On the Feasible Sets of Products of bi-hypergraphs

Jihong Liu, Jingge Bai School of Sciences Linyi University Linyi, Shandong, P. R. China Email: zhaopingly {at] 163.com

Abstract—In this paper, we discuss respectively the relationships between the feasible sets of the Weak product, the Cartesian product and the disjunctive product of uniform bi-hypergraphs and the feasible sets of the factors.

Keywords- hypergraph coloring; mixed hypergraph; feasible set; one-realization.

I. INTRODUCTION

A mixed hypergraph on a finite set X is a triple $\mathcal{H} = (X, \mathcal{C}, \mathcal{D})$, where C and \mathcal{D} families of subsets of X, called the *C*-edges and \mathcal{D} -edges, respectively. A bi-edge is an edge which is both a *C*-edge and a \mathcal{D} -edge. If $\mathcal{C}=\mathcal{D}$, then \mathcal{H} is called a bi-hypergraph. If each edge has r vertices, \mathcal{H} is r-uniform if each edge has r vertices. A sub-hypergraph $\mathcal{H}' = (X', \mathcal{C}', \mathcal{D})$ of $\mathcal{H} = (X, \mathcal{C}, \mathcal{D})$ is a spanning sub-hypergraph if X' = X, and is a derived sub-hypergraph of \mathcal{H} on X', denoted by $\mathcal{H}[X']$, if $\mathcal{C}' = \{C \in \mathcal{C} | C \subseteq X'\}$ and $\mathcal{D}' = \{D \in \mathcal{D} | D \subseteq X'\}.$

Two mixed hypergraphs $\mathcal{H}_1 = (X_1, \mathcal{C}_1, \mathcal{D}_1)$ and $\mathcal{H}_2 = (X_2, \mathcal{C}_2, \mathcal{D}_2)$ are *isomorphic* if there exists a bijection ϕ from X_1 to X_2 that maps each C-edge of \mathcal{C}_1 onto a C-edge of \mathcal{C}_2 and maps each \mathcal{D} -edge of \mathcal{D}_1 onto a \mathcal{D} -edge of \mathcal{D}_2 , and vice versa. The bijection ϕ is called an *isomorphism* from \mathcal{H}_1 to \mathcal{H}_2 .

A proper k-coloring of \mathcal{H} is a mapping from X into a set of k colors so that each C-edge has two vertices with a Common color and each \mathcal{D} -edge has two vertices with Distinct colors. A *strict k-coloring* is a proper k-coloring using all of the k colors, and a mixed hypergraph is k-colorable if it has a strict k-coloring. A coloring of \mathcal{H} may be viewed as a partition of its vertex set, where the color classes are the sets of vertices assigned to the same color, so a strict n-coloring $c = \{C_1, C_2, \ldots, C_n\}$ of \mathcal{H} means that C_1, C_2, \ldots, C_n are the n color classes under c. The set of all the values ksuch that \mathcal{H} has a strict k-coloring is called the *feasible set* of \mathcal{H} , denoted by $\mathcal{F}(\mathcal{H})$. For each $k \in \mathcal{F}(\mathcal{H})$, let r_k denote the number of *partitions* of the vertex set. For a set S of positive integers, we say that a mixed hypergraph \mathcal{H} is a *realization* of S if $\mathcal{F}(\mathcal{H}) = S$. A mixed hypergraph \mathcal{H} is a *one-realizatio* of S if it is a realization of S and $r_k = 1$ for each $k \in S$.

Wenai Xu, Ping Zhao School of Sciences Linyi University Linyi, Shandong, P. R. China

When one considers the colorings of a mixed hypergraph, it suffices to assume that each C-edge has at least three vertices. The study of the colorings of mixed hypergraphs has made a lot of progress since its inception ([6]). For more information, we would like refer readers to [3, 5, 7, 8].

Perhaps the most intriguing phenomenon of colorings of hypergraphs is that a mixed hypergraph can have gaps in its chromatic spectrum. We know that the feasible set of a classical hypergraph is an interval. Jiang et al.([2]) proved that, for any finite set S of integers greater than 1, there exists a mixed hypergraph \mathcal{H} such that $\mathcal{F}(\mathcal{H}) = S$, and Král ([4]) strengthened this result by showing that prescribing any positive integer r_k , there exists a mixed hypergraph which has precisely r_k k-colorings for all $k \in S$. Recently, Bujtás and Tuza ([1]) gave the necessary and sufficient condition for a finite set S of natural numbers being the feasible set of an r-uniform mixed hypergraph. Zhao et al.([9]) proved that any vector $R = (0, r_2, \ldots, r_n)$ with $n \geq 2$ and $r_i \geq 0$, $i = 2, \ldots, n$ is the chromatic spectrum of some 3-uniform bi-hypergraph.

In this paper, we focus on the feasible sets of products of uniform bi-hypergraphs with relation to the feasible sets of the factors.

II. MAIN RESULTS

For any positive integer n, let [n] denote the set $\{1, 2, \ldots, n\}$.

We focus on the weak product, the Cartesian product and the disjunctive product of uniform bi-hypergraphs, respectively. We first discuss the feasible set of the weak product

Definition 2.1 For any two r-uniform bi-hypergraphs $\mathcal{H}_1 = (V_1, \mathcal{B}_1)$ and $\mathcal{H}_2 = (V_2, \mathcal{B}_2)$, the weak product of \mathcal{H}_1 and \mathcal{H}_2 is the r-uniform bi-hypergraph $\mathcal{H}_1 \times \mathcal{H}_2 = (V, \mathcal{B})$, where $V = V_1 \times V_2$ and

$$\{(x_1, y_1), \dots, (x_r, y_r)\} \in \mathcal{B} \iff$$
$$\{x_1, \dots, x_r\} \in \mathcal{B}_1, \{y_1, \dots, y_r\} \in \mathcal{B}_2$$

Theorem 2.1 Let $\mathcal{H}_1 = (V_1, \mathcal{B}_1), \mathcal{H}_2 = (V_2, \mathcal{B}_2)$ be two r-uniform bi-hypergraphs. Then

$$\mathcal{F}(\mathcal{H}_1 \times \mathcal{H}_2) \supseteq \mathcal{F}(\mathcal{H}_1) \cup \mathcal{F}(\mathcal{H}_2).$$

Proof For any $t \in \mathcal{F}(\mathcal{H}_1)$ and any strict t-coloring $c = \{C_1, C_2, \ldots, C_t\}$ of \mathcal{H}_1 , write

$$C'_i = \{(x, y) \mid x \in C_i, y \in V_2\}, i = 1, 2, \dots, t, \text{ and}$$

$$c' = \{C'_1, C'_2, \dots, C'_t\}.$$

Note that for any $B = \{(x_1, y_1), \ldots, (x_r, y_r)\} \in \mathcal{B}$, $B_1 = \{x_1, \ldots, x_r\} \in \mathcal{B}_1$. Hence, there are two vertices, say x_i, x_j , such that $c(x_i) = c(x_j)$, and two vertices, say x_k, x_m , such that $c(x_k) \neq c(x_m)$. Then

 $\begin{array}{ll} c'((x_i,y_i)=c'((x_j,y_j)) & \text{and} \\ c'((x_k,y_k))\neq c'((x_m,y_m)), \text{ which implies that } c' \text{ is a strict} \\ t & \text{-coloring} & \text{of} \quad \mathcal{H}_1\times\mathcal{H}_2 & \text{. It follows that} \\ \mathcal{F}(\mathcal{H}_1)\subseteq \mathcal{F}(\mathcal{H}_1\times\mathcal{H}_2) & \text{. Similarly, we may have that} \\ \mathcal{F}(\mathcal{H}_2)\subseteq \mathcal{F}(\mathcal{H}_1\times\mathcal{H}_2). \text{ Thus, the desired result follows.} \end{array}$

The following result shows that the equality holds for some uniform bi-hypergraphs. We first construct the desired hypergraphs as follows.

For any set
$$S = \{n_1, n_2, ..., n_s\}$$
 of positive integers
with $s \ge 2$ and $\min(S) \ge 2$, let
 $X_{n_1,...,n_s} = \{(x_1, ..., x_s) \mid x_j \in [n_j], j \in [s]\}$ and
 $\mathcal{B}_{n_1,...,n_s} = \{\{(x_1, ..., x_s), (y_1, ..., y_s), (z_1, ..., z_s)\} \mid |\{x_j, y_j, z_j\}| = 2, j \in [s]\}.$

Then $(X_{n_1,\ldots,n_s}, \mathcal{B}_{n_1,\ldots,n_s})$ is a 3-uniform bi-hypergraph, denoted by $\mathcal{H}_{n_1,\ldots,n_s}$. Moreover, we have the following result.

Lemma 2.2 ([9]) Let $S = \{n_1, n_2, \dots, n_s\}$ be a set of positive integers with $s \ge 2$ and $\min(S) \ge 2$. Then

$$\mathcal{F}(\mathcal{H}_{n_1,\ldots,n_s}) = \{n_1, n_2, \ldots, n_s\}.$$

Theorem 2.3 Let

 $S_1 = \{n_1, \ldots, n_s\}, S_2 = \{m_1, \ldots, n_t\}$ be two sets of integers with $s, t \geq 2$, and $\min(S_1), \min(S_2) \geq 2$. Then there are two 3-uniform bi-hypergraphs, say \mathcal{H}_1 and \mathcal{H}_2 , such that

 $\mathcal{F}(\mathcal{H}_1) = S_1, \mathcal{F}(\mathcal{H}_2) = S_2$ and $\mathcal{F}(\mathcal{H}_1 \times \mathcal{H}_2) = S_1 \cup S_2.$

Proof By Lemma 2.2, we have that

$$\begin{aligned} \mathcal{F}(H_{n_1,\dots,n_s}) &= S_1, \, \mathcal{F}(\mathcal{H}_{m_1,\dots,m_t}) = S_2 \text{ and} \\ \mathcal{F}(\mathcal{H}_{n_1,\dots,n_s,m_1,\dots,m_t}) &= S_1 \cup S_2. \end{aligned}$$

Let

 $\phi: X_{n_1,\dots,n_s} \times X_{m_1,\dots,m_t} \to X_{n_1,\dots,n_s,m_1,\dots,m_t}$ $((x_1,\dots,x_s),(y_1,\dots,y_t)) \to (x_1,\dots,x_s,y_1,\dots,y_s).$ Then, it is not difficult to notice that ϕ is an isomorphism from $\mathcal{H}_1 \times \mathcal{H}_2$ to $\mathcal{H}_{n_1,\dots,n_s,m_1,\dots,m_t}.$ Which follows that

 $\mathcal{F}(\mathcal{H}_1 \times \mathcal{H}_2) = S_1 \cup S_2.$

Next, we focus on the Cartesian product of bi-hypergraphs.

Definition 2.2 For any two r-uniform bi-hypergraphs $\mathcal{H}_1 = (X_1, \mathcal{B}_1), \mathcal{H}_2 = (X_2, \mathcal{B}_2)$, the Cartesian product of \mathcal{H}_1 and \mathcal{H}_2 is the r-uniform bi-hypergraph $\mathcal{H}_1 \Box \mathcal{H}_2 = (X, \mathcal{B})$ with $X = X_1 \times X_2$ and

$$\{(x_1,y_1),\ldots,(x_r,y_r)\}\in\mathcal{B}$$
 if and only if

 $\{x_1,\ldots,x_r\}\in\mathcal{B}_1$ and $y_1=\cdots=y_r$, or

 $\{y_1,\ldots,y_r\}\in \mathcal{B}_2$ and $x_1=\cdots=x_r$.

Theorem 2.4 Let $\mathcal{H}_1 = (X_1, \mathcal{B}_1), \mathcal{H}_2 = (X_2, \mathcal{B}_2)$ be two *r*-uniform bi-hypergraphs. Then

$$\mathcal{F}(\mathcal{H}_1 \Box \mathcal{H}_2) \subseteq \mathcal{F}(\mathcal{H}_1) \cap \mathcal{F}(\mathcal{H}_2).$$

Proof For any strict coloring $c = \{C_1, C_2, \dots, C_k\}$ of $\mathcal{H}_1 \square \mathcal{H}_2$ and $y \in X_2$, let $\phi: X_1 \to X_1 \times \{y\}$

$$x \rightarrow (x,y).$$

Then ϕ is an isomorphism from \mathcal{H}_1 to $(\mathcal{H}_1 \Box \mathcal{H}_2)[Y]$, where $Y = X_1 \times \{y\}$. Note that is a strict k-coloring of, we have that \mathcal{H}_1 is k-colorable. Hence, $\mathcal{F}(\mathcal{H}_1 \Box \mathcal{H}_2) \subseteq \mathcal{F}(\mathcal{H}_1)$. Similarly, we may get that $\mathcal{F}(\mathcal{H}_1 \Box \mathcal{H}_2) \subseteq \mathcal{F}(\mathcal{H}_2)$, which implies that the desired result follows.

Lastly, we discuss the feasible set of the disjunctive product of bi-hypergraphs.

Definition2.3 For any two *r*-uniform bi-hypergraphs $\mathcal{H}_1 = (X_1, \mathcal{B}_1), \mathcal{H}_2 = (X_2, \mathcal{B}_2)$, the disjunctive product of \mathcal{H}_1 and \mathcal{H}_2 is the *r*-uniform bi-hypergraph $\mathcal{H}_1 * \mathcal{H}_2 = (X, \mathcal{B})$, where $X = X_1 \times X_2$ and

$$\{(x_1, y_1), \ldots, (x_r, y_r)\} \in \mathcal{B}$$
 if and only if

$$\{x_1, \ldots, x_r\} \in \mathcal{B}_1, \text{ or } \{y_1, \ldots, y_r\} \in \mathcal{B}_2$$

Theorem 2.5 Let $\mathcal{H}_1 = (X_1, \mathcal{B}_1), \mathcal{H}_2 = (X_2, \mathcal{B}_2)$ be two *r*-uniform bi-hypergraphs. Then

$$\mathcal{F}(\mathcal{H}_1 * \mathcal{H}_2) \subseteq \mathcal{F}(\mathcal{H}_1) \cap \mathcal{F}(\mathcal{H}_2).$$

Proof For any strict coloring $c = \{C_1, C_2, \dots, C_k\}$ of $\mathcal{H}_1 * \mathcal{H}_2$ and $y \in X_2$, let $\phi: X_1 \rightarrow X_1 \times \{y\}$

$$X_1 \rightarrow X_1 \times \{y\}$$

 $x \rightarrow (x, y).$ Then ϕ is an isomorphism from \mathcal{H}_1 to $(\mathcal{H}_1 * \mathcal{H}_2)[Y]$, where $Y = X_1 \times \{y\}$. Note that $c' = \{C_1 \cap Y, C_2 \cap Y, \dots, C_k \cap Y\}$ is a strict k-coloring of $(\mathcal{H}_1 * \mathcal{H}_2)[Y]$, we have \mathcal{H}_1 is k-colorable. Thus $k \in \mathcal{F}(\mathcal{H}_1)$ and we further have $\mathcal{F}(\mathcal{H}_1 * \mathcal{H}_2) \subseteq \mathcal{F}(\mathcal{H}_1)$. Similarly, $\mathcal{F}(\mathcal{H}_1 * \mathcal{H}_2) \subseteq \mathcal{F}(\mathcal{H}_2)$. That follows that $\mathcal{F}(\mathcal{H}_1 * \mathcal{H}_2) \subseteq \mathcal{F}(\mathcal{H}_1) \cap \mathcal{F}(\mathcal{H}_2)$.

III. CONCLUSIONS

In this paper, we discuss the feasible sets of several products of uniform bi-hypergraphs with relation to the feasible sets of the factors. Precisely, we prove that the feasible set of the Cartesian product or the disjunctive product of two r-uniform bi-hypergraphs is a subset of the intersection of the feasible sets of the factors, and the feasible set of the weak product of two r-uniform bi-hypergraphs contains the union of the feasible sets of the factors.

ACKNOWLEDGMENT

The research is supported by NSF of China (10871027), AMEP of Linyi University, and national college students' innovation and entrepreneurship training program (201210452030).

- References
- [1] C. Bujtás, Zs. Tuza, Uniform mixed hypergraphs: the possible numbers of colors, Graphs and Combin. 24 (2008), 1--12.
- [2] T. Jiang, D. Mubayi, Zs. Tuza, V. Voloshin and D. West, The chromatic spectrum of mixed hypergraphs, Graphs and Combin. 18 (2002), 309--318.
- [3] D. Kobler and A. Kündgen, Gaps in the chromatic spectrum of faceconstrained plane graphs, Electronic J. Combin. 8 (2001), #N3
- [4] D. Král, On feasible sets of mixed hypergraphs, Electronic J. Combin. 11 (2004), #R19.
- [5] Zs. Tuza and V. Voloshin, Problems and results on colorings of mixed hypergraphs, Horizons of Combinatorics, Bolyai Society Mathematical Studies 17, Springer-Verlag, 2008, pp. 235--255.
- [6] V. Voloshin, On the upper chromatic number of a hypergraph, Australasian J. Combin., 11 (1995), 25-45.
- [7] V. Voloshin, Coloring Mixed Hypergraphs: Theory, Algorithms and Applications, AMS, Providence, 2002.
- [8] V. Voloshin, Introduction to Graph and Hypergraphs Theory, Nova Scinece Publishers, Inc., New York, 2009.
- [9] P. Zhao, K. Diao and K. Wang, The chromatic spectrum of 3-uniform bi-hypergraphs, Discrete Math. 311(2011), 2650--2656.