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Abstract— In this paper, we discuss the use of the discrete cosine 

transform and discrete sine transform for the problem of novelty 

estimation in volumetric data. More specifically, we investigate 

the potential of discrete sine transform for the novelty detection. 

Given a system with training examples, the novelty detection is 

defined as the method of identifying of unknown signals which 

the system is not familiar with. The presented volumetric novelty 

estimation scheme utilizes three dimensional versions of the 

discrete cosine transform and discrete sine transform. We 

present that in the event of novelty the discrete sine transform 

yields higher statistical dispersion, which is a clue of the ability to 
expose dissimilarities, than the discrete cosine transform does. 
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I.  INTRODUCTION 

Estimation of novel patterns in volumetric data is an 
important capability in different applications such as signal 
processing [1], pattern recognition [2], data mining [3], 
robotics [4], fault detection [5], medical imaging [6] and 
military defense systems [7]. The novelty detection is defined 
as the method of identifying of unknown signals which a 
system is not aware of during training process [8]. It is a well 
known fact that one cannot train a learning system by 
providing complete data from all possible categories. Instead, it 
is more feasible to develop a method for differentiating 
between known and unexpected patterns using some sort of 
testing. The novelty estimation is an extremely challenging 
task. That is why there are several existing methods that 
perform well on specific type of data. 

In this paper, we investigate the applicability of the discrete 
cosine transform and discrete sine transform to the problem of 
novelty estimation in volumetric data. More specifically, our 
goal in this paper is to examine if discrete sine transform can 
be efficiently used for the novelty estimation. Transforms are 
used mainly for the reduction of complexity in mathematical 
computations [9]. Although the first paper about discrete 

cosine transform style transforms was published forty years 
ago [10], it is still an attractive topic for the research 
community. In the literature, there have been many methods 
using the discrete cosine transform and DST for a wide variety 
of methods such as image compression [11], face recognition 
[12], speech enhancement [13], video alignment [14], image 
processing [15], video coding [16], image watermarking [17], 
volatility measurement [18], audio decoding [19], and 
classification [20]. The discrete cosine transform and DST 
decompose a signal into specific frequency components. The 
definitions of different types of discrete cosine transform and 
discrete sine transform have been reviewed in [21]. The 
discrete cosine transform and discrete sine transform are real 
valued operations that transform discrete signal to real valued 
coefficients, without generating any complex numbers. This is 
one of the advantages over Fourier transform [22]. Moreover, 
the existence of fast algorithms provides efficient discrete 
cosine transform and discrete sine transform computation. 
Volumetric data can be defined as a sequence of different 
instances that are generated by the same data source. There is a 
strong correlation between successive slices in a volumetric 
data set. This similarity may be exploited using discrete cosine 
transform and discrete sine transform. In this paper, we 
investigate the fitness of discrete sine transform and discrete 
cosine transform for the problem of novelty estimation in 
volumetric data. The proposed method is based on certain 
energy compaction properties of the discrete cosine transform 
and discrete sine transform coefficient matrices. Many studies 
pointed out that the discrete cosine transform fits well for data 
compression and feature extraction. On the other hand, 
investigation of forms of discrete sine transforms has not been 
widely investigated. Therefore there is a need to develop 
discrete sine transform based techniques. In our experiments, 
we use the volumetric data set (i.e., set of images) provided by 
changedetection.net [23]. 

The main contribution of this paper is that we present that 
the discrete sign transform can be employed for the novelty 
detection in three dimensional data. 



 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)  
Volume 03 – Issue 02, March 2014 

 

www.ijcit.com    194 
 

II. METHODS AND FEATURE EXTRACTION 

Most of the earlier work on novelty detection deals with the 
problems about the control systems. One common approach is 
to model normal data and to use a threshold for detecting 
abnormality. Statistical approaches employ the model and its 
statistical properties and use this information to estimate the 
samples which are not generated by the same distribution. 
Antoniadou et al. [24] propose a set of features and use a 
framework to rank features for novelty detection. Foggia et al. 
[25] tackles the novelty estimation by combining multiple 
experts with the goal of compensating the weakness of each 
single expert. Wei et al. [26] follow a different approach and 
suggest injecting anomalies into the training data to help the 
learner determine a boundary around the original data. Tax and 
Duin [27] describe a set of methods for rejecting outliers based 
on the data density distribution.  

In this paper our main goal is to compare energy 
compaction features of discrete cosine transform and discrete 
sine transform for novelty detection in volumetric data. We 
need a method that can exploit the characteristics of three 
dimensional discrete cosine transform and discrete sine 
transform. Therefore, we follow a similar approach proposed 
by Haberdar and Shah [28], where the authors develop a 
generic framework that can be applied to different novelty 
detection applications dealing with multidimensional data. 
They [28] extract spatiotemporal signatures of unit cube 
elements using a subset of discrete cosine transform 
coefficients and design a system for detection novelties in the 
case of very strong background noise. In our system, we 
employ their framework for the comparison of three 
dimensional discrete cosine transform and discrete sine 
transform features.  

We first split the volumetric training and test data into 
8x8x8 regions and compute discrete cosine transform and 
discrete sine transform coefficients. When the coefficient 
values start not fitting to the underlying training data, we 
conclude that there is a novelty in the data. 

A. Discrete Cosine Transform 

The idea behind discrete cosine transform is to try to de-
correlate the input data. Most of the recent applications using 
discrete cosine transform employ discrete cosine transform 
type-two although other forms of the discrete cosine transform 
have been investigated in detail in the literature [29]. The 
discrete cosine transform type-two is probably the most 
commonly used form, and it is usually simply named as the 
discrete cosine transform. The definition one dimensional 
discrete cosine transform kernel used in this paper is defined as 
follows:  
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where N is the number of elements in the input signal, k is the 

parameter that changes the base cosine vector, and kX  is the 

real valued discrete cosine transform coefficient.  

The discrete cosine transform is a separable transform [30]. 
The advantage of being a separable transform is that a higher 
version of the transform can be expressed in terms of its 
corresponding one dimensional counterpart. In other words, we 
can compute two dimensional discrete cosine transform 
coefficients by applying one dimensional discrete cosine 
transform in rows and columns of the two dimensional data, 
respectively. Similarly, one can compute three dimensional 
discrete cosine transform coefficients by stacking two 
dimensional coefficient matrices and applying one dimensional 
transform for each vector in the third dimension. 

B. Discrete Sine Transform 

Discrete sine transform is known to be unsuitable for data 
compression mainly because it does not have the required 
uniform vector in its basis space. This aspect of it yields a poor 
energy compaction for highly correlated input data. Discrete 
sine transform also does not have a direct current (DC) 
coefficient. This is disadvantage for a data compression 
problem. On the other hand, discrete sine transform works well 
with de-correlated data. We can use this feature of discrete sine 
transform for the novelty detection because the novelty in the 
multidimensional data stems from the de-correlation among the 
neighboring data elements in all directions. The definition of 
discrete sine transform kernel used in this paper is defined as 
follows: 
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where N is the number of elements in the input signal, k is the 

parameter that changes the base sine vector, and kX  is the real 

valued discrete sine transform coefficient.  Discrete sine 
transform is also a separable transform. For both discrete 
cosine transform and discrete sine transform, the inverse 
transforms can reconstruct the input data perfectly because they 
are both lossless transforms. On the other hand, in our 
investigation we do not use the inverse transformation of 
discrete cosine transform and discrete sine transform. The 
interested reader is encouraged to read the paper of Zheng et al. 
[31]. 

C. Novelty Estimation Algorithm 

The novelty estimation algorithm is a two step process. The 
first step is a non-parametric classification method similar to a 
k-nearest neighborhood [32]. Instead of building a 
classification model and estimating the parameters of the 
model, the instances of the training data are used to 
approximate a local decision function. The drawback of this 
method is that it is sensitive to the local structure of the data.  
On the other hand, it has a low computational complexity, 
which is quite important for the case of massive three 
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dimensional data. We first compute the discrete cosine 
transform and discrete sine transform coefficient matrices of 
the baseline data, where the slices in the data has only minor 
changes that mimic the natural noise in the environment. The 
baseline data constitutes our training set, and we store these 
values in our system. Then, when the system examines a test 
data item, we compute the discrete cosine transform and 
discrete sine transform coefficients of the test volumes. Finally, 
we compare a test volume to the spatially related volumes in 
the training set. When there is a significant deviation in the 
mean absolute values between training and test examples, we 
label it as a sign of the novelty.  

At this point, we should emphasize that our goal in this 
paper is neither to design a complete novelty estimation 
framework nor define a threshold for the decision. Instead, we 
focus on the comparison of the discrete cosine transform and 
discrete sine transform outputs. We would like to emphasize 
the observation that discrete sine transform may fit well for the 
problem of novelty detection. Accordingly, we compare and 
contrast the distribution of discrete cosine transform and 
discrete sine transform outputs when there is an anomaly in the 
volumetric data. We try to determine how and in what degree 
the discrete sine transform reflects the anomalies better than 
discrete cosine transform. 

III. RESULTS AND DISCUSSIONS 

The main test scenario followed in the experiments is as 
follows. We are given a set of slices of any type of volumetric 
data taken by some static data acquisition sensor. These 
sequential slices constitute the volumetric test and training 
data. We should also make it clear that we did not use our test 
data in the training data. Our goal is to identify the data blocks 
within a volume that expose different characteristics from the 
previous blocks. 

We use a measure of dispersion, which expresses 
quantitatively the degree of variation or dispersion of values in 
a population, to compare discrete cosine transform and discrete 
sine transform outputs. Some of measures of dispersion are the 
standard deviation, the range, and the average deviation. We 
compute the standard deviations of each output (Fig. 1) and 
analyze it to compare them. 

A. Experiments with Synthetic VomuetricData 

In the first set of the experiments, we generate synthetic 
volumetric data and add Gaussian noise to the data. The real 
data do not always have the ground truth. Furthermore, specific 
needs or certain conditions that may not be found in the real 
data can be tested in this way. The noise parameters of the 
baseline volumetric data are mean and standard deviation: 

 

µandσ   

 

We add noise to the data in order to simulate the real world 
conditions. It is a well known fact that the data acquisition 

sensors and the environment where the experiment takes place 
always generate different kinds of noise.  

  

(a) 

 

Figure 1.  When there is no novelty in the data, one can assume that the 

distribution of estimation values will come from a normal distribution. In this 

figure, we graphically present how much the compare discrete cosine 

transform and discrete sine transform outputs deviate from the normal 

distribution. When there is no novelty in the volumetric data, we expect a 

linear plot. Curvatures in the plots are the hints of detecting novelty in the 

volumetric data. This specific example is produced from the output of the 

library data set [23]. 

After generating the test and training data, we generate test 
data with time varying artificial changes. The second set of the 
data is labeled as the test data. After generating the artifacts in 
the data, Gaussian noise is also added. These steps help us to 
observe how the robust the proposed framework is. In Fig. 2, 
we present sample training slices. 

 

   

   

Figure 2.  Slices of the baseline volume data with the Gaussian noise. 
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For the test slices, we add square shaped artifacts in order 

to simulate novelty in three dimension. Examples of the test 

slices are presented in Fig. 3. 
 

    

    

Figure 3.  Some of the slices of the artificial volumetric change in the 

synthetic data. We add Gaussin noise into the test data as well. 

We group the slices of volumetric test data in such a way 
that we can apply three dimensional transform to 8x8x8 voxels. 
the are an exception to the prescribed specifications of this 
template. We present the summary of the novelty in the volume 
using a two dimensional image in Fig.4 . 

 

(a) Discerete cosine transform output 

 

(b) Discrete sine transform ouput 

Figure 4.  Results of the experiment using synthetic volumetric data. A value 

above 0.5 may be considered as the existence of a volumetric novelty. 

In the case of synthetic volumetric data, we observe that 
DST yields outputs where the artifact can be determined more 
clearly. Moreover, the DST can cope with noise efficiently. 

B. Experiments with Real VomuetricData 

In the second set of experiments, we use real volumetric data 

which are obtained from changedetection.net [23] data 

benchmark. There are several categories in the data set. To 

perform objective comparisons between the discrete sine 

transform and discrete cosine transform, volumetric data from 

different categories of changedetection.net video dataset [23] 

are employed. 

 

   
           (a)                   (b)  

  

(c) 

  

(d) 

Figure 5.  We present novelty detection results using the discrete cosine 

transform and discrete sine transform for the real data. A value above 0.5 may 

be considered as the existence of a volumetric novelty. In (a) and (b) we 

present examples for the library data set, and in (c) and (d) we present 

examples for the skating data set [23]. In (a) and (b), we present the novelty 

detection results for discrete cosine and discrete sine transforms, respectively. 

When there is a volumetric change, discrete sine transform yields output that 

has much higher standard deviation than discrete cosine transform does. This 

shows that discrete sine transformgenerates a larger margin between regions 

of novelty and static regions. These results show that discrete sine transform 

almost always yields more diverse values such that it would be easier to 
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estimate the novelties. Similaryly, in (c) and (d), we present the novelty 
detection results for discrete cosine and discrete sine transforms, respectively. 

The real data obtained from [23] consist of sets of images 

where there is no significant change in the data. At the same 

time, for some of the sets of images there are different types of 

changes. In Fig. 5, we present the result of the library data set 

and the skating data set. We observe that novelty detection 

using discrete sine transform determines the changes much 

better. The range between the un-changed voxels and changed 

vixels are larger for discrete sine transform. When there is a 

volumetric change, discrete sine transform yields output that 

has much higher standard deviation than discrete cosine 

transform does. This shows that discrete sine transform 

generates a larger margin between regions of novelty and static 
regions. In Fig. 6, we show another set of results. 

 

   

           (a)                   (b)  

   

           (c)                   (d)  

Figure 6.   A value above 0.5 may be considered as the existence of a 

volumetric novelty. In (a) and (b), examples of office data set and in (c) and 

(d) examples of lakeside data set are presented [23]. (a) and (c) are the 

discrete cosine transform results. (b) and (d) are discrete sine transform 

results. These results show that discrete sine transform specifies the novelty 

better than discrete cosine transform does. On the other, in the images (c) and 

(d), the difference between the images is not as clear as the other examples. 
This is the worst result we observe. 

IV. CONCLUSIONS 

In this paper we have presented a comparative study of 
novelty detection for volumetric data using the discrete cosine 
transform and discrete sine transform. Based on our 
preliminary results, we are encouraged to continue our 
investigation of using discrete sine transform for the novelty 
detection in volumetric data. We observe that for volumetric 
data with high correlation, the discrete cosine transform yields 
better results; however, for the data with a low correlation of 
coefficients–which corresponds to case of the novelty in the 
data, the discrete sine transform yields better energy 
compaction. Given the fact that the novelty stems from the de-
correlation in the data, discrete sine transform is a very good 

candidate for this purpose. We plan to perform more tests using 
computer tomography scans by dividing the slices into regions 
of interest. The potential of discrete sine transform for the 
anomaly detection in medical image data would be our future 
work. 
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