
 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 04, July 2014

www.ijcit.com 696

A Formal Approach to Distributed System Tests

Design

Andrey A. Shchurov

Department of Cybernetics

Czech Technical University in Prague

Prague, the Czech Republic

E-mail: shchuand {at} fel.cvut.cz

Radek Mařík

Department of Telecommunications Engineering

Czech Technical University in Prague

Prague, the Czech Republic

Abstract—Deployment of distributed systems sets high

requirements for procedures and tools for the complex testing of

these systems. This work introduces a formal four-layered model

for test generation mission on the basis of the component-based

approach and the concept of layered networks. Based on this

model, we describe the test generation strategy that covers every

interaction from the end-user requirements on all coexisting

architectural layers, and checks the internal consistency of the

system technical specifications with respect to the end-user

requirements. The next step introduces the Prolog-based

approach to representing this model and the requirements-
coverage strategy

Keywords-distributed systems; test generation; formal

approaches; model-based testing

I. INTRODUCTION

You know you have a distributed system when the crash of
a computer you’ve never heard of stops you from getting any
work done.

- Leslie Lamport

This maxim accurately reflects the nature of distributed
systems. For the engineering world a more formal definition
was given by Andrew S. Tanenbaum and Maarten van Steen as
a collection of independent computers that appears to its users
as a single coherent system [1]. But in practice, this definition
can denote:

 a collection of components/products (hardware and
software) – the viewpoint of the vendor community;

 a collection of the above plus external communication
infrastructure – the viewpoint of the network engineer
community;

 a collection of services/applications – the viewpoint of
the software/system engineer community;

 all of the above plus end-users/customers – the
viewpoint of the business community.

When talking about the testing of distributed systems, the
confusion between these definitions is a fertile source of
vulnerabilities. Broadly speaking, vendors focus on individual
component testing problems only – but in general testing or

qualification of the elements of the system does not cover the
system testing itself. In turn, network engineers usually focus
on network subsystem testing. In this case, ignoring
services/applications testing is one of the most common causes
of system problems [2]:

 If the network subsystem is not solid,
services/applications cannot be responsive and reliable
by definition.

 If the network subsystem is solid, but the
services/applications do not provide required
performance or functionality, end-users could perceive
the network subsystem as unavailable or unreliable.

On the other hand, distributed systems differ from
traditional software because components are dispersed across a
network. Very often software/system engineers do not take this
dispersion into account that leads to the following false
assumptions about the network subsystem: (1) networks are
always reliable; (2) latency is zero; (3) bandwidth is infinite;
etc. [1]. As a consequence, only the business (or integration)
viewpoint brings all of the detailed elements of the distributed
systems together through a process of testing (or qualification)
to achieve a valid system for meeting the ultimate needs of the
end-users [3].

In addition, virtualization and cloud technologies set
another level of system complexity. In this case, there is a
“classical” physical (external) system as a host system and
some (at least one) virtual (internal) systems. It is a real
challenge for testing activities and/or testing applications. Even
if we could test a host system and every virtual system
independently, the amount of work would increase several
times.

Our main goal is the automated design and generation of
testing procedures/specifications and plans for distributed
systems based on end-user requirements and technical
specifications as a necessary part of project documentation.
Working engineers treat formal methods as they are widely
taught in universities and not used anywhere in the real world.
But in the case of complex or non-standard systems, personal
experience and/or intuition are often inadequate. Thus, to
accomplish such a goal we need to identify a top level test
philosophy (or test strategy) based on a formal model with the

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 04, July 2014

www.ijcit.com 697

following criteria: (1) it must be appropriate for the viewpoint
of the business community; (2) it should be based on standards
(as a formal document); (3) it has to cover all aspects of
distributed systems; and (4) it has to be simple enough for
practical application.

In this paper we come after the basic steps of the following
general methodology of system/software test templates design.
At first, we specify entities and their relations of the distributed
system under test (DSUT). Both the entities and the tuples of
relations are assigned unique abstract identifiers. Their
attributes are determined by a set of facts about the abstract
identifier expressed as atomic propositions. Type information
on a given entity is also covered by these atomic propositions.
Thus, the system under test is modeled as a weighted graph
structure. Secondly, we need to specify test requirements. The
test requirements can be considered as mappings between an
input domain and an output space of test templates. The input
domains consist of subsets of entities and their relations. A test
template of the output space might be itself a complex structure
that specifies all necessary conditions of the given test
template. For example, in our case, test templates are often
paths between given nodes of the graph model of the
distributed system. Although a test template has its internal
structure it can be treated as a single point in a
multidimensional space of all test templates. Finally, the test
template space is constructed through an application of test
requirement mappings onto the input specification graph
model. In this paper we deal exclusively with such a test
templates space creation. Its optimization and convertion into
test procedures and their integration into a test suite is beyond
the scope of this paper.

The rest of this paper is structured as follows. Section 2
introduces the related work. Section 3 presents the formal
multilayer model of distributed systems for test generation
mission and the test templates generation strategy. Section 4
focuses on the Prolog-based approach to representing the
model and the strategy. Section 5 discusses which features of
distributed systems can be covered. Finally, conclusion
remarks and future research directions are given in Section 6.

II. RELATED WORK

The automated generation of test templates is the most
important role for formal verification in testing. It involves
analyzing system models, with the analysis covering paths in a
model. In this context, this work lies in the area of model-based
testing (MBT), but it differs from existing approaches in the
way of deriving models. MTB research in the domain of
distributed systems can be roughly classified into three
categories [4], [5], [6]:

1. MTB general approaches. El-Far and Whittaker [7] give a
general introduction to principle, process, and techniques of
model-based testing. In turn, Stocks and Carrington [8] suggest
that test templates can be defined as the base for test case
generation and a large test template is divided into smaller
templates for generating more detailed test cases.

2. MBT based on graphical models. Offutt and Abdurazik [9]
describe an approach to generating test cases from UML
Statecharts for components testing. And Hartmann et al [10]
extend the approach for integration testing and for test
automation.

3. MBT based on formal specifications. Bernot et al [11] set up
a theoretical basis for specification-based testing, explaining
how a formal specification can serve as a base for test case
generation. Dick and Faivre [12] propose to transform formal
specifications into a disjunctive normal form (DNF) and then
use it as the basis for test case generation. Donat [13]
represents a technique for automatically transformation formal
specifications into test templates and taxonomy for coverage
schemes. Hong et al [14] show how coverage criteria based on
control-flow or data-flow properties can be specified as sets of
temporal logic formulas, including state and transition
coverage as well as criteria based on definition-use pairs.

The most recent systematic method is presented by Liu and
Shen [15]. This method can be used for (1) identifying all
interface scenarios, formalizing requirements into formal
operation specifications whose interfaces are consistent with
the corresponding ones of the program; and (2) for testing
programs based upon the formal specifications (scenario-
coverage strategy).

But in spite of tremendous efforts of many researchers,
MBT is still difficult to be used for large scale systems due to
its complexity and the potential inconsistencies in both
component and system architectures. Furthermore, it still
considers hardware-based and software-based systems
independently and, as a consequence, the layered structure of
modern communication protocols (such as OSI layered
architecture [16]) is completely ignored.

III. FORMAL MODEL OF DISTRIBUTED SYSTEMS

A. Basic approach

The essential idea of our approach is based on two basic
notions:

 component-based approach with its two important
consequences: (1) components are built to be reused in
different systems, and (2) component development
process is separated from the system development
process [17], [18];

 concept of layered complex networks [19].

The component-based approach refers to the fact that the
functional usefulness of distributed systems do not depend on
any particular part of these systems, but emerges from the way
in which their components interact. Thus, the standard ISO/OSI
Reference Model (RM) [16] can be used as a starting point. But
it cannot cover the all required aspects by oneself (practically it
is necessary to use several models in order to cover many
different aspects). Necessary complements to RM provide the
set of architectural models [20] as the most intuitive solution.
In turn, the concept of layered complex networks secures the
consistency between different models. And finally the graph

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 04, July 2014

www.ijcit.com 698

theory (as a standard-de-facto) provides the necessary tools for
models representations.

For our purposes the system model can be stated as a four-
layered graph as follows:

 The ready-for-use system architecture layer defines
functional components and their interconnections. This
layer is based on functional models [20] (the enlarged
viewpoint of end-users/customers) and covers the
application (L7) layer of RM.

 The service architecture layer defines software-based
components (services/applications) and their
interconnections. It is founded on flow-based models
[20] (representation of centralized or client-server,
decentralized or peer-to-peer, and hybrid architectures)
and covers the transport (L4), session (L5),
presentation (L6) and partially application (L7) layers
– we cannot divide these layers in the case of
commercial off-the-shelf (COTS) software.

 The logical architecture layer defines logical (virtual)
components and their interconnections. It is based on
topological models [20] and covers the network (L3)
layer.

 The physical architecture layer defines hardware
(physical) components and their interconnections. Like
its predecessor, this layer is founded on topological
models but covers the physical (L1) and data link (L2)
layers – we cannot divide these layers in the case of
COTS telecommunication/network equipment.

 The interlayer projections define all types of
components hierarchical (interlayer)
relations/mapping. These relations make the layered
model consistent and convenient for our goals.

 In the real world neither owner nor developer can be able
to test its distributed system completely (entire systems and
every component in it) due to the lack of resources. Thus, what
it should be done is development of a test philosophy (or test
strategy) that covers critical aspects of distributed systems.

B. Formal notations

Formal verification offers a rich toolbox of mathematical
techniques that can support the model-based testing of
computer systems. This toolbox contains logic programming as
one of the most relevant technique of model checking [5]. In
turn, logic programming deals with logical facts and, as a
consequence, the first step is to determine the formal notations
which make the layered model applicable for logic
programming.

Definition 1 (the system model): Let the graph G denote
DSUT:

G = (V, E, M)

where G is multi-layered 3D graph, derived from the DSUT
specification; V(G) is a finite, non-empty set of components of
DSUT; E(G) is a finite, non-empty set of component-to-

component connections; and m(G) is a finite, non-empty set of
component-to-component interlayer mapping (or projections).
Then, the system model Gn for each layer n can be represented
as a subgraph of G:

Gn = (Vn, En, M
n
n-1, Vn-1)

where Vn(Gn) is a finite, non-empty set of components of DSUT
on layer n; En(Gn) is a finite, non-empty set of component-to-
component connections on layer n; Mn

n-1(Gn) is a finite set of
component-to-component projection from layer n to layer n-1;
and Vn-1(Gn) is a finite set of components of DSUT on layer n-1.

Generally, Gn is intransitive by default with the exception of
the physical architecture layer. In turn, Mn

n-1(Gn) and Vn-1(Gn)
must be non-empty sets with the same exception – in this case,
the definition of projection has no physical meaning.

The systems decomposition into objects which interact is a
common baseline for all technologies for the design and
implementation of distributed systems [21]. These two aspects
(components and information links) of knowledge are usually
included in formal specifications [22]. As a consequence, the
test requirements for every layer can be derived from
formal/technical specifications and can be formalized into a set
of formal operations. We need to state here that the tests of
individual components are usually prepared by vendors (see the
viewpoint of the vendors’ community). In the real world we
have to rely on:

 vendors and/or independent laboratories information
about products;

 vendors conclusions of products compliance with end-
user requirements;

 vendors documentation (includes test descriptions).

Definition 2 (the test requirements): Let the set R denote the
requirements for DSUT specified by the end-users. For
simplicity, R can be represented as:

R = Rcomp ∪ Rdist,

where Rcomp is a finite set of individual components
requirements; and Rdist is a finite set of distributed aspects
(component-to-component communication) requirements. In
this case, the distributed aspect requirements Rn for each layer
n can be represented as a set of operators Rni (i = 1 … r) that
are applied to the system model Gn and produce test templates
Tn as its output, often as paths between given pairs of vertices:

Rn = {Rn1(sn1, tn1, cn1),…, Rnr(snr, tnr, cnr)}

where sni, tni is a pair i of individual components on layer n,
which must communicate; and cni are technical characteristics
of component-to-component communication processes
(information links specifications).

Generally, Rn can be an empty set with the exception of the
end-user (top-level) requirements (in this case, the definition of
distributed systems makes no sense at all).

At this place to avoid confusions, we should stressed that
the term of “test requirement” denotes in classical software

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 04, July 2014

www.ijcit.com 699

testing publications both a process of searching for what should
be tested and entities that are produced by such a process, e.g.
in [23]. As the process is accomplished by human testers, using
the same term for both items does not cause any harm.
However, in this paper we deal with an automation of such
process and we need to reference such items without any
ambiguity. Therefore, we use the term “test requirement” to
denote the process of searching, and “test template” to denote
entities that are results of such a process. We do not use the
term “test case” as we often receive a set of test templates that
are only the bases for test cases design.

As a next step, before describing the test strategy, we need
to clarify the formal concept of test templates.

Definition 3 (the test templates): Let the set Tn denote the test
templates for each layer n as a set of pairs:

Tn = {(Pn1(sn1, tn1), cn1),…, (Pnr(snr, tnr), cnr)}

where Pni(sni, tni) is a path (or data flow) between sni and tni in
Gn; and cni are technical characteristics of component-to-
component communication processes.

The set of test templates Tn cannot be an empty set.

In contrast to the multilayer model of complex systems
[19], the sets of nodes of the system model (see Definition 1)
on each layer are not identical. And the key factor is the arity
of the component-to-component projection from layer n to
layer n-1 (the top-down point of view). This parameter allows
representing technological solutions used to build the system:

 1n : Nn-1, e.g. clustering/stacking technology;

 Nn : 1n-1, e.g. virtualization/replication technology;

 1n : 1n-1, e.g. a special case of dedicated components.

Definition 4 (the interlayer projection): Let the set of
operators In

n-1 be the mapping of the test templates Tn from
layer n to layer n-1:

Rn
n-1 = In

n-1(Gn, Tn)

Rn
n-1 has the same structure as Rn (see Definition 2) with the

exception of parameter cni – in the case of Rn
n-1, cni can be

empty:

Rn
n-1 = {Rn

(n-1)1(s(n-1)1,t(n-1)1,c(n-1)1),…}

Generally, at least one requirement of Rn
n-1 must be mapped for

each individual test template of Tn because every path on layer
n must have at least one projection on layer n-1. As a
consequence, Rn

n-1 cannot be an empty set.

C. Test strategy

A test strategy (or test philosophy) establishes what should
be tested and why [2]. Based on the definition of the test
requirements (see Definition 2), we can determine the two
main steps of the test strategy:

Individual components testing: The first subset of test
templates is the node covering of the system model G (tests
that confirm that the nodes are there) [23].

Figure 1. Graphical representation of the requirements-coverage strategy

This subset is the function of the system specification and it
is based on the formalism for object representation.

Distributed aspects testing: As was mentioned before, DSUT
has a hierarchical (layered) architecture. As a consequence,
DSUT must satisfy two conditions for each layer n: (1) set of
requirements for layer n; and (2) set of requirements, defined
by upper layer projections (if this layer exists).

As a consequence:

 The first subset of test templates, denoted by Tn1, is
the result of applying of the test requirements Rn to the
system model Gn for each layer n:

Tn1 = Rn(Gn)

Criterion 1: At least one test template of Tn1 must exist
for every individual requirement of Rn. If Tn1 is an
empty set, it means that the technical specification is
internally inconsistent with respect to the end-user
requirements (see Definitions 1 – 3).

 The second subset of test templates, denoted by Tn2, is
the result of applying of the interlayer requirements
Rn+1

n to the system model Gn for each layer n:

Tn2 = Rn+1
n(Gn)

Criterion 2: At least one test template of Tn2 must exist
for every individual requirement of R

n+1
n (see Criterion

1 and Definition 4).

Then, the set of test templates Tn for each layer n is a union of
its subsets:

Tn = Tn1 ∪ Tn2

This requirements-coverage test strategy (see Fig. 1) states
that for each requirement there exists at least one test template
based on its conditions. If the system meets all these
conditions, it will ensure that (1) every interaction from the
functional system architecture layer based on end-user
requirements is tested (at least once) on all coexisting, i.e.
functional, system, logical and physical, architectural layers

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 04, July 2014

www.ijcit.com 700

(see Criteria 1 and 2), and, therefore, (2) the technical
specification is internally consistent with respect to the end-
user requirements (see Definitions 2 and 4).

D. Complexityof the approach

The total number of test templates T is based on the two
main steps of the test strategy:

 T = Tcomp + Tdist

where Tcomp is the number of individual components test
templates; and Tdist is the number of distributed aspect
(information links) test templates.

In the case of components test templates the result is a quite
trivial:

where N is the number of DSUT layers; C is the total number
of DSUT individual components; and Cn is the number of
individual components on layer n.

As was mentioned before, each distributed aspect test
template defines as a path between a given pair of DSUT
individual components (see Definition 3). As a consequence,
the set of test templates for each layer n can be represented as
an induced subgraph of Gn:

 G’n Gn, sni V(G’n), tni V(G’n)

where sni, tni is a pair i of individual components on layer n,
which must communicate.

The maximum possible number of test templates (the
maximum possible number of subgraph edges) can be achieved
if the induced subgraph G’n is a complete graph [24]. There are
two possible options:

1. Simple communication systems. In this case, there is only
one possible route between each pair of individual components,
which must communicate. For such systems:

And:

2. Complex communication systems. For these systems there
are some independent routes between each pair of individual
components, which must communicate. In this case:

where rnij is the number of parallel/redundant paths for each

pair of individual components on layer n, which must

communicate. In turn:

The next step is based on the following assumptions:

 The number of DSUT layers is limited by the system
model (see Definition 1): N = 4.

 In the real engineering word under financial constraints
commercial systems are usually based on redundant
architecture [25]: rnij = 2 (specific areas like the
military, nuclear or aerospace industries are beyond the
scope of this work).

 All individual components on each layer must
communicate: |G’n| = |Gn| = Cn.

In the case of simple communication systems:

In turn, in the case of complex communication systems:

As a consequence, the relation between the DSUT size and
the number of test templates in the case of commercial systems
can be represented as a quadratic dependence.

IV. PROLOG-BASED APPROACH

As a programming language, Prolog is especially well
suited for problems that involve objects and relations between
them [26]. It marks Prolog as the most relevant tool in our case
(see Definitions 1 – 4). Based on these formal notations, we
can consider three main building blocks: (1) system model; (2)
test requirements; and (3) test strategy. In the following three
subsections we deal with a brief overview of these Prolog-
based blocks and their examples.

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 04, July 2014

www.ijcit.com 701

A. System model representation

The system model itself can be represented as the following
Prolog facts (every individual element is represented as a single
fact).

1. Facts for components representation (multi-layered graph
nodes):

object_(layer_(N), component_(Class, Num),

 type_(Type), parameter_([Param])).

where layer_(N) is a layer identifier (N = 1 – physical
architectural layer, N = 2 – logical architectural layer, N = 3 –
system architectural layer, N = 4 – functional architectural
layer); component_(Class, Num) is a component identifier (the
nodes of the multi-layered graph); type_(Type) is a component
descriptions; and [Param] is a list of component technical
parameters.

The variable Type can be defined as an empty list (see
example below) in the case of objects that cannot be associated
with hardware or software components (virtual objects on layer
2 and layer 4). The list Param is a configuration of hardware-
based components on layer 1 and hardware requirements for
software-based components on layers 2 and 3. This information
must be used for control of appropriate distribution of
hardware resources (specification control) across the
distributed system.

2. Facts for component-to-component connections
representation (multi-layered graph edges):

connection_(layer_(N), component_(Class_1, Num_1),

 component_(Class_2, Num_2),
 parameter_([Param])).

where component_(Class_1,Num_1) and component_(Class_2,
Num_2) is a pair of interacting components on layer N (the
edges of the multi-layered graph); and [Param] is a list of
technical parameters of component-to-component connections
(ports, protocols, modes, etc.).

Generally, the system model is an undirected graph. Thus,
the facts connection_() must be supplemented by the predicate
relation_():

Figure 2. Simple example of multy-layered system model – functional

architecture layer

Figure 3. Simple example of multy-layered system model – service

architecture layer

relation_(N, [X1, X2], [Y1, Y2]) :-

 connection_(layer_(N), component_(X1, X2),

 component_(Y1, Y2), _)

 ;

 connection_(layer_(N), component_(Y1, Y2),

 component_(X1, X2), _).

3. Facts for component-to-component interlayer projections
representation (multi-layered graph edges):

map_(layer_(N), component_(Class_1, Num_1),

 component_(Class_2, Num_2),
 parameter_([Param])).

where component_(Class_1,Num_1) and component_(Class_2,
Num_2) is an interlayer projection from layer N to layer N-1;
and [Param] is a list of technical parameters of component-to-
component interlayer projection (clustering, virtualization,
etc.).

With the exception of the bottom layer 1, every component
must have at least one top-down projection, BUT it is not
necessary for every component to have a bottom-up projection
(for example – system services are always hidden from the
end-user viewpoint).

Based on the representation defined above, the simple
example of multi-layered system model (see Fig. 2 – Fig. 5)
can be represented as a list of the Prolog predicates (some lines
are skipped and all lists of technical parameters such as
hardware configurations, communication protocols, ports, etc.
are shown empty because of the lack of space):

object_(layer(4), component_(provider,1),

 type_([]), parameters_([])).

object_(layer(4), component_(subscriber,1),

 type_([]), parameters_([])).

object_(layer(3), component_(sql_server,1),

 type_('MySQL Server 5.6'), parameters_([])).

object_(layer(3), component_(web_server,1),

 type_('Apache 2'), parameters_([])).

object_(layer(3), component_(web_client,1),

 type_('Firefox 29.0.1'), parameters_([])).

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 04, July 2014

www.ijcit.com 702

object_(layer(3), component_(web_client,2),

 type_('Firefox 29.0.1'), parameters_([])).

connection_(layer(4), component_(provider,1),

 component_(subscriber,1), parameters_([])).

connection_(layer(3), component_(web_server,1),

 component_(sql_server,1), parameters_([])).

connection_(layer(3),component_(web_server,1),

 component_(web_client,1), parameters_([])).

connection_(layer(3),component_(web_server,1),

 component_(web_client,2), parameters_([])).

map_(layer(4),component_(provider,1),

 component_(sql_server,1), parameters_([])).

map_(layer(4),component_(subscriber,1),

 component_(web_client,1), parameters_([])).

map_(layer(4),component_(subscriber,1),

 component_(web_client,2), parameters_([])).

An important note: on layer 3 (system architectural layer)
we have to separate application and system services on
independent subsystems not directly (via facts connection_())
related to each other. The maxim is always “do not add more
detail than is necessary”. It is essential to avoid “phantom”
paths in the system model which can be created based on
formal representation only. For example, two facts:

connection_(layer(3), component_(web_server,1),

 component_(ss,1), parameters_([])).

connection_(layer(3), component_(web_client,1),

 component_(ss,3), parameters_([])).

can cause a “phantom” path [web_server, 1] ↔ [ss, 1] ↔

[dns_server, 1] ↔ [ss, 3] ↔ [web_client, 1]. In this case,

relations between components can be set via common

interlayer projections, e.g. the relation between

component_(web_server, 1) and component_(ss, 1) is defined

by the pair of projections to common component_(vserver, 1):

Figure 4. Simple example of multy-layered system model – logical

architecture layer

Figure 5. Simple example of multy-layered system model – physical

architecture layer

map_(layer(3), component_(web_server,1),

 component_(vserver,1), parameters_([])).

map_(layer(3), component_(ss,1),

 component_(vserver,1),parameters_([])).

Generally, the input data for the model construction, i.e. the
list of components, the variables Type and the lists Param,
must be derived from the technical specifications and
subsequently formalized into the set of logical formal
operations. We need to state here – the automated
transformation techniques (transformation technical
specifications and end-user requirements to the logical facts)
are beyond the scope of this paper. This problem requires a
separate discussion: in the case of complex or non-standard
systems, it may not be a routine exercise in practice.

B. Test reqiurements

In our case, the test requirements can be interpreted as input
entities of the form of operators for system analysis processes
(see Fig. 1). The distributed aspects of requirements can be
represented as Prolog fact:

requirement_(layer_(N), component_(Class_1, Num_1),

 component_(Class_2, Num_2),

 parameter_([Param])).

where component_(Class_1, Num_1) and
component_(Class_2, Num_2) is a pair of interacting
components on layer N (the potential paths of the multi-layered
graph); and [Param] is a list of technical parameters of
component-to-component connections (ports, protocols,
modes, etc.).

Num_1 and Num_2 can be anonymous variables. The
anonymous variable Num_1 for the term component_(Class_1,
Num_1) defines all existing components Class_1 of the system
model (the conjunction of components Class_1). In turn, the
anonymous variable Num_2 for the term component_(Class_2,
Num_2) defines at least one component Class_2 of the system
model (the disjunction of components Class_2).

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 04, July 2014

www.ijcit.com 703

In contrast to the facts for component-to-component
connections representation, the facts for requirements
representation define paths (not edges) but have the same
structure. For a simple example of multi-layered system model
(see Fig. 2 – Fig. 5), the system requirements are represented
as:

requirement_(layer(4), component_(subscriber,_),

 component_(provider,_), parameters_([])).

requirement_(layer(3),component_(ss,_),

 component_(dns_server,_), parameters_([])).

requirement_(layer(2),_,_,_).

requirement_(layer(1),_,_,_).

In this example, the anonymous variable for the term
component_(ss, _) defines all seven components ss (system
services/processes) of the system model (see Fig. 3):
component_(ss, _) => component_(ss, 1) ˄ component_(ss, 2)
˄ … ˄ component_(ss, 7). And the anonymous variable for the
term component_(dns_server, _) defines at least one of the two
components dns_server: component_(dns_server, _) =>
component_(dns_server, 1) ˅ component_(dns_server, 2).

This form of representation makes the system model useful
for error and attack tolerance modeling [27].

C. Test strategy

The first step of the test strategy can be achieved by a
Prolog predicate such as the following:

first_step_(N, Type_of_Component) :-

 findall(X, object_(layer(N), _, type(X), _), List),

 sort(List, Type_of_Component).

A result of this Prolog query is lists of software-based and
hardware-based components:

['Mozilla Firefox 29.0', 'MySQL Server 5.6'…]
['Cisco Catalyst 3750G-24T', 'HP ProBook 450'…]

As it was sad before, the tests of individual components
themselves are usually prepared by vendors and/or independent
laboratories and, as a consequence, they are beyond the scope
of this work. But this step makes sure that work has been done
properly and all components have statutory certificates for
inclusion in the project documentation.

It is not necessary for this example, but generally this step
of the test strategy can also be used for control of well-posed
distribution of hardware resources (specification control)
across a complex distributed system.

The second step of the test strategy is based on two main
processes of mapping/projection:

1. The mapping of test requirements and interlayer projections
to the system model on layer N, i.e. horizontal projections (see
Fig. 1). The core of this process is the algorithm of finding
acyclic paths in graphs [26]:

path_checking(N, [A1, A2], [[A1, A2] | Path_1],

 [[A1, A2] | Path_1]).

path_checking(N, [A1, A2], [[Y1, Y2] | Path_1], Path) :-

 relation_(N, [X1, X2], [Y1, Y2]),

 \+ member([X1, X2], Path_1),

 path_checking(N, [A1, A2], [[X1, X2], [Y1, Y2] |

 Path_1], Path).

2. The mapping of paths from layer N to layer N-1, i.e. vertical
or interlayer top-down projections (see Fig. 1), can be divided
into three sub steps:

2.1. Mapping the start node of the path:

path_mapping_1(_, [], []).

path_mapping_1(N, [[[A1, A2], [Z1, Z2]] |

 Active_Objects_List], List3) :-

 findall([A11, A12], map_(layer(N), component_(A1,

 A2), component_(A11, A12), _),

 Components_List1),

 path_mapping_2(X, Z1, Z2, Components_List1,

 List2),

 append(List2, List1, List3),

 path_mapping_1(N, Active_Objects_List, List1).

2.2. Mapping the end node of the path:

path_mapping_2(_, _, _, [], []).

path_mapping_2 (N, Z1, Z2, [Component1 |

 Components_List1], List3) :-

 findall([Z11, Z12], map_(layer(N), component_(Z1,

 Z2), component_(Z11, Z12), _),

 Components_List2),

 pair_gen(Component1, Components_List2 , List2),

 append(List2, List1, List3),

 path_mapping_2(N, Z1, Z2, Components_List1,

 List1).

2.3. Generation pairs of components (determination the
potential paths) for layer N-1:

pair_gen(_, [], []).

pair_gen(Component1, [Component2 |

 Components_List2], [[Component1,

 Component2] | List2]) :-

pair_gen(Component1, Components_List2, List2).

The requirements-coverage strategy application to the

simple example of multi-layered system model shows a
surprisingly large number of tests required to fully cover even
this very simple model – see Tab. 1.

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 04, July 2014

www.ijcit.com 704

TABLE I. APPLICATION OF THE REQUIREMENTS-COVERAGE STRATEGY

Model

layers

Test templates

Individual

components
Distributed aspect

Tcomp Tdist Symbolic description

Functional 2 1 [subscriber, 1] ↔ [provider, 1]

System 14
3

[web_client,_] ↔ [web_server,1] ↔

[sql_server,1]

12 [ss,_] ↔ [dns_server,_]

Logical 6
6 [vws,_] ↔ [vlan,0] ↔ [vserver,_]

1 [vserver,1] ↔ [vlan,0] ↔ [vserver,2]

Physical 7 6
all component-to-component

connections

V. NEXT STEPS

The complex testing of distributed systems (as every testing
activity) is based on two basic notations [2]:

 test philosophy (or test strategy) that establishes
“what” should be tested;

 test methodology that establishes “how” it should be
done.

In this work we have determined the test templates
generation strategy. On the other hand, The Integrated Test
Methodology for Distributed Systems [28] includes the
following general procedures: (1) conformance testing; (2)
interoperability testing; (3) functional testing; and (4)
performance testing (in spite of the year of publication, this
methodology is not contrary to the most recent work, include
testing of cloud computing [29]).

The conjunction of the requirements-coverage strategy (the
test philosophy) and the test methodology procedures can be
represented as a testing grid – see Fig. 6. Intersection points of
this grid determine test cases which cover the most important
goals of distributed systems [1]: (1) openness; (2) accessibility;
and (3) transparency (scalability of distributed systems is
beyond the scope of this work). In turn, these goals are
supported by their performance characteristics.

The final step must be the processing of results (according
to the requirements of Standard IEEE Std 829TM-2008
(Revision of IEEE Std 829-1998) [30]) for inclusion in the
project documentation.

VI. CONCLUSION

Deployment of distributed systems sets high requirements
for procedures, tools and approaches for complex testing of
these systems. In this work we determined the formal model
for test generation mission on the basis of the component based
approach and the concept of layered networks. The model is
the four-layered 3D graph, derived from the system technical
specifications, which covers all layers of OSI Reference Model
and, as a consequence, both software-based and network-based
aspects of distributed systems.

Figure 6. Testing grid

Based on this model, we described the test templates
generation strategy, which covers: (1) individual components;
(2) every interaction from the end-user requirements on
functional, system, logical and physical architectural layers;
and, as a complement, checks the internal consistency of the
system technical specifications with respect to the end-user
requirements.

Next, we introduced a Prolog-based approach to
representing the formal multi-layer model and the
requirements-coverage strategy.

The most important conditions that should be fulfilled to
make building a distributed system worth the effort [1]: (1)
openness; (2) accessibility; and (3) transparency. The
requirements-coverage strategy completely covers the first two
goals and partially the third one with the exception of the
failure transparency in the case of imperfect sensing and
switching components [31]. As a consequence, future work
will focus on design of a test philosophy for determination of
the necessary set of test cases for reliability testing of complex
distributed systems (it would be better to talk of a necessary
and sufficient set, but unfortunately in our case a sufficient
condition is theoretically unreachable [32]).

ACKNOWLEDGMENT

This research has been performed within the scientific
activities at the Department of Telecommunication Engineering
of the Czech Technical University in Prague, Faculty of
Electrical Engineering.

REFERENCES

 [1] A. S. Tanenbaum and M. v. Steen, Distributed Systems: Principles and

Paradigms, 3rd ed., Prentice Hall Press, 2013.

[2] R. W. Buchanan, The art of testing network systems, John Wiley &

Sons, 1996.

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 04, July 2014

www.ijcit.com 705

[3] D. M. Buede, The Engineering Design of Systems: Models and

Methods, 2nd ed., Wiley Publishing, 2009.

[4] S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M. Lott, G. C.

Patton and B. M. Horowitz, "Model-based testing in practice," in

Software Engineering, 1999. Proceedings of the 1999 International

Conference on, 1999.

[5] R. M. Hierons, K. Bogdanov, J. P. Bowen, R. Cleaveland, J. Derrick, J.

Dick, M. Gheorghe, M. Harman, K. Kapoor, P. Krause, G. Luttgen, A.

J. H. Simons, S. Vilkomir, M. R. Woodward and H. Zedan, "Using

formal specifications to support testing," ACM Comput. Surv., vol. 41,

pp. 9:1-9:76, February 2009.

[6] J. Woodcock, P. G. Larsen, J. Bicarregui and J. Fitzgerald, "Formal

methods: Practice and experience," ACM Comput. Surv., vol. 41, pp.

19:1-19:36, October 2009.

[7] J. J. Marciniak, Ed., Encyclopedia on Software Engineering, Wiley,

2001.

[8] P. Stocks and D. Carrington, "A framework for specification-based

testing," Software Engineering, IEEE Transactions on, vol. 22, pp.

777-793, 1996.

[9] J. Offutt and A. Abdurazik, "Generating Tests from UML

Specifications," in The Unified Modeling Language, R. France and B.

Rumpe, Eds., Springer Berlin Heidelberg, 1999, pp. 416-429.

[10] J. Hartmann, C. Imoberdorf and M. Meisinger, "UML-Based

Integration Testing," SIGSOFT Softw. Eng. Notes, vol. 25, pp. 60-70,

August 2000.

[11] G. Bernot, M.-C. Gaudel and B. Marre, "Software testing based on

formal specifications: a theory and a tool," Software Engineering

Journal, vol. 6, pp. 387-405, 1991.

[12] J. Dick and A. Faivre, "Automating the Generation and Sequencing of

Test Cases from Model-Based Specifications," in Proceedings of the

First International Symposium of Formal Methods Europe on

Industrial-Strength Formal Methods, 1993.

[13] M. R. Donat, "Automating formal specification-based testing," in

TAPSOFT '97: Theory and Practice of Software Development, 7th

International Joint conference CAAP/FASE, 1997.

[14] Hyoung Seok Hong, Sung-Deok Cha, Insup Lee, O. Sokolsky and H.

Ural, "Data flow testing as model checking," in Software Engineering,

2003. Proceedings. 25th International Conference on, 2003.

[15] Shaoying Liu and Wuwei Shen, "A formal approach to testing

programs in practice," in Systems and Informatics (ICSAI), 2012

International Conference on, 2012.

[16] ISO/IEC, ITU-T Rec. X.200 - ISO/IEC 7498:1994 Information

technology - Open Systems Interconnection - Basic Reference Model,

1994.

[17] J. Liu and E. A. Lee, "A component-based approach to modeling and

simulating mixed-signal and hybrid systems," ACM Trans. Model.

Comput. Simul., vol. 12, pp. 343-368, October 2002.

[18] M. Torngren, DeJiu Chen and I. Crnkovic, "Component-based vs.

model-based development: a comparison in the context of vehicular

embedded systems," in Software Engineering and Advanced

Applications, 2005. 31st EUROMICRO Conference on, 2005.

[19] M. Kurant and P. Thiran, "Layered Complex Networks," Phys. Rev.

Lett., vol. 96, no. 13, April 2006.

[20] J. D. McCabe, Network Analysis, Architecture, and Design, 3rd ed.,

Morgan Kaufmann Publishers, 2007.

[21] ISO/IEC, ITU-T Rec. X.901-904 - ISO/IEC 10746 Information

technology - The Reference Model of Open Distributed Processing

(RM-ODP), 1998.

[22] F. Brazier, B. D. Keplicz, N. R. Jennings and J. Treur, "Formal

Specification of Multi-Agent Systems: a Real-World Case," in First

International Conference on Multi-Agent Systems, ICMAS-95, 1995.

[23] B. Beizer, Black-box testing: techniques for functional testing of

software and systems, John Wiley & Sons, 1995.

[24] R. Diestel, Graph Theory, 4th ed., Springer, 2010.

[25] D. K. Pradhan, Ed., Fault-tolerant computer system design, Prentice-

Hall, 1996.

[26] I. Bratko, Prolog: Programming for Artificial Intelligence, 4th ed.,

Addison-Wesley Longman, Inc., 2012.

[27] M. Kurant, P. Thiran and P. Hagmann, "Error and Attack Tolerance of

Layered Complex Networks," Phys. Rev. E, vol. 76, no. 2, August

2007.

[28] J. Grabowski and T. Walter, "Towards an Integrated Test Methodology

for Advanced Communication Systems," in Proceedings of the '16th

International Conference and Exposition on Testing Computer

Software (TCS'99), 1999.

[29] K. Blokland, J. Mengerink and M. Pol, Testing Cloud Services, 1st ed.,

Rocky Nook Inc., 2013.

[30] IEEE, IEEE Std 829TM-2008 - IEEE Standard for Software and

System Test Documentation, 2008.

[31] M. Modarres, M. Kaminskiy and V. Krivtsov, Reliability Engineering

And Risk Analysis: A Practical Guide, 2nd ed., CRC Press, 2010.

[32] N. G. Leveson, Safeware: system safety and computers, ACM, 1995.

