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Abstract—In this paper, we discuss respectively the relationships 

between the feasible sets of the  Weak product, the Cartesian 

product and the disjunctive product of  uniform bi-hypergraphs 

and  the feasible sets of the factors. 
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I.  INTRODUCTION 

 A  mixed hypergraph  on a finite set  is a triple 

, where  and  families of subsets of , 

called the -edges and -edges, respectively.  A bi-edge is an 

edge which is both a -edge and a -edge. If = , then  is 

called a bi-hypergraph. If each edge has  vertices,  is -

uniform if each edge has  vertices.  A sub-hypergraph 

 of  is a  spanning sub-

hypergraph  if  ,  and   is   a derived sub-hypergraph  

of   on , denoted by , if  

and .  

   Two mixed hypergraphs  and 

 are  isomorphic if there exists a bijection 

 from  to  that maps each -edge of  onto a -edge 

of  and maps each -edge of  onto a -edge of , and 

vice versa. The bijection  is called an  isomorphism from  

to . 

A proper -coloring of  is a mapping from  into a set 

of  colors so that each -edge has two vertices with a  

Common color and each -edge has two vertices with  Distinct 

colors. A  strict -coloring is a proper -coloring using all of 

the  colors, and a mixed hypergraph is -colorable if it has a 

strict -coloring.  A coloring of    may  be viewed as a  

partition  of its vertex set, where the color classes are the sets 
of vertices assigned to the same color, so a strict -coloring 

 of   means that   

are  the  color classes under . The set of all the  values  

such that  has a strict -coloring is called the feasible set  of 

, denoted by . For each  , let  denote the 

number of  partitions of the vertex set. For  a set  of positive 

integers, we say that a mixed hypergraph  is a  realization of 

 if . A mixed hypergraph  is a  one-realizatio 

of  if it is a realization of  and  for each .  

 When one considers the colorings of a mixed hypergraph, it 
suffices to assume that each -edge   has at least three vertices.  

The study of   the colorings of mixed hypergraphs has made a 
lot of progress since its inception ([6]). For more information, 
we would like refer readers to [3, 5, 7, 8]. 

Perhaps the most intriguing phenomenon of colorings of 

hypergraphs is that a mixed hypergraph can have gaps in its 

chromatic spectrum. We know that the feasible set of a 

classical hypergraph is an interval.  Jiang  et al.( [2])  proved  

that,  for any finite set  of integers greater than 1, there exists 

a mixed hypergraph  such that , and Král ([4]) 

strengthened this result by showing that prescribing any 

positive integer  , there exists a mixed hypergraph which 

has precisely  -colorings for all . Recently, Bujtás 

and Tuza ([1])  gave the necessary and sufficient condition for 

a finite set     of natural numbers being the feasible set of an 

-uniform mixed hypergraph. Zhao et al.([9] ) proved that any 

vector   with  and  , 

  is the chromatic spectrum of some 3-uniform 

bi-hypergraph. 

In this paper, we focus on the feasible sets of products of 

uniform bi-hypergraphs with relation to the feasible sets of the 

factors. 

 

II. MAIN RESULTS 

For any positive integer , let  denote the set 

 . 

We focus on the weak product, the Cartesian product and 
the disjunctive product of uniform bi-hypergraphs, 
respectively. We first discuss the feasible set of the weak 
product 

Definition 2.1 For any two  -uniform bi-hypergraphs 

 and , the weak product of  

and  is the -uniform bi-hypergraph , 

where  and  

  

, . 
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Theorem 2.1 Let  be two 

-uniform bi-hypergraphs. Then  

. 

Proof   For any   and any strict -coloring 

 of , write  

,  and 

.  

Note that for any , 

. Hence, there are two vertices, say 

, such that , and  two vertices, say 

, such that . Then 

  and 

, which implies that   is a strict 

-coloring of . It follows that  

. Similarly, we may have that 

. Thus, the desired result follows. 

The following result shows that  the equality holds for 

some uniform bi-hypergraphs. We first construct the desired 

hypergraphs as follows. 

For any  set  of positive integers 

with  and , let 

 and  

 

 

 Then  is a 3-uniform bi-hypergraph, 

denoted by . Moreover, we have the following result. 

 Lemma 2.2 ([9])  Let  be a set of 

positive integers with  and . Then   

      . 

     Theorem 2.3  Let  

 ,   be two sets of 

integers with  ,  and   , . Then 

there are two 3-uniform bi-hypergraphs, say  and , such 

that  

 and  

. 

Proof   By  Lemma 2.2, we have that  

,  and  

.   

Let 

 Then, it is not difficult to notice that  is an isomorphism 

from  to .  Which follows that  

. 

Next, we focus on the Cartesian product of bi-hypergraphs. 

Definition 2.2  For any two  -uniform bi-hypergraphs 

, the  Cartesian product of 

 and  is the -uniform bi-hypergraph 

 with  and  

   if and only if  

   and  , or  

   and  . 

Theorem 2.4  Let  be 

two -uniform bi-hypergraphs. Then  

      . 

Proof   For any strict coloring    of 

 and , let 

            

 Then  is an  isomorphism from  , 

where . Note that  is a strict -coloring of, we 

have that  is -colorable. Hence, . 

Similarly, we may get that  , which 

implies  that  the desired result follows. 

Lastly, we discuss the feasible set of the disjunctive 

product of bi-hypergraphs. 

Definition2.3   For any two  -uniform bi-hypergraphs 

, the disjunctive product of 

 and  is the -uniform bi-hypergraph 

, where  and  

 if and only if  

, or . 

Theorem 2.5   Let  be 

two -uniform bi-hypergraphs. Then  

. 

Proof   For any strict coloring    of 

 and , let 

                  

 Then  is  an  isomorphism from , 

where . Note that 
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 is a strict -coloring 

of , we have  is -colorable. Thus 

 and we further  have  . 

Similarly, . That follows that  

. 

III. CONCLUSIONS 

In this paper, we discuss  the feasible sets of several 
products of uniform bi-hypergraphs with relation to the feasible 
sets of the factors. Precisely, we prove that the feasible set of 
the Cartesian product or the disjunctive product of two -

uniform bi-hypergraphs is a subset of the intersection of the 
feasible sets of the factors, and the feasible set of the weak 
product of two -uniform bi-hypergraphs contains the union of 

the feasible sets of the factors. 
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