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Abstract—In this paper, we consider the generalized linear 

complementarity problem (GLCP) over an affine subspace. To 

this end, we first reformulate the GLCP as a system of 

nonsmooth equation via the Fischer function. Based on this 

reformulation, the famous damped Gauss-Newton (DGN) 

algorithm is employed for obtaining its solution, and we show 

that the DGN algorithm is quadratically convergent without 

nondegenerate solution. Some numerical experiments of the 

algorithm are also reported in this paper.  
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I.  INTRODUCTION  

The generalized linear complementarity problem, denoted 

by the GLCP, is to find a vector  
* * 2n( , ) Rx y  such that  

* * * * * *, 0, 0,( ) 0,TMx Ny x y x y      

 (1) 

where 
nmRNM ,  are two given matrices, and 

 | ( , )l m l mQz q z R Q R q R       is an affine 

subspace in 
mR . 

The GLCP is a special case of the extended linear 

complementarity (XLCP) which was firstly introduced by 

Mangasarian and Pang ([1]).The generalized complementarity 

problem plays a significant role in economics equilibrium 

problems, noncooperative games, traffic assignment problems, 

engineering and operation research, and of course in 

optimization problems ([2]). 

For the GLCP, many effective methods have been proposed 

in recent years ([3]). Zhang et al. ([4]) reformulate the GLCP 

as unconstrained smooth optimization problem via Fischer 

function, and design a Newton-type algorithm for solving it. 

D.S.Bart and M.D.Bart ([5]) develop a double description 

method to find all its solutions, and show the general problem 

is a NP-hard problem. Different from the algorithms listed 

above, in this paper, we equivalently reformulate the GLCP as 

a system of nonsmooth equations via the Fischer function. 

Based on this reformulation, we propose a damped Gauss-

Newton algorithm to solve this system. We show that the 

algorithm is quadratically convergent under milder 

hypotheses. 

We end this section with some notations used in this paper. 

The inner product of vectors 
nRyx ,  is denoted by yxT

. 

Let   denote 2-norm of vectors in Euclidean space.The 

transposed Jacobian )(' xF of a vector-valued function )(xF  

is denoted by )(xF .For simplicity, we use ),,( zyx  for 

column vector 
TTTT zyx ),,( .For )(, adiagDRa a

n   

denotes the diagonal matrix in which the i -th diagonal 

element is ia . 

II.  EQUIVALENT STATEMENTS OF GLCP 

In this section, we will give some equivalent statements 

relative to the solution of the GLCP. First, the following result 

is straightforward. 

Theorem 2.1 
* *( , )x y  is a solution of the GLCP if and only 

if there exists 
lRz *
 such that  

* * *

* * * *

0

0, 0,( ) 0

Mx Ny Qz q

x y x y

    


  
 

To propose a quadratically convergent algorithm for the 

solution of the GLCP, we now formulate the GLCP as a 

system of equations via the Fischer function ([6]) 
12: RR   defined by 

2 2( , ) ,a b a b a b     for Rba ,  

A basic property of this function is that 

0,0,00),(  abbaba  

For arbitrary vectors 
nRba , , we define a vector-valued 

function as follows 
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1 1

2 2

( , )

( , )
( , ) .

( , )n n

a b

a b
a b

a b







 
 
  
 
 
 

 

Obviously, 0,0,00),(  bababa  

Combining this conclusion with Theorem 2.1, we can 

establish the following equivalent formulation of the GLCP. 

Theorem 2.2 
* *( , )x y  is a solution of the GLCP if and  

only if there exists 
lRz *
 such that  

 

* * *

* *

0
.

( , ) 0

Mx Ny Qz q

x y

    


 
  (2) 

From the analysis above, we define a vector-valued function 
nmln RR   2:  and a real-valued function 

RRf ln 2:  as follows: 

 ,
),(

:),,( 













yx

qQzNyMx
zyx  (3) 

21 1
( , , ) : ( , , ) ( , , ) ( , , ) .

2 2
f x y z x y z x y z x y z    

(4) 

Combining (2) with (4), the following conclusion is 

obvious. 

Theorem 2.3 
* *( , )x y  is a solution of the GLCP if and only 

if 0),,( *** zyxf . 

III. SOME DEFINITIONS AND BASIC RESULTS 

In this section, we first review some definitions which will 

be used in the sequel. 

For a locally Lipschitzian mapping 
mn RRH : , we let 

)(xH  denote the Clarke's generalized Jacobian of )(xH  at 

nRx  which can be expressed as the convex hull of the set 

)(xHB  ([7]), where 

 '( ) | lim ( ) ,
k

m n k

B
x x

H x V R V H x


     

)(xH  is differentiable at 
kx for all k . The following 

definitions are due to Qi and Sun ([8]). 

Definition 3.1 A locally Lipschitz continuous vector valued 

function 
mn RR  :  is said to be semismooth at 

nRx , if the limit 

 
'

'

'

( )

, 0

lim
V H x th

h h t

Vh
 

 

 

 exists for any 
nRh  

Definition 3.2 The function 
mn RRH :  is said to be 

strongly semismooth at x  if H  is semismooth at x  and for 

any 0),(  hhxHV , it holds that 

2
( ) ( ) ( ).H x h H x Vh O h     

Next, we discuss the differential properties of   and f  

defined by (3) and (4). The function ),,( zyx  is not 

differentiable everywhere with respect to 
lnn RRRzyx ),,( . However, it is locally 

Lipschitzian continuous vector valued function, and there has 

a nonempty generalized Jacobian in the sense of Clarke ([9]). 

In the following, we give an approach to calculate an element 

of ),,( zyx .From Proposition 3.1 in [10], we give the 

following result. 

Proposition 3.1 For 
nRyx , , choose 

nRv  such that 

0iv  for any index i  with 0ix  and 0iy . Let 

),( ba DDW  , where 

2 2

2 2 2 2

2 2

2 2

1, 1, 0;

1
1, 1, 0.

1 1

i i
i i i i

i i i i

i
i i i i

i i

x y
a b ifx y

x y x y

v
a b ifx y

v v

     
 

     
 

 

Then ),( yxW  , or more precisely, ),( yxW B . 

Changing v , we will obtain a different element of 

),( yxB . In our code, we choose to set 0iv  if 

2 2 0i ix y  , otherwise. Thus, an element 

),,( zyxV  can be calculated as 








 


0ba DD

QNM
V  

where aD and bD  are defined in Proposition 3.1. It is easily 

seen that, when lnm  , V  is square. 

We summarize the differential properties of   and f  in 

the following lemma, and its proof can be found in [10]. 

Lemma 3.1 For the vector-valued function   and real-

valued function f defined by (3) and (4), the following 

statements hold: 

(a)   is strongly semismooth. 

(b) f is continuously differentiable, and its gradient at a 

point 
lnn RRRzyx ),,(  is given by  

),,(),,( zyxVzyxf  
, where V  is an arbitrary 

element belonging to ),,( zyx . 
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IV. STATIONARY POINT AND NONSINGULARITY 

CONDITIONS 

To establish a quadratic convergence rate of our algorithm 

proposed in the next section, we need to study the conditions 

under which every element of the generalized Jacobian 

   is full row rank at a solution point 
*  of the 

equation   0  . First, we give the needed definition 

([11]). 

Definition 4.1 Given two matrices , m nM N R  , we say 

that ,M N  has the row P -property if it satisfies the 

condition 

0

0 0 0

( , ) 0, ( ) 0,

( ) 0, ( ) ( ) 0

n

i

i i i

M N R M

N M N

   

  

  

  

   

 
 

Theorem 4.1 Suppose that ,M N  have the row P -

property and rank[ , ]M N m , then for any  V  , 

V  is of full row rank. Moreover, when m n l  , V  is 

nonsingularity. 

Proof: Assume that V  is not of full row rank. Then there is 

a nonzero vector ( , ) m nu v R   such that ( , ) 0V u v  , i.e.,  

 0, 0, 0.a bM u D v N u D v Q u         (5) 

This implies that  

 

2( ) ( ) ( ) ( ) ,

1,2, , .

i i a i b i i i iM u N u D v D v a b v

i n

     


 (6) 

By 0, 0i ia b   and (6), we have  

 ( ) ( ) 0, 1,2, , .i iM u N u i n     (7) 

Suppose that ( )( ) 0M u N u   , by rank [ , ]M N m  , 

we get 0u  . Since ( , ) 0u v  and 0u  , we have 0v  . 

Without loss of generality, we assume that 
1

0iv  , from (5) 

and 0u  , we obtain 0aD v  , 0bD v  , and 

1 1
0i ia b  , which contradicts that ia , ib  defined in 

Proposition 3.1. So  

 ( )( ) 0.M u N u    (8) 

By (8) and the row P -property of NM , , we have that there 

exists 0i  such that 
0 0

( ) ( ) 0i iM u N u   , which is a 

contradiction to (7). 

So, V  is of full row rank. Obviously, when lnm  , V  

is nonsingularity. 

By Theorem 2.3, we know that a point ),( ** yx  is a 

solution of the GLCP if and only if 0),,( *** zyxf , or 

equivalently, ),,( **** zyx  is a global minimizer with 

zero objective function value of the unconstrained 

optimization problem 

 ).(min 


f
lnnR 

 (9) 

It is necessary to establish conditions, which guarantees that 

every stationary point of (9) solves the GLCP. The following 

theorem gives a suitable condition. 

Theorem 4.2 Let ),,( **** zyx  is a stationary point of 

(9), if NM ,  has the row P -property and 

rank mNM ],[ , then ),( ** yx  is a solution of the GLCP. 

Proof: Since 
*  is a stationary point of (9), then 

0)( *  f , i.e., 0)()( **  V . By Theorem 4.1, we 

have 
*V  is of full row rank, so 0)( *   . Moreover, 

),( ** yx  is a solution of the GLCP. 

V. ALGORITHM AND CONVERGENCE 

In this section, we formally state a damped Gauss-Newton 

(DGN) algorithm, which is similar to the algorithm in [12]. 

For convenience, let ),,( kkkk zyx  in the sequel. 

DGN Algorithm 

Step1. Let 
lnnR 0  and 10   be given. 

Step2. If 0)(  kf  , stop; otherwise, go to step3. 

Step3. Choose an element )( kkV  , set  

),())(( 1 k

k

kkk fIVVp   
 

 where )( k

k f   . 

Step4. Let k  be the largest element in the set 

},2/1,1{   such that  

.)()()( kk

k

k

k

kk pfpff    

Step5. Set 
k

k

kk p 1
, 1 kk , go to Step 2. 

  Lemma 5.1 For any 
lnRzyx  2),,( . Suppose that 

0)(  f . Then, given 0 , the direction p  given by 

)()(  fpIVV 
 is an ascent direction for )(f , 

 it is that, 0)(   pf  . 

Proof: Obviously, there exist constants 01   and 

02   such that 

.,)(
2

2

2

1

nRrrrVVrr     

Thus, for any 
nRr , 

.)()()(
2

2

2

1 rrIVVrr   
 (10) 

Since 0)()(   Vf , then 0V , and 

0VV . 
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 By )()(  fpIVV 
, we have 0p . If we let 

pr   in (10), we get 

2

1( ) ( ) ( ) 0.p f p V V I p p            

It follows that 0)(  pf   and that p  is an ascent 

direction for )(f . 

According to Lemma 5.1, it is easy to say that 
kp  is a 

descent direction of )(f  at 
k  and the DGN Algorithm is 

 well defined. Obviously, if 0)(  kf  , then 
k  is a 

stationary point of problem (9). Thus, ),( kk yx  is a solution 

of the GLCP under suitable conditions. 

Theorem 5.1 Let }{ k  be the sequence determined by the 

DGN Algorithm, then either }{ k  terminates at a stationary 

point of )(f , or else every accumulation point of }{ k ,if 

 it exists, is a stationary point of )(f . 

Proof:  The first assertion is obvious, we prove only the  

second.  

Let 
lnnR *  be an accumulation point of }{ k , i.e., 

there exists an infinite subsequence of }{ k  converges to 

* . Without loss of generality, we assume that }{ k  

converges to 
* . Since the subdifferential is upper 

semicontinuous, the sequence }{ kV  is bounded. With loss of 

generality, we may assume that 
*}{ VV k  . Since the 

sequence )}({ kf   is decreasing and bounded from below, 

*{ ( )} ( )kf f  . Therefore, 

,)()()(

})(){(}){(

),()()}({)}({

*

*****

***

IVVIfVV

IfVVIVV

fVVf

kkk

k

kk

kkk
















 

then, we have 
*}{ ppk  . 

Suppose that 0)( *  f , then 0* V , 0)( *   ,  

and 0)(
2

1
)(

2
**

*   f , IVV *

**)( 
is 

positive definite. Thus,  

.0)()))((()( *1

*

*****    fIVVfpf  

Let 
*  be the largest element   in the set },2/1,1{    

such that  

.)()()( ***** pfpff    

By the continuity of f , for k  sufficiently large, we have 

 .)()()( ** kkkkk pfpff    

From the stepsize rule of 
k , we know that   

 

.)(

)()(

)()(

)()(

*

*

1

kk

kkk

kkkk

kk

pf

pff

pff

ff





















 (11) 

Taking the limit on both side of (11), we get 
* * * * *0 ( ) ( ) ( ) .f f f p         

But it is impossible since 0)( **  pf  . 

Therefore, 0)( *  f , i.e., 
*  is a stationary point of 

f . 

The next result follows immediately from Theorem 4.2 and 

Theorem 5.1. 

Theorem 5.2 Let }{ k  be the sequence determined by the 

 DGN Algorithm, ),,( **** zyx  be an accumulation 

point of }{ k . Suppose that NM ,  has the row P -property 

and rank mNM ],[ , then ),( ** yx  is a solution of GLCP. 

Next, we prove the quadratic convergence of DGN 

Algorithm. 

Theorem 5.3 Let }{ k  be the sequence determined by the 

DGN Algorithm, }{ *  be an accumulation point of }{ k . 

Suppose that NM ,  has the row P -property and 

rank mNM ],[ , then, we have the sequence }{ k  

converges to }{ *  quadratically. 

Proof: Since 
*  is an accumulation point of }{ k , there 

exists an infinite subsequence of }{ k  converges to 
* . 

Without loss of generality, we assume that }{ k  converges 

to 
* . 

By Theorem 5.2, we have ),( ** yx  is a solution of GLCP, 

so 0)( *   , 0)( * f . By the proof of Theorem 5.1, 

we obtain 

.}{,0)()}({}{ ** VVff kk

k    

Then, there exist constants 0,0 21    such that for all 

k  sufficiently large and for any )( kkV   

 .)(, 21   k

k V  (12) 

Moreover, there exists a constant 0  such that 

 .))(( 1    IVV k

kk
 (13) 

By Lemma 3.1, we have )( k  is strongly semismooth, 

and by the definition of strong semismoothness,  we have  
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).()()()(
2

***   kkkk V  

So, there exists 
3  such that 

 .
)()()(

3*

**











k

kkk V
 (14) 

Similarly to the proof of Theorem 3.1 in [10], we can show 

that 1k  for sufficiently large k  and, 
kkk p  1

. 

Thus, 
1 *

*

*

* *

* *

*

* *

(( ) )( )

(( ) )( )

(( ) )( ) ( )

( ) ( ) ( ) ( )

[ ( ) ( ) ( )] ( )

[( ) ( ) ( ) ( )

( ) ( )] ( )

( ) [

k k k

k

k k k k

k

k k k k

k

k k k k k

k

k k k k k

k

k k k

k k k k

k

k

V V I

V V I p

V V I f

V V f

f V V

V V

V V

V

  

  

   

     

     

 

    

 









 





 

   

   

    

      

    

   

   * *

*

( ) ( ) ( )]

( ).

k k k

k

k

V   

  

  

 

(15) 

Since the continuity of f  and 0)( * f , there exists a 

constant 04   such that 

.)()()( *

4

*   kkk

k fff   (16) 

By (12) (16), we have 
1 *

2
* * *

2 4

2 2
* *

2 3 4

2
*

( ) ( ) ( )

,

k

k k k k

k k

k

V

 

       

      

  

 

      

   

 

where 432    is a constant. 

Therefore, we have }{ k  converges to 
*  quadratically. 

VI. COMPUTATIONAL EXPERIMENTS 

In the following, we will implement the DGN Algorithm in 

Matlab and run it on Pentium IV computer. 

Example 6.1  (Murty 1988). n  variables, 

1 2 2 2 1 0 0 0

0 1 2 2 0 1 0 0

,0 0 1 2 0 0 1 0

0 0 0 1 0 0 0 1

M N

   
   
   
    
   
   
   
   

, 

 

 )1,,1,1(,0 qQ  

We take 
 )1,,1,1(0 x  as our starting point. The 

solution is 
 )1,,0,0(* x , 

 )0,,1,1(* y . The 

numerical results for this test problem can be found in Table 1. 

For this problem, Harker and Pang ([13]) used the damped-

Newton method (DNA), and Zhang et al. ([14]) used the 

Newton-type method (NTA). The results for the above two 

methods and several values of the dimensions n  are 

summarized in Table 2. From Table 1 and Table 2, we can 

conclude that our algorithm excels the other two methods 

listed above. 

TABLE 1.  

Numerical results of our algorithm for Example 6.1 

Dimension 8 16 32 64 128 

Iter.num 7 12 17 41 82 

 

TABLE 2.  

Numerical results by DNA, NTA 

Dimension 8 16 32 64 128 

DNA iter.num 9 20 72 208 >300 

NTA iter.num 13 12 18 99 99 

 

Example 6.2 This example is LCP used by Noor ([14]). n  

variables, 

4 2 0 0
1 0 0 0

1 4 2 0
0 1 0 0

0 1 4 0
,0 0 1 0

0 0 0 2
0 0 0 1

0 0 0 4

M N

 
   

   
   
    
   
         

 

, 

0, (1,1, ,1) .Q q    

Table 3 list the results for this example with initial point 

qNy 10  for different dimensions n  and parameter 

5.0 . Compared with the results of Table 4.2 in [13], we 

can conclude that our algorithm excels methods in [13]. 

TABLE 3. 

Numerical results of our algorithm for Example 6.2 

Dimension 10 20 50 80 100 200 

Iter.num. 4 4 4 4 4 4 

)( *f  0 0 0 0 0 0 
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