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Abstract—Hashing is becoming a popular and effective 
method for nearest neighbor search in large-scale databases, due 
to its computational and memory efficient. In this paper, we 
present an efficient unsupervised nonlinear hashing method to 
transform high-dimensional data to low-dimensional binary data 
for fast retrieval. Firstly, we use the Nyström method to 
transform the feature space into nonlinear kernel feature space, 
to capture the similarity property of the data. Secondly, all 
training data are formulated to maximize the entropy over each 
hash bit, which can be relaxed to maximize the variance on each 
hash bit. Then, we solve the objective function by an improved 
sequential projection learning method. In each projection 
learning iteration, we reduce the HAE (Hamming Accumulated 
Errors) through some pseudolabel pairs generated from all 
previous learning projections. During the process, we only need 
to store the sum of covariance matrix instead of the similarity 
matrix to save memory storage. We also use a more efficient 
method to update the covariance matrix after each iteration. We 
carry out extensive experiments on two benchmarks, and 
demonstrate that the proposed method achieves better 
performance than some state-of-the-art hashing approaches. 

Keywords - hashing; similarity search; Nyström method; 

I. INTRODUCTION 

Nearest neighbor search (similarity search) can be formally 
described as: given a dataset X = [x1,x2, ... ,xn] ∈ Rd  × n, the 
objective is to find a set of nearest neighbors R ⊂ X for a 
given query q. A naive brute force solution to find the nearest 
neighbors is to compare every item in the database and find 
the most similar ones under a predefined similarity metric. 
However, it is impractical in large databases, because the 
linear complexity is not scalable. To overcome this difficulty, 
tree-based methods have been intensively studied for 
similarity search in past decades. However, performances of 
tree-based methods, such as KD tree [18], R-tree [3], Cover-
Tree [2] are good only for low dimensional data, and 
drastically degraded to linear search in high dimensions, 
which is called the curse of dimensionality. 

How to efficiently search in large databases is critical for 
many retrieval applications, such as content-based multimedia 

retrieval, plagiarism analysis, and collaborative filtering. 
There are numerous challenges for fast nearest neighbor 
search in large-scale databases, under the constraints of 
storage limitation and computational time requirement. 
Currently, hashing-based methods are becoming more 
promising for similarity search, due to their fast query speed 
and low storage cost. The basic idea of hashing-based methods 
is to design a group of functions that map the high-
dimensional data to low-dimensional binary data, and 
simultaneously preserve their similarities. After that, we can 
simply return all the objects that are hashed into a ball 
centered around the query binary code by hash lookup [20], 
which can be finished in sublinear or even constant time.  

From learning paradigm, there are three categories hashing 
method: unsupervised methods, semi-supervised method, and 
supervised method. Although supervised and semi-supervised 
hashing method, such as Iterative Quantization Canonical 
Correlation Analysis (ITQ-CC) [8], Minimal Loss Hashing 
(MLH) [16], Two-Step Hashing (TSH) [12], Semantic 
Hashing using Tags and Topic Modeling (SHTTM) [13], 
Supervised Hashing With Kernels (KSH) [14], Supervised 
Hashing with Latent Factor (LFH)[26], Semi-Supervised 
Hashing (SSH) [20] have higher precision than unsupervised 
hashing methods in semantic similarity search. But 
unsupervised hashing method are more common in real 
situation for there is often no label and similarity information 
for supervised learning. What’s more, unsupervised hashing 
method, such as LSH (Locality Sensitive Hashing) [5], SH 
(spectral hashing) [21], Self-Taught Hashing (STH) [24], 
Density Sensitive Hashing (DSH) [9], Anchor Graph Hashing 
(AGH) [15], Spherical Hashing(SPH) [1], and Principal 
Component Analysis Hashing (PCAH) [20] also can achieve 
good performance in practical situation.  

LSH (Locality Sensitive Hashing) [5] is a popular 
approach for approximate similarity search. The idea is to use 
a family of hash functions which satisfy the locality-sensitive 
property: Pr(h(x i) = h(x j)) = sim(x i, x j) [4]. The intuition is 
that with multiple hash functions, similar objects have a high 
probability of being hashed into the same bucket, and 
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dissimilar objects have a high probability of being hashed into 
different buckets. Its variants [4][11] have been widely 
studied. Charikar [4] use a random hyperplane r from zero-
mean multivariate Gaussian N(0, I) to multiply each data 
point, which can keep locality-sensitive property: 
sim(x i, x j) = x i⋅x j. Kulis [11] designed 
sim(x i, x j) = k(x i, x j) = Φ(x i)

TΦ(x j) for some embedding 
function Φ(x) that only uses the kernel matrix via sampling-
based method. LSH uses the hash-table structures to filter 
most false positives and then only search the candidate objects 
in the same buckets, which can achieve efficient approximate 
similarity search. However, in practice LSH may lead to very 
ineffective hash codes [20][23], since the hash functions using 
data-independent random projection.  

SH (Spectral Hashing) [21] (also referred as spectral 
embedding) has been shown to be one of the state-of-art 
approaches for compact binary codes construction. SH define 
the similarity between each pair of points by Gaussian kernel 

as

2

2

||
,

||
( ) ( )

i jx x
w i j exp




 keeping the property of 

neighbors in input space as neighbors in Hamming space, and 
also requires the bits to be uncorrelated and balanced. 
However, the performance of SH degraded tremendously as 
the number of bits increases. 

Graph based method also plays an important role in 
machine learning system, widely used in information retrieval 
and classification problem. It also can be easily used in hash 
method. The key step of graph based method is to build a 
neighborhood graph. Tony discussed several typical ways to 
construct a sparse graph in [19]. But for a large scale 
application, it is impractical for it cost O(n2d) time to 
construct the graph matrix G, and cost O(n2) memory to store 
it. Recently, Anchor Graph Hashing (AGH) [15] appears, 
which use anchor points  1  to maintain the neighborhood 
structure to construct big graph. The approximate adjacency 
graph matrix can be easily constructed by a low-rank matrix 
G = KKT, just as the kernel method. It can be better 
approximate the semantic similarities, but not perform very 
well measured by Euler distance.  

PCA (Principal Component Analysis) is a linear data 
transformation technique to minimize the mean square error 
(MSE), which plays an important role in dimensional 
reduction and machine learning. We can quantify the principal 
components by a certain threshold to achieve binary codes. 
However, there are three drawbacks of the standard PCA and 
hence corresponding improvements were proposed: 1) PCA is 
sensitive to outliers, due to it use l2 norm, so some robust PCA 
are derived, such as L1-norm PCA [10] and R1-PCA [6]. 2) 
Errors are accumulated with the real-value principal 
components converted into binary codes as the code length 
increasing, which is called HAE (Hamming Accumulated 

                                                           

1 Using k-means clustering to obtain m (m<< n) cluster 
centers as anchor points 

 

Errors) defined in [23], Wang proposed to correct the errors by 
sequential projection learning method in [20]. 3) The linear 
transformation can not capture the non-linear relationships, so 
nonlinear or kernel method [17] can be used to deal with this 
problem.  

To address the drawbacks 2) and 3) simultaneously, we 
propose an unsupervised nonlinear hashing with improved 
sequential projection learning (UNHISPL) method. Most of 
the previous hashing methods didn’t consider the HAE except 
[20]. The differences between our method and [20] are: First, 
we use Nyström method to transform the features into 
nonlinear kernel features, to capture the similarity property of 
the data. Second, we only store the sum of covariance matrix 
instead of similarity matrix S and the points in pseudolabel 
pairs, which is more memory efficient. We also use a more 
efficient method to update the covariance matrix. Third, we 
study the influences of similar and dissimilar pseudolabel 
pairs separately in our models, which are equally treated in 
[20].  

II. UNSUPERVISED LINEAR HASHING WITH SEQUENTIAL 

PROJECTION LEARNING 

The main purpose of linear hash method is to learn a 
binary code matrix Y = [y1, y2, ..., yn] ∈ {±1}b  × n from training 
dataset X = [x1, x2, ..., xn] ∈ Rd  × n, and a hash function 
W = [w1, w2, ..., wb] ∈ Rd  × b which can map each point to its 
hash code (y i = sign(WTx i)). In this paper, a lowercase denote 
a column vector, a capital denote a matrix or a set, and the 
detail description of symbols are shown in Table I. 

A. Linear Projection 

Wang [20] proposed an unsupervised linear hashing to 
maximize the entropy over each hash bit, which can be relaxed 
to maximum variance, the formula is written as follows: 

          JW = ∑iw i
TXXTw i = tr{WTXXTW}                            (1) 

s.t WTW = I  

X is normalized to have zero mean. The orthogonal constraint 
WTW = I to decorrelate the hash bits, the solution can be 
achieved in a single step through eigenvalue decomposition 
just as the standard PCA. Actually, the solution is the top b 
eigenvectors of the covariance matrix C = XXT. Suppose that 
λ1 ≥ λ2 ≥ ...... ≥ λb are eigenvalues, and w1, w2, ...., wb are their 
corresponding eigenvectors. Clearly the bigger eigenvalue is, 
the more information the eigenvector carries (λ i = var(wk

Tx)). 
However, in most practical data sets, the variance is mainly 
contained in a few top principal directions, after those 
directions are removed, the rest of picked eigenvalues are 
small because of the orthogonal constraint WTW = I. Wang 
revealed that nonorthogonal constraint has more significant 
performance in [20].  

B. Sequential Projection Learning 

To learn a nonorthogonal solution, a sequential projection 
learning method had been proposed in [20]. The idea is quite 
intuitive, compute the eigenvector wk one by one. When 
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Table 1 : Description of symbols

computed a eigenvector, some pseudolabel pairs are 
generated, which will be used in the next projections learning 
to correct the wrong partition on those pairs. The method of 
generating pseudolabel pairs will be described in the next part. 
Here Mk, Dk denote the set of similar and dissimilar 
pseudolabel pairs generated in the k-th projection learning. 
Suppose XL

k contains all the points in Mk and Dk, p denote the 
number ofpoints. The similarity matrix Sk ∈ {±1, 0}p  × p, and 
the entity S i j

k is assigned to 1 and  − 1 if the corresponding 
data pair items (x i, x j) belong to Mk and Dk, or else assigned to 
0. Then the objective function on all previous pseudolabel 
pairs at k-th iteration can be represented as: 

   0 , ,

1

k t t
i j i j

T T T T

w k i j k k i j k
t x x M x x
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                                      (2) 

 Intuitively, it not only desires similar points to have the 
same signs but also large projection magnitudes, meanwhile 
dissimilar points not only with different signs but also as far as 
possible [20]. The objective function for learning the k-th 
projection contain the main part (1) and pseudolabel pairs’ 
error correction part (2) as following: 

1

0

( )
k

k
T T k t t t tT

w k L L k

t

J w XX X S X w 






                (3) 

Although all the previous pseudolabel pairs have 
contribution to current projection learning. However, the 
contribution is decayed exponentially by the factor δ. Note 
that after each projection learning, the direction is removed 

from X to minimize the redundancy in bits.2  The formula (3) 
can be easily calculated through eigenvalue decomposition. 

C. Generate Pseudolabel Pairs 

As we known that, in each iterative projection learning 
process, using a threshold to partition the real-valued 
projection component into binary bit, always make wrong 
partition on some pairs.The error accumulated in each iterative 

projection, which defined as HAE (Hamming Accumulated 
Errors) in [23]. Suppose in each iterative projection learning, 
all points are projected on the direction wk (the blue horizontal 
line), as shown in Fig.1. and the solid red vertical line is the 
partition boundary. We can see that (r − , r + ) are probably 
the similar pairs, (r − , R − ), (r + , R + ) are probably the 
dissimilar pairs. Concretely, (x3, x4),  (x9, x10) are similar, but 
have different sign of hash bit; (x1, x9),(x3, x7) 
,(x4, x12), (x6, x10) are dissimilar, but have the same sign of 
hash bit. So we can generate the pseudolabel pairs as follow: 

{( , ) ( ) ( ) 1,| | ,| | , ( , ) }.

{( , ) ( ) ( ) 1,| | ,| | , ( , ) }.

T TM x x h x h x w x b w x b d x x
i j i j i j i j

T TD x x h x h x w x b w x u d x x
i j i j i j i j





      

     

∣

∣
(4) 

Where M denote the set of similar pairs, D denote the set of 
dissimilar pairs, h(x) = sign(wTx) , d(x i, x j) is the Euclidean 
distance between x i and x j. Note that, we only select one pair 
of (x i, x j) and (x j, x i) in M or D. We add the distance 
constraints to make sure that they are near true similar or 
dissimilar pairs on Euclidean distance. 

                                                           

2 X can be updated by 
T

k kX X w w X   

 

Symbols Description 

X original data matrix, a column denote a point x i 

Y binary hash code, a column denote a hashing code y i corresponding to x i 

Z nonlinear data matrix, transformed from X, a column denote z i corresponding to x i with different dimensionality 

W hash function, each column w i denote a projection vector 

Mk the set of similar pseudolabel pairs generated in k-th projection learning process 

Dk the set of dissimilar pseudolabel pairs generated in k-th projection learning process 

XL
k the points appearance in Mk and Dk, XL

k ∈ Rd  × p, p is the number of points, d is dimensionality 

Ck
M the covariance matrix of the similar pseudolabel pairs in Mk 

Ck
D the covariance matrix of the dissimilar pseudolabel pairs in Dk 
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FIGURE 1：GENERATE THE PSEUDOLABEL PAIRS THROUGH THE PRINCIPAL COMPONENT W
T
 X 

 

III. UNSUPERVISED NONLINEAR HASHING WITH 

IMPROVED SEQUENTIAL PROJECTION LEARNING 

D. Nonlinear Projection 

To address the drawbacks of unsupervised linear hashing, 
we present an unsupervised nonlinear hashing to effectively 
capture the latent geometric information of the data. As 
described in [15][23], the nonlinear hash function can be 
defined as:  

( ) ( ( )), 1,2,3,.....T

k kh x sign w z x k b                     (5)  

wk is the k-th projection vector. In [23], z(x) is the x’s 
corresponding column of a regression matrix Z that measures 
the underlying relationship between the raw samples and the 
corresponding anchors. In this paper, we use the Nyström 
method [22][7][25] to compute the nonlinear feature matrix Z 
which can capture the similarity relationship. The Nyström 
method is a technique derived from calculating numerical 
approximations to eigenfunction problems, which use a 
sampling-based approach to reconstruct the kernel matrix K 
as: 

K = ETA  − 1E = ZTZ                                       (6) 

where E i j = k(u i, x j), E ∈ Rm  × n, A i j = k(u i, u j), A ∈ Rm  × m, u i is 
a random sample from the dataset as the landmark point. We 

employ the Gaussian kernel as:
2

2

|| ||
( , ) ( )

i j

i j

x x
k x x exp




  , and A 

is a positive semidefinite matrix, Z = A  − 1/2E.   is set as in 

[15]. 

For a new sample xn, we can easily get the nonlinear 

feature
1

2
n nz A e



 , 

1 2, , ,( ( ) ( ) ( ))...... , T

n n n m ne k u x k u x k u x . Replace X by Z, 

the formula (1) can be rewritten as: 

JW = ∑iw i
TZZTw i = tr{WTZZTW}                            (7) 

E. Improved Sequential Projection Learning 

Given a set of points 
1{ }n

i iz 
, we can easily compute the 

set (z i, z j) ∈ M if z i and z j are similar and (z i, z j) ∈ D if 

dissimilar using formula (4) after each projection learning. 
From empirical analysis, we expect the distance between each 
similar pairs being minimized, dissimilar pairs being 
maximized. We can write the objective function on the 
pseudolabel pairs at the k-th iteration as: 

2

2

: {|| || | }

: {|| || | }

T T T M

k k k k

T T T D

k k k k

min E w z w z M w C w

max E w z w z D w C w

 

 
               (8) 

where CM and CD is the covariance matrix of the similar and 
dissimilar nonlinear feature differences. Here we do not use 
the similarity matrix S. This bring several advantages: First, it 
can save memory, only need o(d2) storage space. Second, it 
can deal with more large number of pseudolabels. Third, it 
benefit for efficient updating operation in the next step.  

The finial objective function of our nonlinear hashing 
method for calculate the k-th projection can be described as 
follow: 

1 1

0 0

( )
k

k k
T k t D k t M

w k k t t k

t t

J w C C C w   
 

 

 

         (9) 

where Ck = ZkZk
T,  and λ, μ is parameters trade-off between 

―false positive‖ and ―false negative‖ rates. δ has the same 
effect as in formula (3). The solution of wk can be easy 
computed by eigenvalue decomposition. 

To minimize the redundancy in bits, we will subtracting 
the direction wk after the k-th projection learning, so the 
contribution of subspace spanned by that direction is removed 
from Z . We can update Z as following:  

       
1

T

k k k k k k kZ Z w w Z U Z                   (10) 

where Uk = (I − wkwk
T). We can efficiently update the 

covariance Ck  + 1 = Zk  + 1Zk  + 1
T = (UkZk)(UkZk)

T, the same 
updating are applied to Ck

M and Ck
D as follow:  

            

1

1

1

T

k k k k

M M T

k k k k

D D T

k k k k

C U C U

C U C U

C U C U













                                    (11)  
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Note that the complexity of update Ck  + 1 is O(m3), its 

O(d2n) in sequential projection learning, d m n  . The 

update of CM, CD are also more convenient and efficient than 
the same part in linear hashing with sequential projection 
learning. The detail pseudo-code is in Algorithm 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Remarks: At beginning, there exist no pseudolabel pairs. As k 

increasing, there are more and more pseudolabel pairs 

accumulated from all previous projection learning. However, 

the contribution of pseudolabel pairs is decayed exponentially 

by the factor δ. Note that W is not orthogonal since the 

pseudolabel pairs contained the whole space information. 

IV. EXPERIMENTS 

F. Datasets and Evaluation Metric 

At the beginning of this part we will describe two 
benchmark datasets: SIFT1M and GIST1M 3 . SIFT1M 
contains one million SIFT features extracted from random 
images. Each item in the data set is a 128-dimensional vector. 
For limit of computing resources and convenience of 
evaluation, we only randomly select 100K samples for training 
and 1K as query samples. GIST1M contains one million GIST 
features, each item is a 960-dimensional vector. We also 
randomly select 100K samples for training and 1K as query 
samples. We use the same criterion as in [20][9], that a point is 

                                                           

3 http://corpus-texmex.irisa.fr/ 

 

considered to be a true neighbor if it lies in the top 1% points 
closest (measured by the Euclidean distance in the original 
space).  All the experiments are running on my own ordinary 
PC with Intel Core i7-3770 CPU and 4GB RAM. 

Four hashing performance measures are employed in our 
empirical evaluations: mean average precision (MAP), 
precision within hamming radius 2 (PH2), Recall and TOP- 
300. To perform a fair evaluation, we use the same two criteria 
as [20]. 1. Hamming ranking. All the points in the database are 
ranked according to their Hamming distance from the query 
and the desired neighbors are returned from the top of the 
ranked list. The complexity of hamming ranking is linear. 2. 
Hash lookup. A lookup table is constructed using the database 
codes and all the points in the buckets that fall within a small 
hamming radius r of the query are returned, it is very fast 
when r is small.  

G. Comparison with Existing Algorithms 

Seven state-of-the-art hashing methods for nearest 
neighbor search are compared. We wrote the code of LSH, 
used the codes of other methods provided by the respective 
authors.  

1. Locality Sensitive Hashing (LSH [5]): Randomly select 
projections from a Gaussian distribution with zero-mean and 
identity covariance, use those projections to construct the hash 
functions.  

2. Principal Component Analysis Hashing (PCAH [20]): 
Directly use the largest k principal directions of the covariance 
matrix to construct hash functions.  

3. Unsupervised Sequential Projection Learning Hashing 
(USPLH [20]): Generate pseudolabels at each iteration using a 
linear sequential projection learning method. 

4. Anchor Graph Hashing (AGH [15]): Use a low-rank 
matrix to approximate the adjacency matrix through anchor 
graph. AGH with two-layer is used in our comparison for its 
superior performance over AGH with one-layer.  

5. Spectral Hashing (SH [21]): Quantize the values of 
eigenfunctions computed along PCA directions of the data.  

6. Kernelized Locality Sensitive Hashing (KLSH [11]): 
Generalize the LSH method to the kernel space use sampling-
based method.  

7. Unsupervised Nonlinear Hashing With Improved 
Sequential Projection Learning (UNHISPL): Our proposed 
method in this paper. 

H. Results and Parameters 

In the following experiments, we conduct the intensive 
evaluation on seven hashing methods using two data sets. 
Fig.2 show the evaluations of MAP, PH2, Recall, Precision-
Recall on SIFT1M, and the same evaluations on GIST1M 
showed in Fig.3. From Fig.2 (a) and Fig.3 (a) , we can see that 
two random projection based method (LSH,KLSH) have a low 
MAP when the code length is short. PCAH has little 
improvement as the code length increase, especially obvious 

Input: data X , length of hash codes b, parameter λ , μ , δ.  

Output: projection matrix W.  

Computing the kernel feature Z1 for all training data using 

formular (6) , Z1 are normlized to zero mean; 

Initialize  
1 1 1 1 1, 0, 0T M DC Z Z C C   ; 

for k=1 to b do 

  Sum the covariance matrix: 

  
D M

k k k kM C C C     ; 

  Calculate the first eigenvector e of M k and set: 

  Wk =e;  

  if k ≥ b break;  

  Generate the pseudolabel pairs's (satisfying fomulation 

(4) ) difference covariance matrix ,M DC C  ; 

  Calculate the residual for Zk+1 using (10) ; 

  Update 
1 1 1, ,M D

k k kC C C  
using (11) ;  

  Sum covariance matrix :  

1 1 ;M M M

k kC C C    1 1

D D D

k kC C C    ; 

end for 

return W. 
 

Algorithm 1:Unsupervised Nonlinear Hashing With 

Improved Sequential Projection Learning 

Hashing (UNHISPL) 
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in Fig.3 (a), this means that the last projections make no use, 
because of the orthogonal constraint WTW = I, which is 
consistent with [9]. Our proposed method provides better 
performance than USPLH show that nonlinear method is 
better than linear method. Fig.2 (b) and Fig.3 (b) show that all 
methods exception AGH, PH2 first go up, then go down as the 
code length increasing. This is main because as the code 
length increase there are often no nearest neighbor in radius 2 
causing precision to zero 4 .  But AGH can maintain some 
nearest neighbors by anchors, its success rate [14] is higher 
than other methods, so its PH2 increasing as the code length 
increasing. The Recall curve and Precision-Recall curve are in 
the case of 32-bits for all method showed in (c) and (d) of 
Fig.2 and Fig.3, it obvious that our proposed method achieve 
better performance.  

In Table.2 we can see that AGH cost most time in the 
training process, because it need k-means cluster center to be 
the anchor points. Compare the training time on SIFT1M and 
GIST1M, We can see that as the dimensionality increase the 
time of UNHISPL does not change, this is because the 
nonlinear transformation through Nyström method causing the 
dimensionality fixed to m 5  on both data sets in our 
experiments. The query time is accumulated all 1K query 
points. LSH, PCAH and USPLH are fast than AGH, SH, 
KLSH and UNHISPL, because those hash methods need some 
preprocess which cost a little more time. 

 

                                                           

4  For a query data, if there is no data located in its 
hamming radius 2 , the precision will be 0. 

5  m is fixed at 300 in our experiments. But for good 
performance m shold be increasing as the number of training 

point increasing. From experience, m n  is ok 

 

 

 

 

Figure 2: Performance evaluations on SIFT1M: 

 (a) Map. (b) PH2. (c) Recall. (d) Recall-Precision. 

 



International Journal of Computer and Information Technology (ISSN: 2279 – 0764)  

Volume 05 – Issue 01, January 2016 

 

www.ijcit.com    39 

 

 

 

 

Figure 3: Performance evaluations on GIST1M: 

(a) Map. (b) PH2. (c) Recall. (d) Recall-Precision. 

Table 2: Time cost on SIFT1M and GIST1M 

Method Name LSH PCAH USPLH AGH SH KLSH UNHISPL 

Training Time (s) on SIFT1M 0.1087 0.1408 11.404 129.29 2.4378 1.2081 37.158 

Training Time (s) on GIST1M 0.5844 2.0166 185.76 904.57 4.3097 2.8344 37.905 

Query Time (s) on SIFT1M 0.0014 0.0013 0.0019 0.0146 0.0223 0.0076 0.0122 

Query Time (s) on GIST1M 0.0054 0.0062 0.0093 0.0260 0.0183 0.0186 0.0214 
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Fig.4 and Fig.5 are the precision of top 300 samples on 
SIFT1M and GIST1M. We ranked all the point in database 
according to their Hamming distance from the query point, 
and select the nearest 300 points to calculate the precisions. 
With the number of bits increasing, the performance of 
UNHISPL are more and more good than other methods. 

Since UNHISPL use random samples as the landmark 
points for Nyström method in all of the experiments, the 
results of UNHISPL are the average of 5 trials. The number of 
landmark points are fixed to 300 in our experiments. As our 
experience that using the centers of the k-means clustering as 
the landmark points can significantly improve the accuracy of 
the Nyström method. However, it may cost an enormous 
amount of time to wait for the k-means clustering to 
convergence, which cannot be tolerated for large databases.  

We use cross validation to determine the parameters λ, μ, 
and set λ = 1.0, μ = 0.5 and δ = 0.9 in our experiments. We 
only generate 500 samples from each of the four boundary in 
each iteration for USPLH and our method. We set the iteration 
number of k-means cluster at 5 for AGH , and m=300 for 
AGH and our method. The parameters in other methods are 
recommended by the corresponding author.  

V. CONCLUSIONS 

In this paper, we derived an unsupervised nonlinear 
hashing method for high dimensional nearest neighbor search. 
The proposed method can capture the non-linear relationships 
through Nyström method, which can also reduce the 
dimensionality to the number of landmark points. The 
proposed improved sequential projection learning method are 
convenient to update operation. The generated pseudolabel 
pairs contribute to achieve a good performance by reducing 
the HAE through correcting some wrong partition pairs. 
Experiments show that our proposed method performs better 
than some of the state-of-the-art methods in Euclidean 
distance for nearest neighbor search.  
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Figure 4: The Precision of Top 300 samples  on SIFT1M 

 

Figure 5: The Precision of Top 300 samples  on GIST1M
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