earliness in starting 
and lateness in the completion of the operation. The authors in 
[20] applied the optimal choice concept which is given in [17] 
and some theoretical results from [18] to obtain the optimal 
values of the given parameters.  

In [4] the authors investigated two cycles MTSP and 
introduced an algorithm to find the optimal choice of 
parameters, which represent the earliest possible starting time 
for the second cycle. In [3] an algorithm was developed to 
solve a multi-cycles MTSP which found the starting time for 
each machine in each cycle by using the max-separable 
technique. The processing times in the previous researches 
were considered deterministic. Authors in [15] discussed how 
to solve the MTSP when the processing time for each machine 
is stochastic, and they suggest the Monte Carlo simulation 
technique to solve the problem. A generalization was 
introduced in [2] to overstep the cases at which an empty 
feasible set of solutions is described by the system.  

In [1] introduced an algorithm by using the PSO and GA to 
solve MTSP, and compressions were made between PSO, GA 
and max-separable technique (using numerical example). The 
Authors found that PSO algorithm reach to the best solution 
faster than both the GA and the max-separable technique. In 
this paper we will introduce a three hybrid algorithms. The first 

one combines PSO with both the crossover and the mutation 
operators (HPSOCM-MTSP), while the second algorithm 
combines PSO with only the crossover operator (HPSOC-
MTSP), and the third combines PSO with the mutation 
operator only (HPSOM-MTSP). The introduced experimental 
results show that the third combined algorithm HPSOM-MTSP 
gives the best result among the other algorithms and also 
superior of the algorithm that developed in [1]. In other words, 
the HPSOM-MTSP found the best starting time for each 
machine in each cycle under the pre-described time windows 
the set of precedence machines to minimize the total penalty.  

II. PROBLEM FORMULATION 

In multi-machine time scheduling problem with multi-

cycles, there are n machines, each machine carries out one 

operation j with deterministic processing time pj 

for },...,1{ nNj  , the machines work in k cycles, and the 

processing time for each machine does not depend on the 

cycle number. Let xjr represents the starting time of the j
th

 

machine in the r
th

 cycle Nj , },...,1{ kKr  (k yhe 

cycle’s number). Machine j can start its work in cycle r only 

after a predecessors set of machines )()( , jj NN N had 

finished their work in the (r-1)
th

 cycle, so we can define the 

starting time in the   (r-1)
th

 cycle as follows: 

KrNipxx jrjr
i

Nj
ir 



 ,)(max
)(1  (1) 

Assuming that the starting time xjr is constrained by a 

time intervals [ljr, Ljr] for each Nj , Kr  and, hence the 

set of feasible starting times xjr can be described by the 

following system (for each Kr ): 

NjLxl

Nixpx

jrjrjr

irjrjr
Nj i



 


,)(max 1)(

 (2) 

Assume also that for some ecological reasons there are a 

given recommended time windows [ajr, bjr], Ni , Kr  

so: 
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    ],,[],[ jrjrjjrjr bapxx   (3) 

The violation of the equation (3) will be penalized by the 

following penalty function  

  Krxfxf jrjr
Nj




min)(max)(  (4) 

Where the penalty function in a certain cycle r is given by:   

Nj

pxfxfxf jrjrjrjrjrjrjr



 }0),(),({max)( )2()1(

(5) 

Where RRf jr :)1(
 is a decreasing continuous function such 

that )()1(

jrjr af  = 0, and
)2(

jrf :R     R is an increasing continuous 

function such that )()2(

jrjr bf  = 0  

Based on the above discussion, the main objective of the 

proposed problem is  

“The minimization of the maximum total penalty among 

all cycles” 

That leads to solve the following optimization problem: 

NjLxl

Nixpx

tosubject

xf

jrjrjr

irjrjr

Nj
i











1)(max

:

min)(

)(

  (6) 

III. CROSSOVER AND MUTATION: 

GA maintains a set of candidate solutions called 

population and repeatedly modifies them. In each iteration of 

the GA algorithm, some individuals are selected from the 

current population to parent and use them for producing the 

children for the next generation. Candidate solutions are 

usually represented as strings of fixed length, called 

chromosomes. A fitness or objective function is used to reflect 

the goodness of each member of population [15]. Two 

operators in GA have been used to generate next generation 

called crossover and mutation.  

In crossover, pairs of strings are picked at random from 

the population to be subjected to crossover. The simplest 

approach is the single-point crossover that assuming that L is 

the string length, it randomly chooses a crossover point that 

takes values in the range 1 to L - 1.  

The portions of the two strings beyond this crossover 

point are exchanged to form two new strings [8]. Another 

approach for the crossover is the two-point crossover, it is 

usually used  if the crossover points are i and j all the 

parameter pairs between i and j have to do the crossover and 

the new solutions has been generated. The third approach for 

crossover is the uniform crossover, first a random crossover 

point is generated and the crossover process is done from this 

selected point to either the end point or the start point of the 

solution, which is randomly selected [19]. 

By mutation individuals are randomly altered. These 

variations (mutation steps) are mostly small. They will be 

applied to the variables of the individuals with a low 

probability (mutation probability or mutation rate). Normally, 

offspring are mutated after being created by recombination. 

For the definition of the mutation steps and the mutation 

rate two approaches exist: in the first one, both parameters are 

constant during a whole evolutionary run. In the second, one 

or both parameters are adapted according to previous 

mutations.  

In mutation, a bit involves during flipping it: changing a 

0 to 1 or vice versa. The parameter Pm (the mutation rate), 

gives the probability that a bit will be flipped. The bits of a 

string are independently mutated that is, the mutation of a bit 

does not affect the probability of mutation of other bits. For 

example, suppose all the strings in a population have 

converged to a 0 at a given position and the optimal solution 

has a 1 at that position. Then crossover cannot regenerate a 1 

at that position, while a mutation occurred [8]. 

IV. PARTICLE SWARM OPTIMIZATION 

The PSO method is a member of wide category of Swarm 

Intelligence methods for solving the optimization problems. It 

is a population based search algorithm where each individual 

is referred to as particle and represents a candidate solution. 

Each particle in PSO flies through the search space with an 

adaptable velocity that is dynamically modified according to 

its own flying experience and also the flying experience of the 

other particles. Further, each particle has a memory and hence 

it is capable of remembering the best position in the search 

space ever visited by it. The position corresponding to the best 

fitness is known as pbest and the overall best out of all the 

particles in the population is called gbest [16].  

The modified velocity and position of each particle can be 

calculated using the current velocity and the distance from the 

pbestj to gbest as shown in the following formulas: 
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t

gj vxx    (8) 

With  j =1, 2, …,n and g =1, 2, …, m 

n = number of particles in a group; 

m= number of members in a particle; 

t =  number of iterations (generations); 
)(

,

t

gjv = velocity of particle j along  the g
th

 dimension at 

iteration t; 

w = inertia weight factor; 

c1, c2 = cognitive and social acceleration factors respectively; 

r1, r2 = random numbers uniformly distributed in the range (0, 

1); 
)(

,

t

gjx = current position of particle j
 
along  the g

th
 dimension at 

iteration t; 

pbest
(t)

j,g = is the best previous position  along the g
th

 

dimension of  particle j in iteration t  
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gbest
(t)

g = is the best previous position among all the particles 

along the g
th

 dimension in iteration t  

 

The index of best particle among all of the particles in the 

group is represented by the gbest. In PSO, each particle moves 

in the search space with a velocity according to its own 

previous best solution and its group’s previous best solution. 

The velocity update in a PSO consists of three parts; namely 

momentum, cognitive and social parts. The balance among 

these parts determines the performance of a PSO algorithm. 

The parameters c1 & c2 determine the relative pull of pbest and 

gbest and the parameters r1 & r2 help in stochastically varying 

these pulls [16]. 

[13] Describes evolutionary optimization algorithm that is 

based on particle swarm but with addition of crossover which 

is one of the evolution operators in genetic algorithm. A 

comparison between “PSO” and “PSO that includes 

Crossover” will be made. PSO is known to find global optima 

for a given solution; while GA is also a search heuristic that 

finds solution to a given problem. Experiments were discover 

that for some problems “Standard PSO” works better while in 

other problem “PSO and Crossover” improve PSO in finding 

global optima. 

[7] Propose a simple modification to the particle swarm 

algorithm in which, at each generation, a small number of 

particles are mutated and are allowed to hill climb. The 

mutation has the effect of randomly bouncing particles 

towards other parts of the search space, while the effect of 

hill-climbing is to greatly increase the effective size of the 

“target” region of interest around the global optimum. We 

provide results for a selection of well-known test functions, 

and demonstrate that our modification improves the ability of 

the swarm to find the global optimum. 

A novel approach based on Particle Swarm Optimization 

(PSO) for scheduling jobs on computational grids introduced 

in [6]. The proposed approach is to dynamically generate an 

optimal schedule so as to complete the tasks within a 

minimum period of time as well as utilizing the resources in 

an efficient way. When compared to genetic algorithm (GA) 

and simulating Annealing (SA), an important advantage of the 

PSO algorithm is its speed of convergence and the ability to 

obtain faster and feasible schedules. 

[11] Presented a new mutation operator called the 

Systematic Mutation (SM) operator for enhancing the 

performance of Basic Particle Swarm Optimization (BPSO) 

algorithm. The SM operator unlike most of its contemporary 

mutation operators do not use the random probability 

distribution for perturbing the swarm population, but uses a 

quasi random Sobol sequence to find new solution vectors in 

the search domain. The comparison of SM-PSO is made with 

BPSO and some other variants of PSO. The empirical results 

show that SM operator significantly improves the performance 

of PSO. 

Mutation operation was combined with basic particle 

swarm optimization (BPSO) in [5] let’s called PSOM. and in 

[12] and [10] combined crossover with BPSO, let’s called 

PSOC. In [14] used mutation and crossover with BPSO to 

make a new algorithm, let’s called PSOMC. The authors in 

[5], [12], [10] and [14] proved that their new algorithms are 

better than BPSO algorithm by tested benchmark functions. 

The common benchmark functions between these papers as 

following: 

 

1- Sphere function  

Min 



n

i

ii xxxf
1

2

1 21.521.5)(  

2- Rosenbrock function 

Min 



 
n

i

iii xxxxf
1

222

12 )1()(100)(

(9) 
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3- Ackley’s function 

Min 

)
1

2.0exp(2020)(
1

2

3 



n

i

ix
n

exf

 

 




n

i

ix
n 1

))2cos(
1

exp( 
  

3232  ix
(10) 

 

Table (1) represents the mean fitness for each function in 

each algorithm. We found that PSOC gives best value for f1 

and PSOCM gives best value for f2 and PSOM gives best 

value for f3.  

 

TABLE I.   THE OBTAINED RESULTS FOR PSOM, PSOC AND PSOCM 

FOR F1, F2 AND F3 

 Mean fitness 

 PSOM PSOC PSOMC 

f1 3.327 E-9 8.517991 E-43 3.4003 E-40 

f2 106.939 8.608759 E-19 7.15891 E-29 

f3 3.152 E-12 6.292307 E-10 0.00 

 

With a detailed study for the above results; we found that one 

can’t grantee which algorithm gives the best result. So, three 

hybrid algorithms are develop for solving MTSP. In the first 

algorithm, we combine PSO with crossover and mutation 

operators (HPSOCM-MTSP). While in the second algorithm, 

the combination was made between PSO with crossover 

operator (HPSOC-MTSP). Finally in the third algorithm, PSO 

combined with mutation operator (HPSOM-MTSP). 

V. HYBRID PSO ALGORITHM FOR SOLVING MTSP 

In this section, the combination of a crossover procedure 

and/or mutation procedure with a PSO algorithm to develop 

hybrid PSO algorithm  

 

A. Hybrid PSO Algorithm (HPSO) 

First, the particle defines as a set of starting times for the 

machines in all cycles. The particle is represented by D-

dimensional, where D equal to N multiplies by K (where N 
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number of machine and K number of cycles). The xirpt is the 

starting time (particle member) for machine i in cycle r in 

particle p, Qp ,..,2,1  in iteration t, Tt ,..,2,1  (where Q is 

number of particles in the SWARM and T is the number of 

iterations) which satisfy the constraints in (P). 

 

The main steps of the algorithm that solves MTSP by 

PSO as follows: 

 

1- Reformulation: 

   For each machine j, calculate the set of successors 

Uj. Then calculate the minimum of the upper bounds for the j
th

 

machine’s successors, and also calculate the difference 

between the calculated minimum and its processing time. 

Therefore the new upper bound of the j
th

 machine will be 

reformulated as the minimum between its old upper bound and 

the calculated difference.  

  

2- Initial iteration: 

 The value of xirpt generated randomly 

where irir Hxh irpt  . The xirpt must satisfy the second 

constrain which is )(max
)1()( j

ptrji
Nj

irpt pxx 


. Determine the 

pbestp which is the best position of particle p that make the 

best value of the objective function. Then determine the gbest 

which is the best particle that make the best value of the 

objective function in all iterations. 

 

3- New PSO iteration: 

 The next iteration created by modifying the velocity of 

each particle by the following equation: 

)(

)(

22

11)1(

irptir

irptirpirpttirp

xgbestrc

xpbestrcwvv




Then the particle 

position will be update by the following equation: 

 )1()1(   tirpirpttirp vxx  

The new iteration has been created with new position of 

SWARM.  

4- Calculate the objective function then find the pbestp and 

gbest.  

5- Execute a Crossover operator and/or a Mutation operator 

on the particles. 

6- Repeat step 3 to step 5 until reaching the given number of 

iterations T.  

 

Crossover operation: 

 The swarm divided into pairs, in each pair there are two 

particles, divide each particle at a certain position s, and then 

swap between the s to k members in both particles, where k 

represents the total number of members in a particle.   

 

Mutation operation: 

Use the uniform mutation, which 

means that, each member in the particle has the same chance 

to be mutated. The symbol A represents the number of mutated 

particles and the symbol E represents the number of mutated 

members in each particle. The obtained value of the mutated 

members will be generated randomly based on its boundaries. 

 

Three proposed hybrid algorithms and a comparison 

between them based on the value of objective function is 

going to introduced.  

 

B. HPSOCM-MTSP algorithm: 

 This hybrid algorithm combines the crossover and 

mutation with PSO as follows (see the flowchart in Appendix 

A): 

1- Reformulation: machine boundaries. 

2- Initial iteration: generate the particles randomly based on 

new machines boundaries. 

3- Next PSO iteration: modify the velocity and position of 

particles. 

4- Calculate the objective function then find the pbestp and 

gbest.  

5- Crossover the particles with each others. 

6- Mutation  the particles  

7- Repeat step 3 to step 6 until the T.  

 

HPSOCM-MTSP Algorithm:  

A1: Reformulate the boundaries for each machine in each 

cycle as follows:   

N
ikik

iLH Put ,   Nj
jr

jr lh  ,  

))min(,(min
1

j
irjUi

jrjr pHLH 


 

Where 1,2,...,1}:{
)(

 krNjNiU
i

j  

A2: Put t = 1. 

A3: Put p = 1.   

A4: Put r = 1. 

A5: Put i = 1. 

A6: If 1r  then )(max
)1()(

j
ptrji

Nj
ir pxh 



. 

A7: Generate random number for xircp 

where irir Hxh ircp  . 

A8: If i < n then i = i + 1 go to A6. 

A9: If r < k then r = r + 1 go to A5. 

A10: pbestp = f(xirpt) KrNi ,..,1,,..,1  . 

A11: If p < Q then p = p + 1 go to A4. 

A12: find min(f(pbestp)) .,..,1 Qp   

A13: 
minppbestgbest   

A14: t = t + 1. 

A15: Put p = 1. 
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A16: 
)(**

)(***

)1(22

)1(11)1(









tirp

tirpptirpirpt

xgbestrc

xpbestrcvwv
  

A17: irpttirpirpt vxx   )1( . 

A18: if xirpt is not feasible then go to A20. 

A19: if f(xirpt) > f(xirpt-1) then pbestp = xirpt 

A20: If p < Q then p = p + 1 go to A16. 

A21: if f (gbest) > f (
minppbest ) then

minppbestgbest  . 

A22: f (gbest t) < f (gbest t-1) then go to 15. 

A23: Put p=1. 

A24: Put r =trunc( s/N) + 1. 

A25: Put i = rem(s/N). 

A26: Swap between xirpt and xir(p+1)t. 

A27: If i < n then i = i + 1 go to A26. 

A28: If r < k then r = r + 1, i =1 go to A26. 

A29: If p < Q then p = p + 2 go to A24. 

A30: Generate random number A between 1 and Q. 

A31: a=1. 

A32: Put e = 1. 

A33: Generate random number E between 1 and D.  

A34: Put r =trunc(m/N) + 1. 

A35: Put i = rem(m/N). 

A36: Generate random number for xirat 

where irir Hxh irat  . 

A37: if e < E then e = e + 1 go to A33. 

A38: if a < A then a = a + 1 go to A32. 

A39: if f (gbest) > f (xirat) then gbest = xirat. 

A40: If t < T then go to A15. 

A41: The solution is gbest.  
trunc(): function return the integer part of divided operation. 

rem(): function return the remaining value divided operation. 

 

VI. NUMERICAL EXAMPLE: 

Consider a problem with the following values of 

parameters n = 5 so  N = {1,2,3,4,5},  p = {2,4.5,6.25,4,5}, 

TABLE II.  UPPER AND LOWER BOUNDARIES FOR THE MACHINE’S 

STARTING TIME 

Cycle (r) r = 1  r = 2 r = 3 

lir             
  i =1,2,.,5 

{1,0,0,3,1} {4,6,6,5,6} {10,11,12,9,11.5} 

Lir    
 i =1,2,.,5 

{5,4,3,5,6} {6.5,7,7.5,7.25,6.5} {13,12,15,12,14} 

 

TABLE III.  MACHINE’S PREDECESSORS AND MACHINE’S SUCCESSORS  

i 1 2 3 4 5 

N(i) {1,2,3} {2} {2,3} {1,4,5} {1,3,5} 

Uj {1,4,5} {1,2,3} {1,3,5} {4} {4,5} 

 

Assume further that  

Njbpxxaxf jrjrjrjrjrjrjr  )0,,(max)( Where aj, bj 

are for all Nj  given constants to represent the end points of 

the tolerance interval for each machine [ajr , bjr], so that we 

have in our case for all Nj   

jrjrjrjrjrjr

jrjrjrjr

bpxpxf

xaxf





)(

)(

)2(

)1(

 

Input values of air and bir for each cycle are given in table (4). 

 

TABLE IV.  THE END POINTS OF THE TOLERANCE INTERVALS FOR THE 

MACHINE’S STARTING TIME  

Cycle (r) r = 1 r = 2 r = 3 

air 
i =1,2,.,5 

{1,1,1,3,3} {5,7,6,5,7} {11,12,11,10,13} 

bir 
i =1,2,.,5 

{4,6,8,5,5} {8,9,8,6.5,8} {13,15,14,12,14} 

 
After running the program 100 trials and taking the 

average of objective function’s values and call it averageF 

(values calculated for each iteration in each trial), it is found 

that; the best parameters for the HPSO are: the swarm size 

equals 80, the value of w equals 0.5 and the values c1 and c2 

equal 1.7. concerning the cutting point in the a particle to 

crossover, it is found that the best position of cutting point is 

33% of the particle size, that means, the cutting should be 

occurred between cycles. Concerning the mutation, it is found 

that the mutation probability equals 10% of particle size and 

also the number of particles which will be mutated should 

equal 20% of the swarm size.  

The proposed hybrid HPSOCM-MTSP algorithm which 

combines the crossover and mutation procedures with the 

HPSO has been applied on the illustrative example (scenario I) 

and it is found that the minimum value of averageF which is 

33.08 arises after 4400 iterations as shown in the figure 1 

(with no improvement of the value whatever the number of 

iterations increases). 

 
HPSOCM-MTSP

31

32

33

34

35

36

1 401 801 1201 1601 2001 2401 2801 3201 3601 4001 4401 4801

Iterations

A
v
e
ra

g
e
F

HPSOCM-MTSP

 
Figure 1.  The solution of HPSOCM-MTSP 
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When HPSOCM-MTSP without the mutation operation 

has been applied (i.e by applying the crossover operation only) 

on the same example (scenario II), it is found that the 

minimum value of averageF which is 34.97 arises after 220 

iterations as shown in the figure 2 (with no improvement of 

the value whatever the number of iterations increases). 

 
HPSOC-MTSP

33

33.5

34
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35

35.5

36

36.5

1 17 33 49 65 81 97 113 129 145 161 177 193 209 225 241

Iterations

A
v
e
ra

g
e
F

HPSOC-MTSP

 
Figure 2.  The solution of HPSOC-MTSP 

 

Finally HPSOCM-MTSP without the crossover operation 

has been applied (i.e by applying the mutation operation only) 

on the same example (scenario III), it is found that the 

minimum value of averageF which is 32.83 arises after 380 

iterations as shown in the figure 3 (with no improvement of 

the value whatever the number of iterations increases). 
HPSOM-MTSP

31

32

33

34

35

36

37

1 32 63 94 125 156 187 218 249 280 311 342 373 404 435 466 497

Iterations

A
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e
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g
e
F

HPSOM-MTSP

 
Figure 3.  The solution of HPSOM-MTSP 

 

So the best starting times that are given by applying 

(scenario III) is represented in table (5) with the best value of 

averageF (which is 32.83)   

 

TABLE V.  THE BEST STARTING MACHINE’S STARTING TIME FOR 5 

MACHINES AND THREE CYCLES 

Machine 

Cycle 

M1 M2 M3 M4 M5 

C1 1.74 1.7 0.02 3 1.39 

C2 6.27 6 6.27 7 6.39 

C3 12.52 11.25 12.52 11.39 12.52 

 

Now assume that the cost value is $α, then the penalty 

cost in our case equals $32.83α, with a difference $2.14α if the 

crossover operation only has been applied, and with a 

difference $0.25α if both the crossover operation and the 

mutation operation have been applied.  

It is worth to mention that the convergence of HPSOM-

MTSP which combines the mutation procedure with PSO 

algorithm has been examined in [4], the authors conclude that 

the algorithm speed up the convergence for the hardest test 

functions. 

It is very important to mention also, according this article, 

one can say that, the proposed hybrid algorithm is considered 

the best one only for this type of problems (MTSP).   

 

VII. CONCLUSION: 

A proposed hybrid algorithm HPSOCM-MTSP was 

developed, and after applying three different scenarios 

numerically, it is found that the HPSOCM-MTSP algorithm 

(with applying the Mutation operation only) gives the best 

result among the three applied scenarios, for solving the 

proposed machine time scheduling problem, with penalty cost 

value $32.83α. Moreover the HPSOCM-MTSP proposed 

algorithm gives a better result comparing with the results that 

obtained by applying PSO-MTSP algorithm [1], GA-MTSP 

algorithm [1] and max-separable technique [3]. Figure 4 

represents the comparative study between the penalty function 

values for the proposed algorithm with its three scenarios and 

the other three algorithms.  
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Figure 4.  Comparison between HPSOM-MTSP algorithm and other different 

algorithms 
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Appendix A 

 
HPSOCM-MTSP Algorithm Flowchart 
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HPSOCM-MTSP Algorithm Flowchart (cont'd) 
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HPSOCM-MTSP Algorithm Flowchart 
(cont'd)
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HPSOCM-MTSP Algorithm Flowchart 
(cont'd)
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HPSOCM-MTSP Algorithm Flowchart (cont'd) 


