
International Journal of Computer and Information Technology (ISSN: 2279 – 0764)  

Volume 04 – Issue 03, May 2015  
 

www.ijcit.com       552 

Use Cases in Software Development: An Investigation 

in its Roles and Values 

 
Grace L. Samson 

Department of Computer Science 

Faculty of Science, University of Abuja, 

Nigeria 

Email: gracedyk [AT] yahoo.com 

 

 

Aminat A. Showole 

Department of Computer Science 

Faculty of Science, University of Abuja, 

Nigeria 

 

 

 

Abstract— This research work identifies the roles and 

values of USE CASES in software development, and 

analysed the concept of USE CASES critically in other to 

ascertain their usefulness in achieving a user’s 

requirement when applied to a system development 

methodology. We examined the major considerations for 

deploying advanced UML modelling by considering the 

best approach for a  

programmer to get to the source code by putting the right 

aspect of the UML to work at the right stage of 

 a system life cycle in an object (OO) oriented analysis and 

design practice.  research has found out 

 that to achieve a successful object oriented programming 

design and implementation, an analyst 

 should strive to drive an OO software design from USE 

CASES 

   

Keywords--- Object Oriented Design; Use –Cases; Software 

Development; UML Modelling; Software methodology; 

Classes and Objects 

 

I. INTRODUCTION 

A. System Development Stages 

This research has helped us to appreciate what [15] meant in 

the statement below.  

“In theory everything in the UML is useful, but in practice a 

whole lot of people and projects need to know how to drive an 

OO software design from USE CASES. And they also need to 

know which diagram from the UML directly helps to 

accomplish this” ([5], pp. xxvii). 

Some researchers feel that “the roles and values of use cases 

are unclear and debatable” and argue that it is more useful to 

develop a class model before a use case model, as such in this 

research work. A system can only be successful if it meets the 

user’s needs. Every object oriented (OO) software 

development requires a specialized technique that can be used 

for making good interpretations of real world phenomena as 

such; designing an effective system is always the main aim of 

software developers. However the framework for structuring 

the process of this development must go through the stages 

known as software development life cycle (SDLC). According 

to [9], the software development life cycle specifies the stages 

through which a software project must go through in its life 

time before it finally gets to the user. These stages may 

typically include: (1) System Analysis (2) System Design (3) 

System Implementation (4) System Testing (5) 

Documentation and (6) Maintenance. 

Regardless of the general view of system development life 

cycle, several life-cycle models also exist and all these models 

have their stipulations and preferences as we shall examine 

below. Generally, a software development life cycle model is 

a framework that describes the activities performed at each 

stage of a software development project and there are various 

models that exist.  Some of these models (methods) include: 

the waterfall model, prototyping, v-model, incremental model, 

spiral model and the general agile methods (which includes, 

FDD – Feature driven development, crystal clear, DSDM – 

Dynamic Software Development,  RAD – Rapid Application 

Development, SACRUM, XP – Extreme Programming, RUP 

– Rational Unified Process and USDP) 

In all the different models, the basic step/processes involved 

in every software development life cycle include: 

 The existing system is evaluated/assessed 

 The new system requirements are defined/analysed 

 The proposed system is designed 

 The proposed system is developed 

 The system is put into use/Implemented 

 The new system is tested 

 The new system is maintained 

 

 
      Figure 1: stages in a system development life cycle 

 

In other to develop good computer systems and projects, these 

stages mentioned above are essential for good success, although 

smaller systems may afford to ignore some of these stages, large 

complex systems depends on them to completely analyse their 

requirements, design and their implementation using both an 

appropriate method (- an appropriate tool- ) and an appropriate 

notations (- an appropriate modelling language-) that are suitable 

for modelling these large, complex systems. A modelling 

language can be used to express information, knowledge or a 

system in a procedure that is defined by consistent set of rules that 

are used for understanding of the meaning of the components of a 

given system. Some typical examples of a modelling language 

include: (a) SDL – Specification and description language, (b) 

ADL – Architectural Description language, (d) SOM – Service 

Oriented Modelling, (e) UML – Universal Modelling Language 

etc.  

In general, all modelling languages can be used to specify; system 

requirements, behaviours and structures, but we shall be looking at 

Maintai

n 

Test 



International Journal of Computer and Information Technology (ISSN: 2279 – 0764)  

Volume 04 – Issue 03, May 2015  
 

www.ijcit.com       553 

the UML because it is most often referred to as the de-facto 

standard formalism for software design and analysis [4]. 

The second stage of the development cycle (as we have seen 

in the review above) has to do with defining the specific 

problems to be solved which of course is the essence of the 

development process hence, in other to understand this 

specific problem system analyst gather information from the 

intended user of the system so as to determine the appropriate 

requirement specification. One useful tool for capturing what 

the proposed system should do is the UML modeling tools.  

 

II. UML MODELLING – REVIEW 

A. What is Unified Modeling Language (UML) Model? 

The UML is the most widely used graphical representation 

scheme for modeling object oriented systems. It allows people 

who design software systems to use an industry standard 

notation to represent their systems [9]. The UML is a very 

useful tool in the analysis of user requirement and in the 

design of the system; it uses notations to produce models of 

computer systems. [17] described the UML as a graphical 

language designed to capture the artefacts of an OOAD 

(Object Oriented Analysis and Design – which is a 

programming technique that models the real world as a group 

of related objects -) process, this is useful because these 

programmatic objects maps naturally to real-world objects 

[17]. 

 

B. UML Notations 

[12] described UML notations as graphical symbols used to 

represent the elements in a UML diagrams, these are also referred 

to as model elements. According to them, an element can exist in 

several different types of diagrams following a given set of rules. 

Some examples of these model elements are described below: 

Class, Object, State, Node, Package, Component, Comment, 

Initial state 

Others could include: Activity, Use-case, Interface, Actors, Final 

state Etc. (figure 2) 

 

 
Figure 2: showing UML notations 

 

However, it is important to note that these notations relate to each 

other with yet other forms of notations knows as the relationship 

components which are the elements that connects one notation or 

model element to the other , some of these relationship notations 

include: association, generalization e.t.c. (see figure 3) 

 

 
Figure 3: UML relationship components [7] 

 

III. USE CASE MODEL AND THE CLASS 

DIAGRAMS – REVIEW 

A. UML Diagram 

 

A UML diagram is a combination of UML notations to produce a 

meaningful interpretation of an intended model of a software 

system. In [14], UML diagrams are divided into 4 major 

categories: USE-CASE diagram (UCD), Class Diagram (CD), 

Behavior Diagram (BD – Activity, Collaboration, Sequence, and 

State) and Implementation Diagram (ID - Component Diagram 



International Journal of Computer and Information Technology (ISSN: 2279 – 0764)  

Volume 04 – Issue 03, May 2015  
 

www.ijcit.com       554 

and deployment). USE-CASE diagrams according to them are 

used to identify actors, USE-CASEs, and their relationship while 

CLASS diagrams identify the classes and their relationship. In 

[11], modeling a complex system, requires describing the system 

in a number of views, where each view represents a projection of 

the complete system that shows a particular aspect, hence in 

modeling a system with the UML, four basic views has been 

adopted namely: USE-CASE, Logical, Implementation, Process 

and Deployment views respectively, where USE CASE view 

shows the functionality of the system as perceived by external 

actors. Similarly, from the four system analysis phases of object 

oriented (OO) system developments as described, in [8], the USE-

CASE model was specifically adopted for modeling the functional 

requirements of the system while the CLASS diagram is for 

structural modeling of an intended system[13] adopted the facts 

that modeling with UML can simply be described as a USE-

CASE based approach. 

A study carried out by [10], revealed from a detailed survey 

that in terms of usage, the frequency of use of UML 

components varies considerably but while the CLASS 

Diagrams were the most frequently used component, the USE-

CASE Diagram benefit from the advantage of being very 

useful when it comes to identifying the key purpose of system 

elements as we can see in table 1a & b 

 

Table1 a: showing rate of use of UML Components  

 

    

 

 

 

 

 

 

 

Table 1b: Percentage of clients using UML component for 

major purposes [10] 

 

 

The results of their analysis show that clients are most likely 

to be involved in developing, reviewing, and approving the 

USE CASE Narratives and associated USE CASE Diagrams 

and the study also admitted that USE CASE diagrams are very 

essential when working with clients. 

A more detailed description of the UML diagram was seen in 

[[9], here the USE-CASE diagram was seen as a model of the 

interactions (different from the sequence diagram which only 

models interactions but does not highlight when the 

interaction will occur) between a system and its external 

entities (known as the “actors”). The Class diagram on the 

other hand models the entities (which forms the building 

block used in a system), representing each entity as an object 

to be analyzed or present in the system. 

[14], explained further by adding that a USE-CASE diagram 

models the activities of a system from the actors perspective and 

that USE-CASEs are always initiated by the actors, while CLASS 

diagrams defines the attributes and operations of both the internal 

and the external entities. In [16], the USE-CASE diagram is seen 

as the primary means by which you can use the UML to capture 

functional requirements expressing these requirements in terms of 

the specific actions that external entities and the system perform in 

executing required and optional behavior. This is explained in 

figure 4  

 

 
Figure 4: USE-CASE structure 

 

In addition, from the description in [7], UML diagram is sub 

divided into three major categories namely: structural, 

behavioural and implementation diagrams. This classification 

puts the USE-CASE diagram and the CLASS diagram in the 

same level irrespective of extent. By structural, we are looking 

at the components of the UML diagram that must be present 

in the system being modelled as such, it would be right to say 



International Journal of Computer and Information Technology (ISSN: 2279 – 0764)  

Volume 04 – Issue 03, May 2015  
 

www.ijcit.com       555 

that structural diagrams determine the architecture of the 

system being defined. 

 

B. Identifying the place of USE CASE in UML 

classification 

From the work of [2] on “developing agile methods with 

UML”, we have used the diagram below to structure the 

thirteen main diagrams of UML according to their prospective 

values; this will give us a better clarification of the 

Characteristics, category and values of each diagram as we 

shall apply in our analysis in section 4. 

 

 
 

Figure 5: classifying UML diagram according to 

characteristics 

 

C.  Components Description – USE-CASE modelling 

[15] acknowledged that “USE-CASEs are used to describe the 

way the user will interact with the system and how the system will 

respond”.  In their own view [5] recognized that USE-CASEs 

helps a system analyst or modeller (in organizing thoughts about 

an intended systems) thus making it easier for him to understand 

the purpose of a system or its components. Likewise, for every 

system development process, the first step of the proposed 

technique consists in building a USE-CASE diagram, in which 

actors and USE-CASEs are identified [1].  

In analysing system requirements, according to [15], USE-CASEs 

are used to;  

(i) Identify end users and stake holders’ interest 

(ii) Design the context of the user interface 

(iii)  Organise objects into packages  

(iv)  Identify  the concept of the object model 

(v)  Describe  courses of action  in (both basic and 

alternative) 

 

IV. EVALUATING USE-CASES AGAINST 

CLASS DIAGRAMS 

A. Comparism  

We have used the table below to critically evaluate the 

usefulness of the USE CASE diagram in contrast to the 

CLASS diagram. 

 

Table 2: been used to identify the major values, characteristics and 

roles of the USE-CASE diagram 

USE-CASE Class diagram  

USE-CASEs are used to identify the 

Interactions and responses between 

users and systems 

[15] 

Class diagrams according are used 

to identify the objects in a system  

[5] 

 

USE-CASE diagrams are used to 

identify actors, USE-CASEs, and 

their relationship 

[14] 

 

Class diagrams identify the 

classes and their relationship. 

[14]),  

Use-case view shows the 

functionality of the system as 

perceived by external actors. 

[11] 

 

No specific view identified  

[11] 

Basic framework for modeling with 

UML as described in [13] 

Not applicable 

Explains behaviour (Ambler, 2004) Explains structure [2] 

With a medium …. Priority, USE-

CASE diagram shows actors, USE-

CASEs, and their interrelationships.  

[2] 

The class diagram enjoys high …. 

Priority, in terms of usage…, it 

also highlights collections of the 

static model elements such as 

classes and types, their contents, 

and their relationships. [2] 

USE-CASEs helps a system 

analyst or modeller in organizing 

thoughts about an intended 

systems - Value 

[5]) 

Class diagrams also  helps a 

system analyst or modeller in 

organizing thoughts about an 

intended systems: but in its case 

it considers majorly elements 

which do not depend on time 

[2] 

 

The table above has been used to identify the major values, 

characteristics and roles of the USE-CASE diagram and we 

have used this as a means of comparism between the USE 

CASE and the CLASS diagram 

B. Reflection and Analysis 

A simple case study that we can use at this point is purpose of 

systems an online transaction system. Every system is designed to 

meet a user’ requirement as such there must be a way of graphical 

representing how this system will behave in terms of meeting the 

users requirements and how the user will interact with the system; 

this is the gap that USE-CASEs are bridging and this is what 

defines its value. There are basically no competition between the 

USE-CASE diagram and the class diagram or any other diagram 

in the UML family as the case may be (as we have seen from this 

study), the basic issue of contention is which is better to come 

first;  again the answer to this question is quite simple, if what 

determines a system structure (which the CLASS diagram is an 

element of) is the requirement of that system and the behaviour of 

its elements as we have seen, then we would be right to say the 

USE-CASE diagram must be developed first before the Class 

diagram. However, looking at [7] description of in section 2.2, 

then there would not be any gainsaying that any of these diagrams 

is more important than the other and as such will not require any 

measurement to determine significance of each. 



International Journal of Computer and Information Technology (ISSN: 2279 – 0764)  

Volume 04 – Issue 03, May 2015  
 

www.ijcit.com       556 

 Our case study: an online transaction system 

The case study stated above of an online transaction system, will 

depict the relationship that may exist between a buyer (customer) 

and a seller (management). We would like to see how these 

objects interact with each other and with the “system” to be able to 

meet the goal of an online business. Since the business is majorly 

to meet customers need as well as increase organizational profit, 

we would like to bring out the steps below as a way of analysing 

the system: 

 Actors and USE-CASEs are identified (where each 

actors has a set of USE-CASEs that describe the task due 

to the actor) 

 

                   
Customer

 

Customer makes an

order

 

  
Managemnet

 

Management

processes request

 
 

Figure 6: Actors and USE-CASEs (i.e. tasks) are connected as 

shown in this diagram 

 

 Task due the actors are identified as we can see above 

Actor 1          Customer 

Tasks:  

Make order request 

Make payment  

Receive order 

 

 

 

 

 

 

Actor 2           Management 

Task: 

Process order 

        Dispatch order 

     

With the identification of the use cases, the analyst would easily 

develop the class diagram based on those cases where the actors 

are the entities (object) and the use cases are the operations as we 

can see below: 

 
 

Figure 7: Class Diagram for the transaction system 

 

C. UML Ranking 

From the case study above and from all the review and 

analyses, we have seen that it always very useful to design the 

USE CASE diagram before the CLASS diagram, so as to be 

able to gather all the necessary user requirements before 

designing the system using the CLASS model. 

 

V. RESULT AND DISCUSSION 

A. USE-CASEs Roles and values 

From the above analyses, and from a thorough and reflective 

research on USE-CASEs; their roles characteristics and values, we 

present in acknowledgement to the propositions of [3] the major 

findings we have made on the significance of USE-CASEs and 

when to use them in a system design process, in essence we have 

listed below some of these findings about USE CASES. 

 

 

USE CASE MODELS  

 Are means of capturing the requirement (functional 

and non-functional) of a system 

 Help to envision application structure 

 Are used to express communication link between 

organisation and end user 

 Act as a base for deriving objects (objects in 

programming are noted as CLASSES) – this can also 

be seen from our case study in section 4.3 and 

likewise [3] specifically stated that “objects naturally 

fall out of USE-CASEs”. 

 Are the framework for the design of user interfaces 

 Help the analyst assign functionalities to objects 

(CLASSES) 

 Incremental system methodology has its background 

on USE-CASES 

Management 

despatches order 

Customer makes 

payment 

Customer 

receives order 



International Journal of Computer and Information Technology (ISSN: 2279 – 0764)  

Volume 04 – Issue 03, May 2015  
 

www.ijcit.com       557 

 Most importantly, USE-CASES helps to design test 

cases 

The greatest value of USE-CASES is based on the fact that 

they have become the standard for representing business 

processes [6]; [3].  

However, it would be very expedient at this point, to state 

clearly some of the limitations of USE-CASEs in other to 

avoid doubt and clarify the basic concept of USE-CASES, in 

other words we have stated some important points to note 

below according to [6]; 

 

USE-CASEs are basically interested in highlighting system 

processes and not the design 

VI. CONCLUSION 

We have had a critical evaluation of the UML diagrams, 

notations, and classification – type and we have also seen the 

different methods of developing a system using the SDLC and 

the appropriate UML modeling tool for a specific 

development methodologies. We have explored the existing 

literature to see the place of USE-CASES in the development 

of a system and we have come to the conclusion that there is 

basically no conflict between USE-CASES and CLASSES 

(OBJECT) or even any other UML modeling tool as they all 

have their distinct place in the development of a system. We 

have also seen that it is indeed more useful to design the USE 

CASE diagram before the CLASS diagram. At the end of this 

research project, we have arrived at the fact that Use cases are 

very helpful In terms of  

 Determining features or requirements 

 Communicating with clients and  

 Generating test cases 

REFERENCES 

 

[1]. Almendros-Jime´ Nez, J. M. and Iribarne, L. (2009) “UML 

Modeling of User and Database Interaction” THE COMPUTER 

JOURNAL. 52 (3) pp. 348 - 367 

 

[2]. Ambler, S. W. (2004) The Object Primer: Agile Model-Driven 

Development with UML 2.0. Cambridge University Press. 

 

[3]. Amour, A. and Miller, G. (2001) Advanced USE-CASE modeling: 

software systems. Boston (Mass): Addison-Wesley,  

 

[4]. Berardi, D., Calvanese, D. and De Giacomo, G. (2005), 

"Reasoning on UML class diagrams", Artificial Intelligence, 168 

(1), pp. 70-118. 

 

[5]. Chonoles, J. M. and James, A.S. (2003) UML 2 for dummies.  New 

York:  Wiley 

 

[6]. Cockburn, A. (2001) Writing effective USE-CASEs. Harlow: 

Addison-Wesley 

 

[7]. Cook, S. (2012), "Looking back at UML", Software and Systems 

Modelling. 11, (4) pp. 471 

 

 

 

 

 

[8]. Dennis, A., Wixom, B. and Tegarden, D. (2005) Systems Analysis 

and Design with UML Version 2.0 - An Object Oriented 

Approach.  2nd Edition. Hoboken, N.J: John Wiley & Sons. 

[Online] Available 

at:http://www.knovel.com/web/portal/browse/display?_EXT_KN

OVEL_DISPLAY_bookid=1420&VerticalID=0 [Accessed 9th 

December 2012] 

 

[9]. Dietel, P.J. and Dietel H. M. (2010) Java: how to program. Upper 

Saddle River, N.J: Pearson Prentice Hall 

 

[10]. Dobing, B. and Parsons, J. (2006), "How UML is used”, 

Communications of the ACM, 49 (5), pp. 109-113 

 

[11]. Eriksson, H. (2004), UML 2 toolkit. Indianapolis: John Wiley & 

Sons (US),  

 

[12]. Eriksson, H., Penker, M., Lyons, B.and Fado, D. (2011), UML 2 

Toolkit: CafeScribe. Hoboke: John Wiley & Sons, Inc,  

 

[13]. Jacobson, I., Booch, G. and Rumbaugh, J. (1999) "The unified 

process", IEEE Software. 16 (3), pp. 96. 

 

[14]. Oestereich, B. (1999) Developing software with UML: object-

oriented analysis and design in practice. Harlow, 

England: Addison-Wesley. 

 

[15]. Rosenberg, D. and Stephens, M.  (2007) USE-CASE Driven Object 

Modelling with UML: Theory and Practice. NY: Apress 

 

[16]. Scott, K. (2004) Fast track UML 2.0. Berkeley, Calif:  
 

[17]. Shoemaker, M. L. (2004), UML Applied: A .NET Perspective. 

Apress. 

 

 

 


