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Abstract—Random access protocols are used by multiple nodes in 

wireless networks to effectively share a wireless channel for data 

transmission. While competing for the channel, the nodes seek to 

achieve an individual or group objective. Game theory, can thus 

be applied to analyze and model individual or group behavior of 

nodes in random access networks. It can also be used as an 

‘engineering’ application and subsequently re–engineer the 

system. In this paper, the current CSMA/CA mechanism was 

analyzed using game theory. Based on the analysis, the strategy 

space available to individual nodes was increased so that the 

optimal strategies for different situations learnt using 

reinforcement learning. From the analysis it was determined that 

the Nash equilibrium was not Pareto optimal. Simulation 

experiments yielded better results for the modified algorithm 

pointing to moving the Nash equilibrium towards being fair and 
Pareto optimal. 

Keywords-Distributed Channel Sharing; Random Access; 

Medium Access Control; Game Theory; Strategy; Reinforcement 

Learning; Q-learning. 

I.  INTRODUCTION (HEADING 1) 

A network of computers that use a multi--access medium 
requires a protocol for effective sharing of the media. In this 
broadcast mode, the main problem is how different nodes get 
control of the medium to send data, i.e. “who transmits next?” 
The protocols used for this purpose are known as Medium 
Access Control (MAC) protocols. The key issues that the MAC 
addresses are where and how control is exercised. Control can 
be exercised in a centralized} or distributed manner. In a 
centralized system a master node grants access of the medium 
to the other nodes. Although this scheme has a number of 
advantages and is easier to implement, it is vulnerable to the 
failure of the master node leading to reduction in efficiency and 
limited scalability. On the other hand, in a distributed approach 
all the nodes collectively perform the medium access control 
function which dynamically grants them access. This thus 
makes the approach more attractive to networks that are 
characterized by a distributed, dynamic, self-organizing 
architecture such as ad hoc, mesh and sensor networks. How 
control is exercised is constrained by the topology and trade off 
between cost, performance and complexity. Many formal 
approaches to medium access control have been devised as 

1 cited in [3], but are we concentrate on random access 
protocols and in particular the carrier sense multiple access 
with collision avoidance (CSMA/CA) as shown in Fig. 1 

 

 

 

 

Figure 1. Taxonomy of fundamental Random Access Protocols 

Each node running the CSMA/CA mechanism must make 
individual decisions that depend on the conditions in the 
wireless environment. The nodes independently set parameters 
like contention window (cw), backoff time, transmit power, 
packet forwarding etc. In making these decisions, the nodes 
seek to optimize one or more of the following [6]: 

 The global optimum network performance, e.g. the 
network operating efficiently through fair distribution 
of bandwidth, reduced delay, etc. 

 The local optimum by acting only in their self--interest.  

 Malice, by seeking to ruin network performance.  

Designing a medium access mechanism in which nodes 
behave in desirable ways gives the network appealing features 
and hence motivates our application of game theory. In the first 
case, game theory can offer some useful insights because, even 
when nodes have shared objectives, they will each still have a 
unique perspective on the current network state, leading to 
possible conflicts regarding the best course of action [6]. In 
second and third cases, the application of game theory is 
straightforward, since game theory traditionally analyzes 
situations in which player objectives are in conflict. Hence 
game theory can be used in two ways [13]: 

 Direct application in the analysis of the CSMA/CA 
MAC mechanism. 
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 An “engineering” application to reverse engineer the 
CSMA/CA MAC mechanism using mechanism design. 

In this work we have used both to try and ensure that the 
global efficiency and fairness of the CSMA/CA is maximized 
under all the circumstances above.  

This paper is organized as follows: Section II gives 
background of the CSMA/CA mechanism. Section III explains 
the use of game theory in analyzing the CSMA/mechanism. 
Section IV introduces the idea of learning in the mechanism. 
Section V presents the proposed model. Some simulation 
results are presented in Section VI. Analysis of the simulation 
result is done in Section VII. Section VIII concludes the paper. 

II. BACKGROUND 

The use of distributed coordination function (DCF) is 
mandatory in ad-hoc LANs and hence we shall focus on it and 
specifically DCF with CSMA/CA. Using CSMA/CA, there are 
several parameters that are used to control the waiting time 
before a node can access the medium. The values of the 
parameters depend on the type of modulation being used by the 
physical layer. They are defined in relation to a slot time. This 
is derived from the propagation delay of the medium and 

delays in the transmitter, and is 20 s for direct sequence 

spread spectrum (DSSS) and 50 s for frequency hopping 
spread spectrum (FHSS). The medium is idle if a signal called 
the clear channel assessment (CCA) is present. The two most 
important time parameters are shown in Fig. 2 

 

 

 

 

 

Figure 2. The CSMA/CA Basic Access Mechanism showing the 
timing diagram of two nodes competing for a channel. 

 Short inter-frame spacing (SIFS)}: this is the shortest 
waiting time – and hence highest priority – and is used 
for control messages such as data acknowledgments 
(ACK).  

 DCF inter-frame spacing (DIFS)}: this is the longest 
waiting time – and hence lowest priority – and is used 
for asynchronous data service.  

 DIFS = SIFS + 2(slot times).  (1) 

Using the CSMA/CA mechanism, if the medium is sensed 
idle for at least the duration of DIFS, the node can access the 
medium at once and transmit. Upon successful transmission, 
the receiver sends back an acknowledgment (ACK) frame after 
a SIFS period. This allows for short access delay under light 
load. But, as soon as more and more nodes try to access the 
medium, it becomes overloaded and additional mechanisms are 
needed to mitigate collisions. 

A busy channel indicates that the node has lost the cycle 
and has to wait for the duration of DIFS, and then enter a 
contention phase. In this phase, each node now calculates a 
backoff time (r) and additionally delays medium access for this  

r = Random[0, cw] × slot time.  (2) 

 Random is a random number generator function which 
randomly selects a number from a uniform distribution 
[0, cw]. 

 Contention window (cw): A number computed using 
the equation: 

    cw = 2{BE}-1.  (3) 

 Backoff exponent (BE): Used for the computation of 
the cw value. Some of the values used include 3, 5 etc. 
to give cw values of 7, 31 etc. The cw is bounded by 

cwmin  cv  cwmax. After each successful transmission, 
cw is reset to the minimum contention window size cw 

min.  

If the randomized additional waiting time for a node is over 
and the medium is still idle, the node can access the medium 
immediately. If the channel is sensed “busy” during the 
backoff, the backoff is paused until the channel is sensed idle 
again, and then resumed. The CSMA/CA mechanism is 
summarized by Algorithm 1. 

Algorithm 1. The Basic DCF MAC Protocol: 

 
 If medium is free for ≥ DIFS 

  Transmit 

 Else backoff 

  Wait for medium to be free for DIFS 

  Choose a backoff time (r)  

 While r > 0:  

  Sense medium for one slot time 

  If medium free throughout slot → r := r – 1 

 Transmit frame 

 
Analysis of the CSMA/CA mechanism shows that there are 

a number of MAC parameters at the data link layer that can 
possibly be engineered to obtain optimal network behavior. 
The parameters in question include: 

 Interframe space (IFS) i.e. SIFS and DIFS. But these 
parameters are governed by the laws of physics at the 
PHY layer. 

 cw sizes. These are set by the mechanism at the MAC 
layer and hence are more practical in terms of 
manipulation. 

III. USING GAME THEORY TO ANALYZE THE MAC 

PROTOCOL 

Game theory is a bag of analytical tools designed to help 
us understand the phenomena that we observe when decision--
makers interact [12]. Its purpose is to predict what will happen 
when a game is played. It is relevant to random access 
networks because of the following features:  

 Decentralized operation of the nodes. 

 



 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)  
Volume 03 – Issue 02, March 2014 

 

www.ijcit.com    308 
 

 Node self-configuration.  

 Power/energy awareness of the nodes. 

 Each node in the network runs the distributed 
CSMA/CA protocol, making decisions that affect other 
nodes. 

We model the random access network environment running 
the CSMA/CA mechanism as an incomplete information, 
static, non-cooperative, n-person repeated game. A typical 
mapping of random access network components to a game is as 
shown in Table 1 below:  

TABLE I.  TYPICAL MAPPING OF AD HOC NETWORK COMPONENTS TO A 

GAME 

Components Elements of a Random Access Network 

Players Nodes in the network 

Actions Actions related to the functionality being modeled (e.g. 

setting the value of the cw or Backoff) 

Utility/Payoff Improved performance (e.g. increase in efficiency and 

fairness) 

A. The Normal--form CSMA/CA Game 

In a random access network, nodes carry elastic traffic. In 
these networks, the fraction of channel time that is used for 
successful packet transmissions is called effective capacity (T). 
The rest of the channel time is consumed by control packets, 
the backoff process or packet collisions which constitutes the 
inefficiency of the network. The effective capacity should 
ideally be shared out fairly, with each node receiving a fraction 
of T i.e. t. This environment becomes a game once nodes 
knowingly or unknowingly exploit protocol imperfections for 
self gain. We illustrate this through an example.  

Let us consider an ad hoc network model, in which there 
are 2 nodes repeatedly competing for the channel as shown in 
Fig. 3 

 

 

 

Figure 3. A 2-node Random Access Network used to demonstrate 
the Prisoner's Dilemma. 

In this environment, a transmission is successful if the 
nodes do not access the channel simultaneously. We assume 
that the two nodes are homogeneous and can use any of two 
moves that are defined by the cw size as shown in Table 2.  

TABLE II.  THE POSSIBLE MOVES THAT CAN BE USED BY THE TWO NODES 

Action Description 

c Complying with the standard protocol by truthfully using the 

specified cw parameters. 

v Violating the standard protocol by for example by maintaining 

a small fixed cwmin. 

 

We also assume for purposes of this example, that the 
utility (u) of a node is defined by throughput (t). The outcomes 

of the combination of various moves are summarized in Table 
3. 

 

TABLE III.  OUTCOMES OF NODES USING DIFFERENT ACTIONS 

Action Outcome 

Both nodes use v u = tvv: The probability of collision increases 

considerably, reducing  u. 

Both nodes use c u = tcc: The two nodes have an almost equal chance of 

accessing the channel. The probability of collision is 

minimized and t is shared almost equally. 

One node uses v, 

the other uses c 

The node using v unfairly gets most of the capacity t 

at the expense of the node using c. 

 

We can now illustrate this strategic scenario as a normal-
form game where: 

 Players: N = {1, 2} 

 Actions: A = {c, v} 

 Utilities/Payoffs: ui = {0, tvv, tcc, t} for i  N 

The game can be summarized by the payoff matrix shown 
in Fig. 4 

 

 

 

 

 

 

Figure 4. Payoff Matrix for a Two Node Random Access 
Network. 

0 < tvv < tcc < t 

Analysis using game theory shows that, there is a unique 
strict Nash equilibrium} [10], which is (v, v). v dominates the 
c. v is a stable equilibrium while c is an unstable one. 
Assuming one node is playing v, the best choice is to play v as 
well. Similarly, assuming a node is playing c, the best choice is 
to play v. If both players commit to play the dominated strategy 
c, they will be better off. The normal-form game runs into a 
Prisoner's Dilemma [14] that is neither fair nor Pareto-optimal.  

This simple example can be extended to more nodes. This 
can be formally defined as:  

 Game: A finite n-person game (N, A, u) 

 Players: N = {n1, n2… nk}. 

 Actions: A = {c, v} 

It can be concluded that the CSMA/CA mechanism works 
well if all nodes follow the predefined rules. But violating the 
protocol promises greater rewards. Nodes do not have 
information about each other and if they all decide to 
individually violate the protocol there is network collapse. This 
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leads to a phenomenon referred to as tragedy of the commons 
[4]. An issue that arises from this is: How do we make the 
Nash equilibrium Pareto--optimal and fair? 

B. From a Single Strategy to Multiple Strategies 

In gaming, players’ actions} are governed by laid down 
rules and procedures that the players need to follow. A 
sequence of actions is called a strategy. A player's strategy in a 
game is a complete plan of action for whatever situation that 
might arise; this fully determines the player's behavior. A 
strategy must specify what action will happen in each 
contingent state of the game.  

Strategies in game theory may be deterministic (pure) or 
random (mixed). Pure strategies can be thought of as a special 
case of mixed strategies, in which only probabilities 0 or 1 are 
assigned to actions. Situations that involve interdependent 
decisions are everywhere, potentially including almost any 
endeavor in which self--interested agents cooperate and/or 
compete as shown by the following examples: 

 Soccer: It is only simple in the rules and the basic 
game play. The strategy of the game can be quite 
complex and is what determines the outcome. Example 
strategies used include 4-2-4, 4-3-3, etc. 

 Chess: The strategy consists of formulating a plan and 
arranging the chess pieces to accomplish this plan in 
view of the opponent's best response.  

From the two examples, one notes that by having different 
combinations of actions, it is possible to come up with many 
strategies. A optimal strategy is a sequence of moves that 
results in the best outcome.  

Using the CSMA/CA mechanism as currently 
implemented, nodes are hard-wired to use a single strategy. 
This strategy only relies on the randomness generated by the 
probability space of the cw to ensure efficiency and fairness. 
Based on its variation, it is possible to come up with many 
strategies. The role of analysis and reverse engineering is the 
identification of strategies that can be used to get an optimal 
outcome. Current approaches have concentrated on 
experimentation to get the optimal parameters. But the random 
access network environment is dynamic and the parameters 
should change with the environment, hence the need to make 
the medium access mechanism adaptive. The objective of each 
node is to maximize it payoff or utility function in the network 
through maximizing its total throughput ti, reducing medium 
access delay di and increased network utilization pi. If we 
denote the payoff of node i by ui, its payoff function is written 
as follows: 

 ui = f(ti, di, pi).   (4) 

This should also have the effect of increasing overall 
network fairness fN. The total utility is defined as the sum of 
the achieved utilities of all of the nodes on channel c, given by: 


i

ic uu    (5) 

This is a non increasing function of the number of nodes 
deployed on c. If the CSMA/CA mechanism is perfect, uc is 
independent of the number of nodes on c. In practice however, 
the cw and r values used in the CSMA/CA implementation are 
not optimal and owing to this, uc becomes a decreasing 
function of the number of nodes on c.  

To characterize stability in the random access game, we 
introduce the concept of the Nash Equilibrium. The strategy 
profile s* = s*1, …, s*n defines a Nash Equilibrium (NE), if for 

each node i, and its strategy s’i  s we have ui(s*i, s*-i) ≥ ui(si, 
s*-i). This means that in a Nash Equilibrium, none of the nodes 
has an incentive to change their strategy to increase their 
payoffs. This is achieved by in-cooperating learning to ensure 
that nodes have the capability to adapt their strategies based on 
the network environment. 

IV. LEARNING IN THE RANDOM ACCESS NETWORK 

MECHANISM 

Building on ideas from the El Farol Bar Problem (EFBP) 
[1] and Marimon [8][7] we introduce the concept of a strategy 
space [s1, s2,...,sn] to the nodes. The existing CSMA/CA 
protocol, is modified so that all the nodes have access to any 
known strategies. When the modified mechanism is in 
operation, nodes assign a score to each strategy used based on 
its immediate payoff. Each node uses the strategy with the 
highest score. This increases its probability of re-use in future. 
If strategies have the same score, then during the selection 
process, one is randomly selected. An unsuccessful strategy is 
unchanged so that it can be ignored in future. This is done 
through the use of reinforcement learning [9]. The rationale 
behind this is that random access networks are dynamic 
environments; hence nodes need to be adaptive if the network 
is to perform optimally. If the strategy a node is using wins a 
contention under the prevailing circumstances, the node 
continues using it hence exploitation. If it loses the contention, 
the node tries other strategies hence exploration. It is notable 
that when a node uses the v strategy, it only has an advantage 
when other nodes don't use it. By introducing multiple 
strategies, by other nodes changing strategy, they eventually 
end up with the v strategy. This forces the violating node to 
also change strategy and shift the operating point. The 
changing of strategies is a way of looking for suitable operating 
points so that system performance is maximized under the 
dynamic conditions. This enables the nodes adapt strategies so 
that either the strategies played converge to a robust 
equilibrium or they circle around a set of correlated strategies.  

A. Q-Learning 

To reinforce the strategies we use a variant of 
reinforcement learning known as Q-learning. Though some 
issues arise with using the basic Q-learning algorithm for nodes 
using the CSMA/CA protocol 

 The traditional Q-learning is effective for a single 
learner in a stationary environment. The random access 
network has many nodes and the environment is 
generally non--stationary due to adaptation of other 
agents. 
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 In the traditional Q-learning, the Q-matrix is only used 
once there is convergence. In our case, the end of the 
game cannot be pre-determined and so is assumed to 
be infinite. The convergence of the Q-matrix for the 
nodes is therefore only theoretically possible.  

We extend the Q-learning algorithm to the multi--node non-
-static game setting by having each agent simply ignore the 
other agents and pretend that the environment is passive. 

V. PROPOSED MODEL  

A. Reverse Engineering the MAC Protocol 

Our game theoretic analysis has shown the Nash 
equilibrium of the current mechanism to be sub-optimal. From 
this analysis, the network is vulnerable to manipulation since 
there is a higher payoff for nodes if they use the v strategy. 
With the new programmable radio adapters and the newer 
IEEE 802.11e protocol [2], this is becoming a reality. The 
moves made by the nodes are not premeditated. They are 
simply a reaction to the current state of the environment with 
no adaptivity. This can lend itself to suboptimal behavior 
and/or abuse.  

Optimization of the network performance involves seeking 
a stable operating point based on the above stated tunable 
parameters. Thus there is need to find a socially optimum way 
in which the cws of the various nodes can be set to maximize 
the performance of the system. So every node, without any 
coordination, should behave in a synchronized fashion to 
achieve the socially optimum network performance through 
setting their cw. We use game theory and learning to propose 
an enhancement that makes the mechanism more dynamic by 
nodes having more strategies that make them adapt to the 
network environment conditions. 

B. Model Design 

Our scheme alters the way nodes contend for the medium 
using the CSMA/CA method. Formally this can be defined as: 

 Players: N = {n1, n2, …, nk} 

 Strategies: S = {s1, …, sm}, where si is a combination 
of different actions. 

 Utilities/Payoff: ui(s) for i  N and s  S 

When the network is set up, all strategies si in the strategy 
space are initialized to have the same rank i.e. 0. Nodes 
randomly select any strategy from the strategy space. If the 
selected strategy wins the contention and the node accesses the 
medium or if the strategy fails a node in accessing the medium 
it is positively or negatively reinforced. The reward scheme is 
based on the formula: 

Reward = (Ns - Nc).   (6) 

Where  

 Ns: Number of successful transmissions 

 Nc: Number of collisions 

Intuitively, one can see that winning a contention will result 
in a positive reinforcement while losing the contention will 
result in a negative reinforcement. Nodes learn by using this 
simple reinforcement learning scheme as shown in Fig. 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. The Working of the new scheme. 

Our modified algorithm is a combination of the Win-Stay, 
Lose-Shift (WSLS) strategy [11] and Q-learning [16] as shown 
in Algorithm 2.  

The modified win stay-lose shift strategy with Q-learning 

 

Algorithm 2. Modified Q-Learning algorithm 

 
 Begin: For every contention 

  Consult the Q-matrix 

  Use the best action from the stored Q-values 

  Evaluate the reward  

 If Positive 

  Update the Q-matrix 

 Else 

  Randomly Explore another action from the stored Q- 

  values  

 If there is another round, go to Begin. 

 
The interaction of the node running the algorithm in an 

environment is as shown in Fig. 6 
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Figure 6. Working of the node 

As the node learns and updates its Q-matrix, the matrix 
reflects the direction of convergence. During each episode, the 
Q-matrix remains the same or gets better compared to the 
previous one. Therefore the Q-values for each state-action pair 
represent how each move benefits a particular node at a 
particular time. 

Nodes keep doing this as they try to settle on an optimum 
strategy. There is a possibility of learning the best strategy 
through reinforcement. Equilibrium is reached when the 
aggregate throughput of all the contending nodes oscillates 
around the bandwidth capacity of the network. 

VI. EXPERIMENTAL DESIGN 

A. Game Design 

We assume a single IEEE 802.11 basic service set (BSS) 
with a set of N nodes running heterogeneous applications and 
operating in the distributed coordination function (DCF) mode. 
Each node selfishly tries to transmit whenever it has data, 
assuming the existence of other nodes. Formally this can be 
defined as: 

 Players: N = {n1, n2,  …, n20} 

 Strategies: S = {s1, s2, s3, s4} 

 The four strategies explored in our work are taken 
 from the IEEE 802.11e parameters and one where the 
 cwmin is kept constant as shown in Table 4: 

 Utilities/Payoff: ui (s) = f (ti ,di , pi ) 

For i  N and s  S 

TABLE IV.  USING IEEE 802.11E CSMA/CA PARAMETERS TO CREATE 

DIFFERENT STRATEGIES. 

Strategies Parameters 

s1 The standard DCF where r is calculated from the range [0, 

cwmin] 

s2 Calculates  r  from the range  



















min

min cw ,1
2

1cw  

s3 Calculates  r  from the range  

   






























1

2

1cw
 ,1

4

1cw minmin
 

s4 A small fixed cw size having a value of 8 slots 

 

An improved mechanism should display higher efficiency 
through increased throughput, network utilization and 
increased fairness, reduced delay and retransmission attempts. 

B. Simulation Characteristics 

The proposed protocol was compared to the existing 
protocol by simulation through the use of the Pamvotis WLAN 
simulator version 1.1 [15]. The simulation characteristics were 
as shown in Table 5. 

TABLE V.   TYPICAL MAPPING OF AD HOC NETWORK COMPONENTS TO A 

GAME 

Characteristic Type 

Network Size 20 Nodes  

Bandwidth 1 Mbps 

Radio Type DSSS 

Applications FTP Source 

Generic Source 

HTTP Source 

Video Source 

 

The topology used for 20 nodes is as shown in Fig. 7 

 

 

 

 

 

 

 

 
 

 

 

 

 

 
Figure 7. A twenty node topology used in the experiments. All 

the nodes are within range of each other 

C. Performance Metrics 

The proposed model was evaluated against the existing 
MAC protocol based on: 

 Throughput (packets/sec): The number of packets that 
a node successfully transmitted in a specific time 
interval.  

 Utilization: The percentage of the channel capacity the 
node occupied. The utilization is the node's throughput 
in bits per second divided by the node's data rate.  

 Media access delay: The delay of a packet from the 
time it is picked up from the transmitter until it is 
successfully received from the receiver. This statistic 
contains the delay due to retransmission attempts and 
the transmission delay.   

 Fairness: How well the system shares bandwidth 
among multiple users. It is an important consideration 
in most performance studies especially in distributed 
systems where a set of resources is to be shared by a 
number of users. Assuming that fair implies equal and 
that all paths are of equal length, Raj Jain [5] proposed 
the following fairness index. Given a set of a set of 
flow throughputs, (x1, x2, …, xn) the fairness index 
f(xi): 

 
 







n

1i

2

i

2n

1i i

i

xn

x
xf .  (7) 
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The fairness index always results in a number between 0 
and 1, with 1 representing greatest fairness.  

VII. RESULTS AND ANALYSIS 

A. Prisoner's Dilemma and Tragedy of the Commons 

To demonstrate the Prisoner's Dilemma, two nodes in the 
network i.e. node 1 and node 3 were configured to have a 
smaller cwmin than the rest of the nodes. On running the 
simulation, the results obtained are as shown in Fig. 8].  

 

 

 

 

 

 

 

 

 

Figure 8. Comparing performance when two nodes set a small 
cwmin and use one or 4 strategies. 

The nodes with a smaller cwmin get an advantage over the 
other nodes as exhibited by the throughput of node 1 and node 
3. Increasing the number of strategies available to the nodes, in 
most cases slightly increased the individual node and system 
throughput.  

All the nodes are then configured with a standard cwmin 
followed by a smaller cwmin. The respective throughputs are as 
shown in Fig. 9.  

 

 

 

 

 

 

 

 

 

Figure 9. Demonstrating the tragedy of commons when all nodes 
use the normal cwmin and a smaller cwmin 

By using a smaller cwmin, than the standard cwmin, both the 
individual and system throughput are reduced. This 
demonstrates the tragedy of the commons. 

B. Performance of Individual Strategies and Combinations 

of various Strategies 

All the nodes are configured with each of the four strategies 
and various combinations of the strategies in turn. The results 
are summarized in Fig. 10. 

 

 

 

 

 

 

 

 

Figure 10. Comparing the throughput of individual strategies and 
various combinations of strategies. 

The averages of throughput are also summarized in Fig 11. 

 

 

 

 

 

 

 

 

 

Figure 11. The average throughput when different strategies and 
different combinations of strategies are used. 

Various observations can be made. Strategy 3 is the best 
performing strategy while strategy 4 is the worst performing. 
Strategy 1 which is employed in the current protocol is 
outperformed by strategy 3. As long as strategy 3 is used in 
combination with other strategies the network always yields the 
highest throughput. The line graphs of the better performing 
strategies are also smoother indicating stability. This indicates 
that with learning, nodes always settle for the best strategy. 

C. Fairness 

The fairness of the individual strategies and a combination 
of strategies was calculated using Jain's fairness index. The 
summary is as shown in Fig.12. 
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Figure 12. Comparing fairness when different strategies are used 

Strategy 3 and all the strategy combinations having it 
performed better than than all the others including strategy 1. 

D. Shorter Contention Window 

The cw was made shorter by having a smaller cwmin and 
cwmax. The network performance is evaluated using strategy 1, 
3 and a combination of all the strategies as shown in Fig.13. 

 

 

 

 

 

 

 

 

 

Figure 13. Comparing the throughput of one and 4 strategies when 
standard and short cwmin are used 

From the figure, strategy 3 and a combination of all the 
strategies outperform the standard protocol. But when the 
combination of strategies is used, the network becomes 
unstable as displayed by the perturbation of the line graph 
profile. This happens because the cw values are not optimized. 
As a result the nodes keep changing strategies to try and get a 
stable operation point. However, the usage of strategy 3 which 
is the best performing strategy is more than the others as shown 
in Fig.14. 

 

 

 

 

 

 

 

 

 

Figure 14. Strategy selection when nodes use 4 strategies and a 
short cw. 

E. Summary of other evaluation Parameters 

Other evaluation parameters were also considered. These 
include the mean network utilization on a scale of 1 and the 
media access delay in microseconds. Fig. 15 shows the mean 
network utilization. 

 

 

 

 

 

 

 

 

 

 

Figure 15. Comparing network utilization 

From the figure, one notices that when the best performing 
strategy is used individually or in combination with other 
strategies, the network is utilized maximally. 

The media access delay is shown in Fig. 16 

 

 

 

 

 

 

 

 

 

Figure 16. Comparing network media access delay 

The best performing strategy or when other strategies are 
used in combination with it again lead to minimal media access 
delay. In both cases, this means that the best performing 
strategy has reduced number of collisions. As a result, nodes 
with data to send don't have to queue the packets for long 
periods of time and the retransmission attempts are minimized. 

VIII. CONCLUSIONS AND FUTURE WORK 

Analysis of the simulation results indicates that the 
enhanced mechanism outperforms the existing mechanism in 
terms of throughput, dropped packets and fairness. This is 
more defined as the network size increases. 

 When many strategies are used performance is 
comparable to the best strategy. 

 When a particularly bad strategy is combined with a 
good strategy, performance improves. 

 When the best strategy is removed, performance drops 
and the network is unstable since the nodes keep trying 
the other strategies as they seek a global stable 
operating point. 
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 When current optimized cw values are changed 
arbitrarily, the overall system performance drops when 
compared to the optimized parameters. However the 
best performing strategy still outperforms the other 
strategies. If the number of strategies is increased, the 
performance is better than the currently implemented 
strategy but the network is unstable. This is also 
because the nodes keep trying all the other strategies as 
they seek a stable global operating point. 

There is still a lot of work which could be done that 
comprises future work. This involves improving on the 
strategies to be adopted and the size of the strategy space. 
Additionally experiments need to be done to determine the 
optimal reward scheme and learning rate. 
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