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Abstract—Deployment of distributed systems sets high 

requirements for procedures and tools for the complex testing of 

these systems. This work introduces a formal four-layered model 

for test generation mission on the basis of the component-based 

approach and the concept of layered networks. Based on this 

model, we describe the test generation strategy that covers every 

interaction from the end-user requirements on all coexisting 

architectural layers, and checks the internal consistency of the 

system technical specifications with respect to the end-user 

requirements. The next step introduces the Prolog-based 

approach to representing this model and the requirements-
coverage strategy 
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I.  INTRODUCTION 

You know you have a distributed system when the crash of 
a computer you’ve never heard of stops you from getting any 
work done.  

- Leslie Lamport 

This maxim accurately reflects the nature of distributed 
systems. For the engineering world a more formal definition 
was given by Andrew S. Tanenbaum and Maarten van Steen as 
a collection of independent computers that appears to its users 
as a single coherent system [1]. But in practice, this definition 
can denote:  

 a collection of components/products (hardware and 
software) – the viewpoint of the vendor community; 

 a collection of the above plus external communication 
infrastructure – the viewpoint of the network engineer 
community; 

 a collection of services/applications – the viewpoint of 
the software/system engineer community; 

 all of the above plus end-users/customers – the 
viewpoint of the business community. 

When talking about the testing of distributed systems, the 
confusion between these definitions is a fertile source of 
vulnerabilities. Broadly speaking, vendors focus on individual 
component testing problems only – but in general testing or 

qualification of the elements of the system does not cover the 
system testing itself. In turn, network engineers usually focus 
on network subsystem testing. In this case, ignoring 
services/applications testing is one of the most common causes 
of system problems [2]: 

 If the network subsystem is not solid, 
services/applications cannot be responsive and reliable 
by definition. 

 If the network subsystem is solid, but the 
services/applications do not provide required 
performance or functionality, end-users could perceive 
the network subsystem as unavailable or unreliable. 

On the other hand, distributed systems differ from 
traditional software because components are dispersed across a 
network. Very often software/system engineers do not take this 
dispersion into account that leads to the following false 
assumptions about the network subsystem: (1) networks are 
always reliable; (2) latency is zero; (3) bandwidth is infinite; 
etc. [1]. As a consequence, only the business (or integration) 
viewpoint brings all of the detailed elements of the distributed 
systems together through a process of testing (or qualification) 
to achieve a valid system for meeting the ultimate needs of the 
end-users [3]. 

In addition, virtualization and cloud technologies set 
another level of system complexity. In this case, there is a 
“classical” physical (external) system as a host system and 
some (at least one) virtual (internal) systems. It is a real 
challenge for testing activities and/or testing applications. Even 
if we could test a host system and every virtual system 
independently, the amount of work would increase several 
times. 

Our main goal is the automated design and generation of 
testing procedures/specifications and plans for distributed 
systems based on end-user requirements and technical 
specifications as a necessary part of project documentation. 
Working engineers treat formal methods as they are widely 
taught in universities and not used anywhere in the real world. 
But in the case of complex or non-standard systems, personal 
experience and/or intuition are often inadequate. Thus, to 
accomplish such a goal we need to identify a top level test 
philosophy (or test strategy) based on a formal model with the 
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following criteria: (1) it must be appropriate for the viewpoint 
of the business community; (2) it should be based on standards 
(as a formal document); (3) it has to cover all aspects of 
distributed systems; and (4) it has to be simple enough for 
practical application. 

In this paper we come after the basic steps of the following 
general methodology of system/software test templates design. 
At first, we specify entities and their relations of the distributed 
system under test (DSUT). Both the entities and the tuples of 
relations are assigned unique abstract identifiers. Their 
attributes are determined by a set of facts about the abstract 
identifier expressed as atomic propositions. Type information 
on a given entity is also covered by these atomic propositions. 
Thus, the system under test is modeled as a weighted graph 
structure. Secondly, we need to specify test requirements. The 
test requirements can be considered as mappings between an 
input domain and an output space of test templates. The input 
domains consist of subsets of entities and their relations. A test 
template of the output space might be itself a complex structure 
that specifies all necessary conditions of the given test 
template. For example, in our case, test templates are often 
paths between given nodes of the graph model of the 
distributed system. Although a test template has its internal 
structure it can be treated as a single point in a 
multidimensional space of all test templates. Finally, the test 
template space is constructed through an application of test 
requirement mappings onto the input specification graph 
model. In this paper we deal exclusively with such a test 
templates space creation. Its optimization and convertion into 
test procedures and their integration into a test suite is beyond 
the scope of this paper. 

The rest of this paper is structured as follows. Section 2 
introduces the related work. Section 3 presents the formal 
multilayer model of distributed systems for test generation 
mission and the test templates generation strategy. Section 4 
focuses on the Prolog-based approach to representing the 
model and the strategy. Section 5 discusses which features of 
distributed systems can be covered. Finally, conclusion 
remarks and future research directions are given in Section 6. 

II. RELATED WORK 

The automated generation of test templates is the most 
important role for formal verification in testing. It involves 
analyzing system models, with the analysis covering paths in a 
model. In this context, this work lies in the area of model-based 
testing (MBT), but it differs from existing approaches in the 
way of deriving models. MTB research in the domain of 
distributed systems can be roughly classified into three 
categories [4], [5], [6]: 

1. MTB general approaches. El-Far and Whittaker [7] give a 
general introduction to principle, process, and techniques of 
model-based testing. In turn, Stocks and Carrington [8] suggest 
that test templates can be defined as the base for test case 
generation and a large test template is divided into smaller 
templates for generating more detailed test cases. 

2. MBT based on graphical models. Offutt and Abdurazik [9] 
describe an approach to generating test cases from UML 
Statecharts for components testing. And Hartmann et al [10] 
extend the approach for integration testing and for test 
automation. 

3. MBT based on formal specifications. Bernot et al [11] set up 
a theoretical basis for specification-based testing, explaining 
how a formal specification can serve as a base for test case 
generation. Dick and Faivre [12] propose to transform formal 
specifications into a disjunctive normal form (DNF) and then 
use it as the basis for test case generation. Donat [13] 
represents a technique for automatically transformation formal 
specifications into test templates and taxonomy for coverage 
schemes. Hong et al [14] show how coverage criteria based on 
control-flow or data-flow properties can be specified as sets of 
temporal logic formulas, including state and transition 
coverage as well as criteria based on definition-use pairs. 

The most recent systematic method is presented by Liu and 
Shen [15]. This method can be used for (1) identifying all 
interface scenarios, formalizing requirements into formal 
operation specifications whose interfaces are consistent with 
the corresponding ones of the program; and (2) for testing 
programs based upon the formal specifications (scenario-
coverage strategy). 

But in spite of tremendous efforts of many researchers, 
MBT is still difficult to be used for large scale systems due to 
its complexity and the potential inconsistencies in both 
component and system architectures. Furthermore, it still 
considers hardware-based and software-based systems 
independently and, as a consequence, the layered structure of 
modern communication protocols (such as OSI layered 
architecture [16]) is completely ignored. 

III. FORMAL MODEL OF DISTRIBUTED SYSTEMS 

A. Basic approach 

The essential idea of our approach is based on two basic 
notions: 

 component-based approach with its two important 
consequences: (1) components are built to be reused in 
different systems, and (2) component development 
process is separated from the system development 
process [17], [18]; 

 concept of layered complex networks [19]. 

The component-based approach refers to the fact that the 
functional usefulness of distributed systems do not depend on 
any particular part of these systems, but emerges from the way 
in which their components interact. Thus, the standard ISO/OSI 
Reference Model (RM) [16] can be used as a starting point. But 
it cannot cover the all required aspects by oneself (practically it 
is necessary to use several models in order to cover many 
different aspects). Necessary complements to RM provide the 
set of architectural models [20] as the most intuitive solution. 
In turn, the concept of layered complex networks secures the 
consistency between different models. And finally the graph 



 International Journal of Computer and Information Technology (ISSN: 2279 – 0764) 
Volume 03 – Issue 04, July 2014 

 

www.ijcit.com    698 
 

theory (as a standard-de-facto) provides the necessary tools for 
models representations. 

For our purposes the system model can be stated as a four-
layered graph as follows: 

 The ready-for-use system architecture layer defines 
functional components and their interconnections. This 
layer is based on functional models [20] (the enlarged 
viewpoint of end-users/customers) and covers the 
application (L7) layer of RM. 

 The service architecture layer defines software-based 
components (services/applications) and their 
interconnections. It is founded on flow-based models 
[20] (representation of centralized or client-server, 
decentralized or peer-to-peer, and hybrid architectures) 
and covers the transport (L4), session (L5), 
presentation (L6) and partially application (L7) layers 
– we cannot divide these layers in the case of 
commercial off-the-shelf (COTS) software. 

 The logical architecture layer defines logical (virtual) 
components and their interconnections. It is based on 
topological models [20] and covers the network (L3) 
layer. 

 The physical architecture layer defines hardware 
(physical) components and their interconnections. Like 
its predecessor, this layer is founded on topological 
models but covers the physical (L1) and data link (L2) 
layers – we cannot divide these layers in the case of 
COTS telecommunication/network equipment. 

 The interlayer projections define all types of 
components hierarchical (interlayer) 
relations/mapping. These relations make the layered 
model consistent and convenient for our goals. 

 In the real world neither owner nor developer can be able 
to test its distributed system completely (entire systems and 
every component in it) due to the lack of resources. Thus, what 
it should be done is development of a test philosophy (or test 
strategy) that covers critical aspects of distributed systems. 

B. Formal notations 

Formal verification offers a rich toolbox of mathematical 
techniques that can support the model-based testing of 
computer systems. This toolbox contains logic programming as 
one of the most relevant technique of model checking [5]. In 
turn, logic programming deals with logical facts and, as a 
consequence, the first step is to determine the formal notations 
which make the layered model applicable for logic 
programming.  

Definition 1 (the system model): Let the graph G denote 
DSUT: 

G = (V, E, M) 

where G is multi-layered 3D graph, derived from the DSUT 
specification; V(G) is a finite, non-empty set of components of 
DSUT; E(G) is a finite, non-empty set of component-to-

component connections; and m(G) is a finite, non-empty set of 
component-to-component interlayer mapping (or projections). 
Then, the system model Gn for each layer n can be represented 
as a subgraph of G: 

Gn = (Vn, En, M
n
n-1, Vn-1) 

where Vn(Gn) is a finite, non-empty set of components of DSUT 
on layer n; En(Gn) is a finite, non-empty set of component-to-
component connections on layer n; Mn

n-1(Gn) is a finite set of 
component-to-component projection from layer n to layer n-1; 
and Vn-1(Gn) is a finite set of components of DSUT on layer n-1. 

Generally, Gn is intransitive by default with the exception of 
the physical architecture layer. In turn, Mn

n-1(Gn) and Vn-1(Gn) 
must be non-empty sets with the same exception – in this case, 
the definition of projection has no physical meaning. 

The systems decomposition into objects which interact is a 
common baseline for all technologies for the design and 
implementation of distributed systems [21]. These two aspects 
(components and information links) of knowledge are usually 
included in formal specifications [22]. As a consequence, the 
test requirements for every layer can be derived from 
formal/technical specifications and can be formalized into a set 
of formal operations. We need to state here that the tests of 
individual components are usually prepared by vendors (see the 
viewpoint of the vendors’ community). In the real world we 
have to rely on: 

 vendors and/or independent laboratories information 
about products; 

 vendors conclusions of products compliance with end-
user requirements; 

 vendors documentation (includes test descriptions). 

Definition 2 (the test requirements): Let the set R denote the 
requirements for DSUT specified by the end-users. For 
simplicity, R can be represented as: 

R = Rcomp ∪ Rdist, 

where Rcomp is a finite set of individual components 
requirements; and Rdist is a finite set of distributed aspects 
(component-to-component communication) requirements. In 
this case, the distributed aspect requirements Rn for each layer 
n can be represented as a set of operators Rni (i = 1 … r) that 
are applied to the system model Gn and produce test templates 
Tn as its output, often as paths between given pairs of vertices: 

Rn = {Rn1(sn1, tn1, cn1),…, Rnr(snr, tnr, cnr)} 

where sni, tni is a pair i of individual components on layer n, 
which must communicate; and cni are technical characteristics 
of component-to-component communication processes 
(information links specifications). 

Generally, Rn can be an empty set with the exception of the 
end-user (top-level) requirements (in this case, the definition of 
distributed systems makes no sense at all). 

At this place to avoid confusions, we should stressed that 
the term of “test requirement” denotes in classical software 
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testing publications both a process of searching for what should 
be tested and entities that are produced by such a process, e.g. 
in [23]. As the process is accomplished by human testers, using 
the same term for both items does not cause any harm. 
However, in this paper we deal with an automation of such 
process and we need to reference such items without any 
ambiguity. Therefore, we use the term “test requirement” to 
denote the process of searching, and “test template” to denote 
entities that are results of such a process. We do not use the 
term “test case” as we often receive a set of test templates that 
are only the bases for test cases design. 

As a next step, before describing the test strategy, we need 
to clarify the formal concept of test templates. 

Definition 3 (the test templates): Let the set Tn denote the test 
templates for each layer n as a set of pairs: 

Tn = {(Pn1(sn1, tn1), cn1),…, (Pnr(snr, tnr), cnr)} 

where Pni(sni, tni) is a path (or data flow) between sni and tni in 
Gn; and cni are technical characteristics of component-to-
component communication processes. 

The set of test templates Tn cannot be an empty set. 

In contrast to the multilayer model of complex systems 
[19], the sets of nodes of the system model (see Definition 1) 
on each layer are not identical. And the key factor is the arity 
of the component-to-component projection from layer n to 
layer n-1 (the top-down point of view). This parameter allows 
representing technological solutions used to build the system: 

 1n : Nn-1, e.g. clustering/stacking technology; 

 Nn : 1n-1, e.g. virtualization/replication technology; 

 1n : 1n-1, e.g. a special case of dedicated components. 

Definition 4 (the interlayer projection): Let the set of 
operators In

n-1 be the mapping of the test templates Tn from 
layer n to layer n-1: 

Rn
n-1 = In

n-1(Gn, Tn) 

Rn
n-1 has the same structure as Rn (see Definition 2) with the 

exception of parameter cni – in the case of Rn
n-1, cni can be 

empty: 

Rn
n-1 = {Rn

(n-1)1(s(n-1)1,t(n-1)1,c(n-1)1),…} 

Generally, at least one requirement of Rn
n-1 must be mapped for 

each individual test template of Tn because every path on layer 
n must have at least one projection on layer n-1.  As a 
consequence, Rn

n-1 cannot be an empty set. 

C. Test strategy 

A test strategy (or test philosophy) establishes what should 
be tested and why [2]. Based on the definition of the test 
requirements (see Definition 2), we can determine the two 
main steps of the test strategy: 

Individual components testing: The first subset of test 
templates is the node covering of the system model G (tests 
that confirm that the nodes are there) [23].  

Figure 1.  Graphical representation of the requirements-coverage strategy 

 

This subset is the function of the system specification and it 
is based on the formalism for object representation. 

Distributed aspects testing: As was mentioned before, DSUT 
has a hierarchical (layered) architecture. As a consequence, 
DSUT must satisfy two conditions for each layer n: (1) set of 
requirements for layer n; and (2) set of requirements, defined 
by upper layer projections (if this layer exists). 

As a consequence: 

 The first subset of test templates, denoted by Tn1, is 
the result of applying of the test requirements Rn to the 
system model Gn for each layer n: 

Tn1 = Rn(Gn) 

Criterion 1: At least one test template of Tn1 must exist 
for every individual requirement of Rn. If Tn1 is an 
empty set, it means that the technical specification is 
internally inconsistent with respect to the end-user 
requirements (see Definitions 1 – 3). 

 The second subset of test templates, denoted by Tn2, is 
the result of applying of the interlayer requirements 
Rn+1

n to the system model Gn for each layer n: 

Tn2 = Rn+1
n(Gn) 

Criterion 2: At least one test template of Tn2 must exist 
for every individual requirement of R

n+1
n (see Criterion 

1 and Definition 4). 

Then, the set of test templates Tn for each layer n is a union of 
its subsets: 

Tn = Tn1 ∪ Tn2 

This requirements-coverage test strategy (see Fig. 1) states 
that for each requirement there exists at least one test template 
based on its conditions. If the system meets all these 
conditions, it will ensure that (1) every interaction from the 
functional system architecture layer based on end-user 
requirements is tested (at least once) on all coexisting, i.e. 
functional, system, logical and physical, architectural layers 
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(see Criteria 1 and 2), and, therefore, (2) the technical 
specification is internally consistent with respect to the end-
user requirements (see Definitions 2 and 4). 

D. Complexityof the approach 

The total number of test templates T is based on the two 
main steps of the test strategy:  

 T = Tcomp + Tdist 

where Tcomp is the number of individual components test 
templates; and Tdist is the number of distributed aspect 
(information links) test templates. 

In the case of components test templates the result is a quite 
trivial:  

  

where N is the number of DSUT layers; C is the total number 
of DSUT individual components; and Cn is the number of 
individual components on layer n.  

As was mentioned before, each distributed aspect test 
template defines as a path between a given pair of DSUT 
individual components (see Definition 3). As a consequence, 
the set of test templates for each layer n can be represented as 
an induced subgraph of Gn:   

 G’n  Gn,   sni  V(G’n), tni  V(G’n) 

where sni, tni is a pair i of individual components on layer n, 
which must communicate. 

The maximum possible number of test templates (the 
maximum possible number of subgraph edges) can be achieved 
if the induced subgraph G’n is a complete graph [24]. There are 
two possible options: 

1. Simple communication systems. In this case, there is only 
one possible route between each pair of individual components, 
which must communicate. For such systems:   

  

And:  

  

2. Complex communication systems. For these systems there 
are some independent routes between each pair of individual 
components, which must communicate. In this case:   

  

where rnij is the number of parallel/redundant paths for each 

pair of individual components on layer n, which must 

communicate. In turn: 

  

The next step is based on the following assumptions: 

 The number of DSUT layers is limited by the system 
model (see Definition 1): N = 4. 

 In the real engineering word under financial constraints 
commercial systems are usually based on redundant 
architecture [25]: rnij = 2 (specific areas like the 
military, nuclear or aerospace industries are beyond the 
scope of this work). 

 All individual components on each layer must 
communicate: |G’n| = |Gn| = Cn. 

In the case of simple communication systems:   

  

In turn, in the case of complex communication systems:   

  

As a consequence, the relation between the DSUT size and 
the number of test templates in the case of commercial systems 
can be represented as a quadratic dependence. 

IV. PROLOG-BASED APPROACH 

As a programming language, Prolog is especially well 
suited for problems that involve objects and relations between 
them [26]. It marks Prolog as the most relevant tool in our case 
(see Definitions 1 – 4). Based on these formal notations, we 
can consider three main building blocks: (1) system model; (2) 
test requirements; and (3) test strategy. In the following three 
subsections we deal with a brief overview of these Prolog-
based blocks and their examples. 
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A. System model representation 

The system model itself can be represented as the following 
Prolog facts (every individual element is represented as a single 
fact). 

1. Facts for components representation (multi-layered graph 
nodes): 

object_(layer_(N), component_(Class, Num),  

              type_(Type), parameter_([Param])). 

 
where layer_(N) is a layer identifier (N = 1 – physical 
architectural layer, N = 2 – logical architectural layer, N = 3 – 
system architectural layer, N = 4 – functional architectural 
layer); component_(Class, Num) is a component identifier (the 
nodes of the multi-layered graph); type_(Type) is a component 
descriptions; and [Param] is a list of component technical 
parameters. 

The variable Type can be defined as an empty list (see 
example below) in the case of objects that cannot be associated 
with hardware or software components (virtual objects on layer 
2 and layer 4). The list Param is a configuration of hardware-
based components on layer 1 and hardware requirements for 
software-based components on layers 2 and 3. This information 
must be used for control of appropriate distribution of 
hardware resources (specification control) across the 
distributed system. 

2. Facts for component-to-component connections 
representation (multi-layered graph edges): 

connection_(layer_(N), component_(Class_1, Num_1),  

                      component_(Class_2, Num_2),  
                      parameter_([Param])). 

where component_(Class_1,Num_1) and component_(Class_2, 
Num_2) is a pair of interacting components on layer N (the 
edges of the multi-layered graph); and [Param] is a list of 
technical parameters of component-to-component connections 
(ports, protocols, modes, etc.). 

Generally, the system model is an undirected graph. Thus, 
the facts connection_() must be supplemented by the predicate 
relation_(): 

Figure 2.  Simple example of multy-layered system model – functional 

architecture layer 

 

Figure 3.   Simple example of multy-layered system model – service 

architecture layer 

 

relation_(N, [X1, X2], [Y1, Y2]) :- 

                 connection_(layer_(N), component_(X1, X2),  

                 component_(Y1, Y2), _) 

                 ; 

                 connection_(layer_(N), component_(Y1, Y2), 

                 component_(X1, X2), _). 

 
3. Facts for component-to-component interlayer projections 
representation (multi-layered graph edges): 

map_(layer_(N), component_(Class_1, Num_1),  

           component_(Class_2, Num_2), 
           parameter_([Param])). 

where component_(Class_1,Num_1) and component_(Class_2, 
Num_2) is an interlayer projection from layer N to layer N-1; 
and [Param] is a list of technical parameters of component-to-
component interlayer projection (clustering, virtualization, 
etc.).  

With the exception of the bottom layer 1, every component 
must have at least one top-down projection, BUT it is not 
necessary for every component to have a bottom-up projection 
(for example – system services are always hidden from the 
end-user viewpoint).  

Based on the representation defined above, the simple 
example of multi-layered system model (see Fig. 2 – Fig. 5) 
can be represented as a list of the Prolog predicates (some lines 
are skipped and all lists of technical parameters such as 
hardware configurations, communication protocols, ports, etc. 
are shown empty because of the lack of space): 

object_(layer(4), component_(provider,1), 

              type_([]), parameters_([])). 

object_(layer(4), component_(subscriber,1), 

              type_([]), parameters_([])). 

object_(layer(3), component_(sql_server,1), 

              type_('MySQL Server 5.6'), parameters_([])). 

object_(layer(3), component_(web_server,1), 

              type_('Apache 2'), parameters_([])). 

object_(layer(3), component_(web_client,1), 

              type_('Firefox 29.0.1'), parameters_([])). 



 International Journal of Computer and Information Technology (ISSN: 2279 – 0764) 
Volume 03 – Issue 04, July 2014 

 

www.ijcit.com    702 
 

 

 

object_(layer(3), component_(web_client,2), 

              type_('Firefox 29.0.1'), parameters_([])). 

 

connection_(layer(4), component_(provider,1), 

                     component_(subscriber,1), parameters_([])). 

connection_(layer(3), component_(web_server,1), 

                     component_(sql_server,1), parameters_([])). 

connection_(layer(3),component_(web_server,1),  

                     component_(web_client,1), parameters_([])). 

connection_(layer(3),component_(web_server,1),  

                     component_(web_client,2), parameters_([])). 

 

map_(layer(4),component_(provider,1), 

           component_(sql_server,1), parameters_([])). 

map_(layer(4),component_(subscriber,1), 

           component_(web_client,1), parameters_([])). 

map_(layer(4),component_(subscriber,1), 

           component_(web_client,2), parameters_([])). 
 

An important note: on layer 3 (system architectural layer) 
we have to separate application and system services on 
independent subsystems not directly (via facts connection_()) 
related to each other. The maxim is always “do not add more 
detail than is necessary”. It is essential to avoid “phantom” 
paths in the system model which can be created based on 
formal representation only. For example, two facts: 

connection_(layer(3), component_(web_server,1), 

                      component_(ss,1), parameters_([])). 

connection_(layer(3), component_(web_client,1), 

                      component_(ss,3), parameters_([])). 
 

can cause a “phantom” path [web_server, 1] ↔ [ss, 1] ↔ 

[dns_server, 1] ↔ [ss, 3] ↔ [web_client, 1]. In this case, 

relations between components can be set via common 

interlayer projections, e.g. the relation between 

component_(web_server, 1) and component_(ss, 1) is defined 

by the pair of projections to common component_(vserver, 1): 

 

Figure 4.  Simple example of multy-layered system model – logical 

architecture layer 

 

Figure 5.   Simple example of multy-layered system model – physical 

architecture layer 

 

map_(layer(3), component_(web_server,1), 

           component_(vserver,1), parameters_([])). 

map_(layer(3), component_(ss,1), 

           component_(vserver,1),parameters_([])). 
 

Generally, the input data for the model construction, i.e. the 
list of components, the variables Type and the lists Param, 
must be derived from the technical specifications and 
subsequently formalized into the set of logical formal 
operations. We need to state here – the automated 
transformation techniques (transformation technical 
specifications and end-user requirements to the logical facts) 
are beyond the scope of this paper. This problem requires a 
separate discussion: in the case of complex or non-standard 
systems, it may not be a routine exercise in practice. 

B. Test reqiurements 

In our case, the test requirements can be interpreted as input 
entities of the form of operators for system analysis processes 
(see Fig. 1). The distributed aspects of requirements can be 
represented as Prolog fact: 

requirement_(layer_(N), component_(Class_1, Num_1), 

                        component_(Class_2, Num_2),  

                        parameter_([Param])). 
 

where component_(Class_1, Num_1) and 
component_(Class_2, Num_2) is a pair of interacting 
components on layer N (the potential paths of the multi-layered 
graph); and [Param] is a list of technical parameters of 
component-to-component connections (ports, protocols, 
modes, etc.). 

Num_1 and Num_2 can be anonymous variables. The 
anonymous variable Num_1 for the term component_(Class_1, 
Num_1) defines all existing components Class_1 of the system 
model (the conjunction of components Class_1). In turn, the 
anonymous variable Num_2 for the term component_(Class_2, 
Num_2) defines at least one component Class_2 of the system 
model (the disjunction of components Class_2). 
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In contrast to the facts for component-to-component 
connections representation, the facts for requirements 
representation define paths (not edges) but have the same 
structure. For a simple example of multi-layered system model 
(see Fig. 2 – Fig. 5), the system requirements are represented 
as: 

requirement_(layer(4), component_(subscriber,_), 

                    component_(provider,_), parameters_([])). 

requirement_(layer(3),component_(ss,_), 

                    component_(dns_server,_), parameters_([])). 

requirement_(layer(2),_,_,_). 

requirement_(layer(1),_,_,_). 
 

In this example, the anonymous variable for the term 
component_(ss, _) defines all seven components ss (system 
services/processes) of the system model (see Fig. 3): 
component_(ss, _) => component_(ss, 1) ˄ component_(ss, 2) 
˄ … ˄ component_(ss, 7). And the anonymous variable for the 
term component_(dns_server, _) defines at least one of the two 
components dns_server: component_(dns_server, _) => 
component_(dns_server, 1) ˅ component_(dns_server, 2). 

This form of representation makes the system model useful 
for error and attack tolerance modeling [27]. 

C. Test strategy 

The first step of the test strategy can be achieved by a 
Prolog predicate such as the following: 

first_step_(N, Type_of_Component) :- 

     findall(X, object_(layer(N), _, type(X), _), List), 

     sort(List, Type_of_Component). 
 

A result of this Prolog query is lists of software-based and 
hardware-based components: 

['Mozilla Firefox 29.0', 'MySQL Server 5.6'…] 
['Cisco Catalyst 3750G-24T', 'HP ProBook 450'…] 

As it was sad before, the tests of individual components 
themselves are usually prepared by vendors and/or independent 
laboratories and, as a consequence, they are beyond the scope 
of this work. But this step makes sure that work has been done 
properly and all components have statutory certificates for 
inclusion in the project documentation.  

It is not necessary for this example, but generally this step 
of the test strategy can also be used for control of well-posed 
distribution of hardware resources (specification control) 
across a complex distributed system. 

The second step of the test strategy is based on two main 
processes of mapping/projection: 

1. The mapping of test requirements and interlayer projections 
to the system model on layer N, i.e. horizontal projections (see 
Fig. 1). The core of this process is the algorithm of finding 
acyclic paths in graphs [26]: 

 

path_checking(N, [A1, A2], [[A1, A2] | Path_1],  

                          [[A1, A2] | Path_1]). 

 

path_checking(N, [A1, A2], [[Y1, Y2] | Path_1], Path) :- 

     relation_(N, [X1, X2], [Y1, Y2]), 

     \+ member([X1, X2], Path_1), 

     path_checking(N, [A1, A2], [[X1, X2], [Y1, Y2] |   

                               Path_1], Path). 
 

2. The mapping of paths from layer N to layer N-1, i.e. vertical 
or interlayer top-down projections (see Fig. 1), can be divided 
into three sub steps: 

2.1. Mapping the start node of the path: 

path_mapping_1(_, [], []). 

 

path_mapping_1(N, [[[A1, A2], [Z1, Z2]] |   

                              Active_Objects_List], List3) :- 

     findall([A11, A12], map_(layer(N), component_(A1, 

                 A2), component_(A11, A12), _),  

                 Components_List1), 

     path_mapping_2(X, Z1, Z2, Components_List1,  

                                   List2), 

     append(List2, List1, List3), 

     path_mapping_1(N, Active_Objects_List, List1). 
 

2.2. Mapping the end node of the path: 

path_mapping_2(_, _, _, [], []). 

 

path_mapping_2 (N, Z1, Z2, [Component1 |  

                               Components_List1], List3) :- 

     findall([Z11, Z12], map_(layer(N), component_(Z1,  

                 Z2), component_(Z11, Z12), _),  

                 Components_List2),  

     pair_gen(Component1, Components_List2 , List2), 

     append(List2, List1, List3), 

     path_mapping_2(N, Z1, Z2, Components_List1,  

                                  List1). 
 

2.3. Generation pairs of components (determination the 
potential paths) for layer N-1: 

pair_gen(_, [], []). 

 

pair_gen(Component1, [Component2 |    

                 Components_List2], [[Component1,   

                 Component2] | List2]) :- 

pair_gen(Component1, Components_List2, List2). 

 
The requirements-coverage strategy application to the 

simple example of multi-layered system model shows a 
surprisingly large number of tests required to fully cover even 
this very simple model – see Tab. 1. 
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TABLE I.  APPLICATION OF THE REQUIREMENTS-COVERAGE STRATEGY 

Model 

layers 

Test templates 

Individual 

components 
Distributed aspect 

Tcomp Tdist Symbolic description 

Functional 2 1 [subscriber, 1] ↔ [provider, 1]  

System 14 
3 

[web_client,_] ↔ [web_server,1] ↔ 

[sql_server,1] 

12 [ss,_] ↔ [dns_server,_] 

Logical 6 
6 [vws,_] ↔ [vlan,0] ↔ [vserver,_] 

1 [vserver,1] ↔ [vlan,0] ↔ [vserver,2] 

Physical 7 6 
all component-to-component 

connections 

 

V. NEXT STEPS 

The complex testing of distributed systems (as every testing 
activity) is based on two basic notations [2]: 

 test philosophy (or test strategy) that establishes 
“what” should be tested; 

 test methodology that establishes “how” it should be 
done. 

In this work we have determined the test templates 
generation strategy. On the other hand, The Integrated Test 
Methodology for Distributed Systems [28] includes the 
following general procedures: (1) conformance testing; (2) 
interoperability testing; (3) functional testing; and (4) 
performance testing (in spite of the year of publication, this 
methodology is not contrary to the most recent work, include 
testing of cloud computing [29]).  

The conjunction of the requirements-coverage strategy (the 
test philosophy) and the test methodology procedures can be 
represented as a testing grid – see Fig. 6. Intersection points of 
this grid determine test cases which cover the most important 
goals of distributed systems [1]: (1) openness; (2) accessibility; 
and (3) transparency (scalability of distributed systems is 
beyond the scope of this work). In turn, these goals are 
supported by their performance characteristics. 

The final step must be the processing of results (according 
to the requirements of Standard IEEE Std 829TM-2008 
(Revision of IEEE Std 829-1998) [30]) for inclusion in the 
project documentation. 

VI. CONCLUSION 

Deployment of distributed systems sets high requirements 
for procedures, tools and approaches for complex testing of 
these systems. In this work we determined the formal model 
for test generation mission on the basis of the component based 
approach and the concept of layered networks. The model is 
the four-layered 3D graph, derived from the system technical 
specifications, which covers all layers of OSI Reference Model 
and, as a consequence, both software-based and network-based 
aspects of distributed systems.  

Figure 6.  Testing grid 

Based on this model, we described the test templates 
generation strategy, which covers: (1) individual components; 
(2) every interaction from the end-user requirements on 
functional, system, logical and physical architectural layers;  
and, as a complement, checks the internal consistency of the 
system technical specifications with respect to the end-user 
requirements. 

Next, we introduced a Prolog-based approach to 
representing the formal multi-layer model and the 
requirements-coverage strategy.  

The most important conditions that should be fulfilled to 
make building a distributed system worth the effort [1]: (1) 
openness; (2) accessibility; and (3) transparency. The 
requirements-coverage strategy completely covers the first two 
goals and partially the third one with the exception of the 
failure transparency in the case of imperfect sensing and 
switching components [31]. As a consequence, future work 
will focus on design of a test philosophy for determination of 
the necessary set of test cases for reliability testing of complex 
distributed systems (it would be better to talk of a necessary 
and sufficient set, but unfortunately in our case a sufficient 
condition is theoretically unreachable [32]). 
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