
International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 06, November 2013

www.ijcit.com 1101

Intelligent Agent based Mapping of Software

Requirement Specification to Design Model

Emdad Khan

College of Computer and Information Sciences

Al-Imam Muhammad Ibn Saud Islamic University

Riyadh, Saudi Arabia

Email: emdad {at] ccis.imamu.edu.sa

Mohammed Alawairdhi

College of Computer and Information Sciences

Al-Imam Muhammad Ibn Saud Islamic University

Riyadh, Saudi Arabia

Abstract— Automatically mapping a requirement specification to

design model in Software Engineering is an open complex problem.

Existing methods use a complex manual process that use the

knowledge from the requirement specification/modeling and the

design, and try to find a good match between them. The key task

done by designers is to convert a natural language based

requirement specification (or corresponding UML based

representation) into a predominantly computer language based

design model – thus the process is very complex as there is a very

large gap between our natural language and computer language.

Moreover, this is not just a simple language conversion, rather a

complex knowledge conversion that can lead to meaningful design

implementation.

In this paper, we describe an automated method to map

Requirement Model to Design Model and thus automate / partially

automate the Structured Design (SD) process. We believe, this is the

first logical step in mapping a more complex requirement

specification to design model. We call it IRTDM (Intelligent Agent

based requirement model to design model mapping). The main

theme of IRTDM is to use some AI (Artificial Intelligence) based

algorithms, semantic representation using Ontology or Predicate

Logic, design structures using some well known design framework

and Machine Learning algorithms for learning over time.

Semantics help convert natural language based requirement

specification (and associated UML representation) into high level

design model followed by mapping to design structures. AI method

can also be used to convert high level design structures into lower

level design which then can be refined further by some manual

and/or semi automated process. We emphasize that automation is

one of the key ways to minimize the software cost, and is very

important for all, especially, for the “Design for the Bottom 90%

People” or BOP (Base of the Pyramid People).

 Keywords- Software Engineering, Artificial Intelligence,

Ontology, Intelligent Agent, Requirements Specification,

Requirements Modeling, Design Modeling, Semantics, Natural

Language Understanding, Machine Learning, Universal Modeling

Language (UML), ICT (Information and Communication

Technology and BOP (Base of the Pyramid People).

I. INTRODUCTION

Converting requirement specification or model to design

model followed by an implementation is an important part of

software engineering, especially for a large scale software. It

is both information conversion and knowledge conversion,

and it involves both art & science. Hence the process is

complex. In fact, the various levels of abstractions involved in

such mapping (e.g. from requirement model to design model,

to architecture, to implementation) make the process even

more complex. Designers use their expertise and various

available tools to successfully complete the process. Since

software cost is an important factor for many organizations (in

fact, it is a key factor for almost all countries as it is a

significant part of GDP, Gross Domestic Products), it is

important that we keep the software cost minimal. This is even

more true for underdeveloped and developing countries

dominated by BOP (Base of the Pyramid People) -many of

them are poor i.e. income is less than $2 per day. Minimizing

software cost will help such countries to afford ICT

(Information and Communication Technologies) and

associated software; and thus will provide the benefits of the

Information Age to such population. This fits well, with

“Design for the bottom 90% people”. Automation is one of

the key ways to minimize the software cost [11].

 Many researchers have been working on automating

various parts of the software engineering including software

development process. E.g. to help architectural design, various

models have been proposed like Structural Models,

Framework Models, Dynamic Models, Process Models and

Functional Models ([2], [3]). A number of different

Architectural Description Languages (ADLs) have been

developed to represent these models ([4], [6]). Similarly, to

help requirement modeling, various languages have been

developed e.g. Requirement Modeling Language, RML ([1],

[7], [10]). However, we could not find any citation regarding

automatically mapping a Requirement Model to a Design

Model. A few somewhat related researches are covered in

([13], [15]).

 In this paper, we present an Intelligent Agent (IA) based

automated method to map Requirement Model to a Design

Model. It is called IRTDM (Intelligent Agent based requirement

model to design model mapping). The IA uses Artificial

Intelligence (AI), semantic representation using Ontology or

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 06, November 2013

www.ijcit.com 1102

Predicate Logic, Design Structures (DS) using some well

known design framework and Machine Learning algorithms

for learning over time. We specifically focus on mapping

Requirement Model to Architecture. Mapping to other key

software areas / steps (e.g. converting the architecture into

operational software) are also possible using similar approach

but not covered in this paper.

 Section II provides a brief high level overview of IRTDM

(Intelligent Agent based requirement model to design model

mapping). Section III describes the basics of the Flow-Oriented

Requirement modeling to Data-Flow architecture mapping

method as done by experienced designers. Section IV

describes an automated version of Section III using Natural

Language Processing / Understanding, Artificial Intelligence

and an Intelligent Agent. Section V describes the Architecture

and Algorithms for more general and versatile Intelligent

Agent. It also briefly discusses how to apply the concept for

other types of mapping, Section VI describes future works and

Section VII provides conclusions.

II. HIGH LEVEL OVERVIEW OF IRTDM

 There is a good correspondence between requirement

model and design model (Fig.1). Various parts of the

Requirement Model have corresponding mapped parts in the

design model. E.g. class-based elements map to data / class,

architecture and component design parts in the design model.

In fact, designers use such basic mapping as a basis to come

up with an architecture. Designers also use various levels of

architectural abstractions (e.g. Architectural Genre,

Architectural Styles, Archetypes) to come up with the

structure showing key blocks or components. Our main

theme is to use designers approach to come up with an

automated approach. It is important to note that for some

cases there is no practical mapping from requirement model to

some architectural styles. But for many cases such mapping

exists. A good example is mapping Flow-Oriented

Requirement modeling to Data-Flow architecture style. Since

enough abstractions already exist and the manual method is

understood reasonably well, we can convert the same into

appropriate steps that can be done by an Intelligent Agent (IA)

i.e. IA in IRTDM. First we discuss a simple IA to

automatically handle Flow-Oriented Requirement modeling to

Data-Flow architecture. Then we discuss more general IA.

The key issues a general IA needs to address are:

1. Use of proper rules in doing the mapping.

2. Use of semantics to ensure correct mapping.

3. Use of appropriate rules and semantics to help map /

transform one architectural style to another (e.g.

Data-flow architecture to Layered architecture).

4. Use of Learning to improve the outcome.

5. Use of Verification to ensure correctness.

6. Help Ensure that Implementation (coding) can also

be automated in a similar way.

7. Other key issues as appropriate (e.g. refactoring,

generating test vectors and performing basic tests).

III. FLOW-ORIENTED REQUIREMENT

MODELING

TO DATA-FLOW ARCHITECTURE MAPPING

A mapping technique called Structured Design (SD) is

often characterized as a data flow-oriented design method [10]

as it provides a convenient transition from a data flow diagram

(DFD) to software architecture. Such transformation involves

the following 6 steps:

a. The type of data (information) flow is established

b. Flow boundaries are determined

c. The DFD is mapped into the program structure

d. Control hierarchy is defined

e. Resultant structure is refined using design measures

and heuristics, and

f. The architectural description is refined and

elaborated.

In order to design optimal module structure and interfaces two

principles are crucial [10]:

 Cohesion which is "concerned with the grouping of

functionally related processes into a particular

module” and

 Coupling relates to "the flow of information, or

parameters, passed between modules. Optimal

coupling reduces the interfaces of modules, and the

resulting complexity of the software”.

[Note: In general, Structured Design (SD) and Structured

Analysis (SA) are methods for analyzing and converting

business requirements into specifications and ultimately,

computer programs, hardware configurations and related

manual procedures. SA includes Context Diagram, Data

Dictionary, DFD, Structure Chart, Structured Design and

Structured Query Language (SQL)]

 One form of information mapping is called Transform

mapping where incoming data is transformed into an internal

form by a transform center. The transformed data then flows

to external world using outgoing flow. Another form of

information mapping is called Transaction mapping in which

a single data item triggers one or a number of information

flows that effect a function implied by the triggering data item.

The data item is called a transaction.

The above mentioned steps are done by designers (all

types of designers including database and data warehouse

designers and system architects) using the Requirement Model

(in this case the Flow-oriented model) and the design

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 06, November 2013

www.ijcit.com 1103

Analysis Model

use-cases - text

use-case diagrams
activity diagrams

swim lane diagrams

data flow diagrams

control-flow diagrams
processing narratives

f l ow- or i e nt e d

e l e me nt s

be ha v i or a l
e l e me nt s

c l a ss- ba se d

e l e me nt s

sc e na r i o- ba se d

e l e me nt s

class diagrams
analysis packages

CRC models
collaboration diagrams

state diagrams

sequence diagrams
D a t a / Cla ss D e sign

A rc h it e c t u ra l D e sig n

In t e rf a c e D e sig n

Co m p o ne nt -

L e v e l D e sig n

Design Model

 Fig. 1 Flow-Oriented Requirement Modeling to Data-Flow Architecture Mapping

 (Courtesy [10]).

structures including Design Genre, Design Styles (in this case

data flow architecture), set of archetypes (e.g. Controller,

Detector, Indicators, Node), basic classes (some of which are

described in the Requirement Model) and some basic design

guidelines. Refer to “Software Engineering: A Practitioner’s

Approach” by Roger Pressman [10] for a detailed example.

We basically automate these steps using NLU, AI and an

Intelligent Agent as described below in Sections 4 and 5.

 IV. AUTOMATING FLOW-ORIENTED

REQUIREMENT MODELING TO DATA-FLOW

ARCHITECTURE MAPPING

Converting Flow-Oriented Requirement Modeling to

Data-Flow Architecture is a good start because of its

simplicity. In this case there is a direct correspondence

between the requirement modeling steps and architectural

mapping steps as both use the same DFD.

4.1 Basic Ideas

 Use the requirement modeling flow information and

match it using AI rules to the corresponding Data-Flow

Architecture. Since there is 1-1 correspondence (refer to Fig.

1), Flow-Oriented elements have 1-1 correspondence with the

Design

 Model blocks like Architectural Design), developing such

rules are straight forward (refer to Sections 4.2, 4.3 and the

example in Section 5). The rules are needed mainly to map

DFD to the program structure, determine control hierarchy,

complete refinement and elaboration.

 Referring to Fig. 1, there is a 1-1 correspondence from

the DFD Requirement Model to Architectural Design,

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 06, November 2013

www.ijcit.com 1104

Interface Design and Component Level Design. Thus, we need

appropriate rules to map to all such design levels. Cohesion

and coupling are appropriately used to ensure optimal design

module structures and interfaces. Any standard automatic /

semi-automatic technique can be used to determine the

optimal design module structures and interfaces. All these key

steps can be iterated during the refinement process (steps #e

and #f in Section 3).

4.2 Requirement Modeling and Natural Language Processing

(NLP)

 Requirement Modeling methods usually use natural

language words or equivalent methods. For example, in a Use

Case diagram, the concept is expressed using natural language

type concept. Class based, Behavioral based and DFD

approaches also use natural language type concept. Thus, it is

important to use Natural Language semantics and Natural

Language Processing (NLP) in automating the mapping of

Requirement Modeling to Design process. In case of DFD

based modeling (as already mentioned), we would need

semantics and NLP to map DFD to the program structure,

determine control hierarchy, complete refinement and

elaboration.

Besides, in a typical design,

a. The software must be placed into context i.e. the

design should define the external entities (other

systems, devices, people) that the software interacts

with and the nature of the interaction.

b. A set of architectural archetypes should be identified

- an archetype is an abstraction (similar to a class)

that represents one element of system behavior.

c. The designer specifies the structure of the system by

defining and refining software components that

implement each archetype.

 NLP becomes handy in automating all these activities.

Let’s use an example to demonstrate the use of semantics and

NLP:

 Refer to Fig.2 – it shows a simple DFD with reasonable

details (i.e. say level 3 DFD). An analog signal is input to an

Analog to Digital conversion unit (the Transform center circle

or bubble #2) after doing some filtering operation by circle #1.

The transform center outputs the Digital signal in two format –

binary (bubble #3) and hexadecimal (bubble #4). All bubbles

are labeled with words that are easily understandable to human

being as these are natural language words. Our goal is to use

the semantic meaning of these words to come up with a design

structure as designers usually do.

 Consider the words “Analog to Digital Conversion” in

bubble #2. The semantic meaning of this is “Conversion from

an analog signal to digital signal takes place here” (see Section

4.3 below how such semantics is derived / programmed). Once

the program knows this semantics, it can determine the

corresponding design archetypes and top level design box

using AI rules which are based on the domain knowledge,

semantics, and the DFD itself. Fig. 3 shows the corresponding

design structure. Such as structure is achieved using the

following concept (the corresponding rules are given in

Section 4.3):

1. The boundaries shown in Fig.2 are used to focus on

the design of bubble #2. This is as per standard DFD

based design process as outlined in Section 3.

2. Such boundaries can easily be done by representing

the DFD using a Graph which can be implemented

using netlist.

3. Since bubble #2 is taking one input and producing 2

outputs of different data formats, bubble #2 is doing a

“Transform flow”.

4. The outputs of the transform flow are detailed out in

the DFD itself. So, corresponding design blocks can

easily be constructed (Fig. 3 shows this using DFD

based mapping to a Call and Return architecture).

5. As bubble #2 is doing a transform operation, it needs

to do a “control function” in addition to do the main

“transform function”. This is again part of the

standard design process that designers use in a

Structured Design.

6. Netlist of the DFD is used to move and identify the

new boundaries (by the automation software i.e. IA),

find the new transform center and complete the

design for new transform center, e.g. Binary Format-

3 bubble and Hex Format bubble (Fig. 3).

 The following Section implements these concepts using

semantics, NLP and AI. And all these are part of the

Intelligent Agent, IA.

4.3 Predicate Calculus and Mapping Rules

 The rules mentioned above can be represented by

Predicate Calculus rules. Predicate Calculus can also be used

to define semantics. We can also use Ontology to define

semantics. In this paper, we are using Predicate Calculus to

describe the rules and semantics.

 Consider the words “Analog to Digital Conversion” in

bubble #2 in Fig. 2 (as described in Section 4.2). The semantic

meaning of this is “Conversion from an analog signal to

digital signal takes place here” or simply “Conversion from an

analog signal to digital”. In predicate calculus (or First order

logic, FOL), we can use the following to represent this

semantics:

Converts (Convert to Digital -2, AnalogToDigital) ……. (1)

AnalogToDigitalConverter (Convert to Digital -2) …..…(2)

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 06, November 2013

www.ijcit.com 1105

Convert To

Digital - 2

Filter Input

Analog

Signal -1

Binary

Format - 3

Hex

Format - 4

Fig. 2: A Simple Transform Flow DFD. “Convert to Digital” circle (bubble) is the Transform

 Center. Input is an Analog signal which is converted by the Transform Center into Digital

 signal with two formats – Binary and Hexadecimal. The semantics of the “label” words of

 each bubble are used to automate the Design Process – see texts in Section 4.2 for details.

 Fig. 3: Design structure constructed by using the DFD in Fig. 2. Semantics of the bubbles 2, 3 and 4

 in Fig. 2 and corresponding rules are used to make the construction. Semantics and all

 associated rules are implemented using First Order Logic (FOL). See Section 4.2 and Section

 4.3 for details.

 Analog To Digital

Converter Executive

Input Signal

Controller

Analog to Digital

 Converter

Output Signal

 Controller

 Binary

Format

Controll

er

 Hex

Format

Controll

er

 A2D

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 06, November 2013

www.ijcit.com 1106

Converts (AnalogToDigitalConverter, AnalogToDigital)

………………………………………………………….….(2a)

 When “Convert to Digital -2” label is seen in DFD bubble

#2, the semantics determines that this is an analog to digital

converter. Hence, all the design structures have the key

blocks needed to implement the function of an analog to

digital converter (Fig. 3).

To make it more general, we use universal quantifier “for all”

i.e. ∀ to say,

“All analog to digital converters convert analog signal to

digital signal” …………………………………….. (3a)

Which can be written in FOL

∀x AnalogtoDigitalConverter (x) ⇒ Converts (x,

AnalogToDigital) ……….….………………… ……….(3b)

 Using the universal quantifier, we allow to use any

analog to digital converter in our knowledgebase or library.

[Note: mathematically, x can be any variable, including an

instance of a non-AnalogToDigitalConverter [8]. This,

however, can be avoided in various ways. We take care of this

by only allowing analog to digital converters in the

corresponding library]

 In addition, an Executive control block (Analog To

Digital Converter Executive) and a few other associated

control blocks (e.g. input signal controller and output signal

controller) are generated (Fig. 3) as per standard design

technique used in DFD model. Similarly, using the semantics

of other bubbles, blocks to handle the binary and hex format

are constructed. The FOL rules are used to describe all these

as shown below:

If x is AnalogToDigitalConverter then Blocks are

“Analog To Digital Converter Executive”

AND “Analog To Digital Converter”

AND “Input Signal Controller”
AND “Output Signal Controller” …………………...…..(4)

If x is Binary Format then Blocks are “Binary Format”

…………… ……………………………………………….(5)

If x is Hex Format then Blocks are “Hex Format”

………………………………………………………...…...(6)

 The actual blocks for the analog to digital converter can

have more than one block and also multi-level blocks as

appropriate. But the whole thing can be labeled in the

knowledge base as one block (e.g. A2D as shown in Fig. 3) so

that it is placed properly when such a rule (i.e. equation 4) is

fired (see Section 4.3 for more details). The same is true for all

other blocks and associated rules (e.g. Binary and Hex format

blocks in Fig. 3). Note, in a rule (e.g. equation 4), the

semantics that it is an AnalogToDigitalConverter is derived

using equations (1) and (2) [see Section 4.4 for more details].

 It may seem trivial that we could just use the label directly

to construct the design structure using appropriate blocks.

Yes, it is true for simple cases. But label may be more

complex (can have more words and mean multiple

operations), the format and words may vary considerably and

the like. Use of NLP & FOL can define the meaning in a more

flexible and reliable way, especially for complex cases. NLP

& FOL become more important for refining the resultant

structure (step #e in Section 2), and when the architectural

description is refined and elaborated (step #f in Section 2). See

Section 5 and Section 6 for more details.

4.4 Design Structures

 In order to properly execute steps (#c to #f) in Section 2,

namely,

c.The DFD is mapped into the program structure

d. Control hierarchy is defined

e. Resultant structure is refined using design measures

and heuristics, and

f. The architectural description is refined and

elaborated,

designers follow various policies and processes. An

architectural genre (e.g. Operating System or Artificial

Intelligence), architectural style (e.g. Data-centric or Call and

Return) and a set of Archetypes (e.g. Nodes, Detector,

Indicator, Controller) need to be selected / defined. These are

heavily influenced by designer’s experience and knowledge.

Such knowledge and experience need to be put in the

knowledgebase using appropriate rules and predefined

structures and blocks. Here, the designers have the option to

make the automated system very efficient. Such structures

and blocks need to be refined on a regular basis for continuous

improvement.

 To make the design modeling & construction of the

design structure flexible and efficient, and to better support

refinement and elaborations, design structures / blocks needs

to be configurable via some parameters. This scheme will

better support the flexibility in the A2D implementation as

mentioned in Section 4.3.

4.5 The Automation Process

 The automation process involves the following key steps:

1. Create a good knowledgebase (KB) that has key

information that designers follow in converting a

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 06, November 2013

www.ijcit.com 1107

requirement model to design model or structure.

Designers use various policies and processes. Such a

knowledgebase need to include all architectural

genre, architectural styles, and set of archetypes.

2. The KB also would need to include all rules to

convert a DFD (other representations used for

Requirement Modeling) to design structures and

blocks.

3. Design library needs to have all the key structures,

blocks, components with appropriate

parameterization.

4. Establish mechanism to continuously improve the

library and the design process based on learning from

previous design structures. This part can be

automated using separate rules and semantics.

 Once the above keys steps are completed, the IA (see

Section 5), can take a DFD directly and produce a design

structure as shown in Fig. 3. IA accomplishes this by taking

the DFD netlist and implementing (i.e. converting) each

bubbles using the semantics of the bubbles and the rules.

The facts and the rules are combined using an inference

mechanism, like Modus-Ponens.

 Multiple rules can be fired and Forward Chaining, or

Backward Chaining can be used to derive the final design

structure. A short example is shown below using the

AnalogToDigitalConverter example discussed in Sections 4.2

and 4.3:

AnalogToDigitalConverter (Convert to Digital -2)

….…………………………………………………………...(2)

 [a Fact - Convert to Digital -2 is an

AnalogToDigitalConverter]

∀x AnalogtoDigitalConverter (x) ⇒ Converts (x,

AnalogToDigital) …………………………………..(3b)

[Rule – for all x, if x is an AnalogtoDigitalConverter, then it

converts AnalogToDigital]

[Using Modus-Ponen] Converts(Convert to Digital -2,

AnalogToDigital) [New derived fact]

 Note that the new derived fact by using Modus-Ponens is

already shown in equation (1). But it is shown there to

express the semantics of the bubble #2 in Fig. 2. But it is not

used to represent a fact there. When it is derived as a fact, then

equation (4) will fire and will create the design structure (Rule

represented by equation (4) is not an implication as used in

equation 3(b). However, it can be converted to an implication

form). Also, while Forward and Backward Chaining are

sound, neither is complete. This means that there are valid

inferences that cannot be found using these methods alone. An

alternative inference technique called Resolution is sound and

complete but computationally expensive [8].

V. INTELLIGENT AGENT

 An Intelligent Agent, IA implements the automation

described in Section 4.5. It also performs other functions

including some advanced functions needed to handle

requirement models other than DFD i.e. Class based, Use

Case based and State based models or their combinations that

may include DFD. The key functions of IA are mentioned in

Section 2. The implementation of key functions are described

in Sections 3 & 4 for DFD based mapping to a Call and

Return architecture. Such implementations are, in general,

applicable for all other mappings with some refinements. Fig.

4 shows the architecture of a general IA. A few key functions

not yet described are:

1. Use of appropriate rules and semantics to help map /

transform one architectural style to another (e.g.

Data-flow architecture to Layered architecture).

2. Use of Learning to improve the outcome.

3. Use of Verification to ensure correctness.

 Architectures for which direct mapping does not exists,

the mapping process becomes complex. The designers

approach the translation of requirements to design for such

cases using their knowledge, more analyses and considering

more architectural tradeoffs. Although there is no simple steps

like steps #a to steps #f as mentioned in Section 2 for DFD

based mapping, the designer’s approach can be captured into

similar flow and steps but with more natural language

descriptions. Thus, for such cases, the issue of using NLP

becomes more important and semantics & rules become more

complex.

 The learning over time can be implemented using any

standard good learning algorithms. The verification process

can be implemented by allowing to perform some basic tests

on the constructed system. Each component will have netlist

or behavioral model representation which can take input

vectors and verify the outputs with some predefined expected

outputs (in compliance with the specification). In some cases,

formal verification can be done using formal mathematical

specification of the software.

VI. FUTURE WORKS

 The semantics represented by FOL and other similar

techniques are good but they work satisfactorily mainly for

small domain. As shown in Section 4.3, we need to define

semantics for almost everything i.e. existing schemes do not

allow to automatically derive new semantics from semantics

of existing words. In ([14], [16]) we have mentioned that

while traditional approaches to Natural Language

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 06, November 2013

www.ijcit.com 1108

Understanding (NLU) have been applied over the past 50

years and have had some good successes mainly in a small

domain, results show insignificant advancement, in general,

and NLU remains a complex open problem. NLU complexity

is mainly related to semantics: abstraction, representation, real

meaning, and computational complexity. We argued that

while existing approaches are great in solving some specific

problems, they do not seem to address key Natural Language

problems in a practical and natural way. In [12], we proposed

a Semantic Engine using Brain-Like approach (SEBLA) that

uses Brain-Like algorithms to solve the key NLU problem (i.e.

the semantic problem) as well as its sub-problems.

 SEBLA can calculate semantics of sentences using the

semantics of words and the semantics of a paragraph using the

semantics of the sentences. Enhanced semantics capability is

needed to handle complex mapping cases mentioned in

Section 5. We plan to use SEBLA for such cases.

 We also plan to use SEBLA to automate / partially

automate the implementation of the architecture into final

software form (i.e. converting the architecture into operational

software). Note that the automation presented in this paper is

not the implementation in final software form; it is rather

automating the mapping to design structure or architecture or

blueprint of the desired system.

VII. CONCLUSIONS

 IRTDM (Intelligent Agent based requirement model to

design model mapping) will significantly help today’s large

software development process. It takes long time to manually

map the requirement model to a design model. As the software

size gets bigger and bigger (a common trend in the industry),

this process will become much more complex, and need for an

automation of this process will become mandatory. In fact,

automation is already mandatory to handle existing software

design / development if we focus on the design for the bottom

90% people (the so called Base of the pyramid people, BOP).

 IRTDM will also increase the reliability and correctness

of the said mapping and associated software. Moreover, with

Natural Language Processing / Understanding and Artificial

Intelligence (AI), the IA (Intelligent Agent) can map the

design model to high level design components, thus further

providing significant help in already very complex software

engineering process.

 Thus, our IRTDM will save significant cost for software

which is a key component of the total yearly expense of most

countries. Lower software cost implies lower price for buying

new software; thus allowing many more people in the world to

enjoy the benefits of the Information Age.

 We have emphasized the need for enhanced Natural

Language Processing / Understanding to better handle

semantics, especially, for the complex software development

cases. Use of natural semantics (e.g. SEBLA [12]) is the key

to achieve this which we plan to do next.

REFERENCES

[1] Greenspan, S. et al., “A requirements modeling language and its logic,

 Information Systems, v.11 n.1, p.9-23, 1986.

[2] Abowd, G. et al, “ Structural Modeling: An Application Framework and

 Development Process for Flight Simulators”, CMU Technical Report

 CMU/SEI-93-TR-014, Aug, 1993.

 [3] Garlan, D and M. Shaw, “An Introduction to Software Architecture”,

 Advances in Software Engineering and Knowledge Engineering, Vol. I,

 World Scientific Publishing Company, 1995.

[4] Clements, P., “A Survey of Architectural Description Languages”, Paul

 C. Clements, Software Architecture, Software Engineering Institute,

 March 1996.

[5] Structured Analysis - http://en.wikipedia.org/wiki/Structured_analysis .

[6] Architecture Analysis and Design Language, Software (AADL),

 Engineering Institute, Carnegie-Mellon University, Pittsburgh,

 Pennsylvania, USA, 2004.
[7] James Rumbaugh et al “The Unified Modeling Language Reference

 Manual (2nd Edition) July, 2004, | ISBN-10: 032171895X, Addison-

 Wesley.

[8] Buschmann, F., et al., “Pattern-Oriented Software Architecture, A

 System of Patterns”, Wiley 2007.

[8] Jurafsky, D., et al., “Speech and Language Processing: An Introduction

 to Natural Language Processing, Computational Linguistics and Speech

 Recognition”, Pearson / Prentice Hall, 2009.

 [10] Pressman, R., “Software Engineering: A Practitioner’s Approach”,

 McGrawHill, 2010.

Knowledgebase

 (KB)

 Natural Language
 Processing
 & Deriving

 Semantics

 Inference

 Engine

Design Library

 User

 Interface

 Fig. 4: IRTDM - Intelligent Agent for requirement

 model to design model mapping. Shows all the key

 blocks. The KB and Design Library can reside

 outside. Input is mainly the requirement model and

 output is mainly the design structure and blocks.

 Continuous
 Improvement

 Using
 Machine Learning

Verification

 IRTDM

 Input Output

 Other
Functions

http://www.sei.cmu.edu/architecture

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 06, November 2013

www.ijcit.com 1109

[11] Khan, E., “Internet For Everyone: Reshaping the Global Economy by

 Bridging the Digital Divide” published in Aug, 2011 by iUniverse;

 978-1-4620-4251-7 (SC ISBN) 978-1-4620-4250-0 (HC ISBN).

 [12] Khan, E., “Natural Language Understanding Using Brain-Like

 Approach: Word Objects and Word Semantics Based Approaches help

 Sentence Level Understanding”, Applied to U.S. Patent Office, 2012.

[13] Process Model Requirements Gap Analyzer

 http://www.accenture.com/SiteCollectionDocuments/PDF/Accenture-

 Process-Model-Requirements-Gap-Analyzer.pdf Accenture 2012.

[14] Khan, E., “E. Khan, “Natural Language based Human Computer

 Interaction: a Necessity for Mobile Devices”, INTERNATIONAL

.

 JOURNAL of COMPUTERS AND COMMUNICATIONS, (NAUN &

 UNIVERSITY PRESS) Dec. 2012.

[15] Okud H. Eat al, “Experimental development based on mapping rule

 between requirements analysis model and web framework specific

 design model”, SpringerPlus Journal 2013, 2:123 doi:10.1186/2193-

 1801-2-123.

[16] E. Khan, “Addressing Big Data Problems using Semantics and Natural

 Language Understanding", 12th WSEAS International Conference on

 TELECOMMUNICATIONS and INFORMATICS (TELE-INFO

 '13) in Baltimore, MD, USA, September 17-19, 2013.
