
International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 05 – Issue 01, January 2016

www.ijcit.com 33

Unsupervised Nonlinear Hashing Using Nyström
Method with Improved Sequential Projection

Learning

Wenqiang Yang

School of Information Science and Technology,

Sun Yat-Sen University, China

Email: qwenyang [AT] 163.com

Hong Shen
School of Information Science and Technology,

Sun Yat-Sen University, China

School of Computer Science,University of

Adelaide, Australia

Abstract—Hashing is becoming a popular and effective
method for nearest neighbor search in large-scale databases, due
to its computational and memory efficient. In this paper, we
present an efficient unsupervised nonlinear hashing method to
transform high-dimensional data to low-dimensional binary data
for fast retrieval. Firstly, we use the Nyström method to
transform the feature space into nonlinear kernel feature space,
to capture the similarity property of the data. Secondly, all
training data are formulated to maximize the entropy over each
hash bit, which can be relaxed to maximize the variance on each
hash bit. Then, we solve the objective function by an improved
sequential projection learning method. In each projection
learning iteration, we reduce the HAE (Hamming Accumulated
Errors) through some pseudolabel pairs generated from all
previous learning projections. During the process, we only need
to store the sum of covariance matrix instead of the similarity
matrix to save memory storage. We also use a more efficient
method to update the covariance matrix after each iteration. We
carry out extensive experiments on two benchmarks, and
demonstrate that the proposed method achieves better
performance than some state-of-the-art hashing approaches.

Keywords - hashing; similarity search; Nyström method;

I. INTRODUCTION

Nearest neighbor search (similarity search) can be formally
described as: given a dataset X = [x1,x2, ... ,xn] ∈ Rd  × n, the
objective is to find a set of nearest neighbors R ⊂ X for a
given query q. A naive brute force solution to find the nearest
neighbors is to compare every item in the database and find
the most similar ones under a predefined similarity metric.
However, it is impractical in large databases, because the
linear complexity is not scalable. To overcome this difficulty,
tree-based methods have been intensively studied for
similarity search in past decades. However, performances of
tree-based methods, such as KD tree [18], R-tree [3], Cover-
Tree [2] are good only for low dimensional data, and
drastically degraded to linear search in high dimensions,
which is called the curse of dimensionality.

How to efficiently search in large databases is critical for
many retrieval applications, such as content-based multimedia

retrieval, plagiarism analysis, and collaborative filtering.
There are numerous challenges for fast nearest neighbor
search in large-scale databases, under the constraints of
storage limitation and computational time requirement.
Currently, hashing-based methods are becoming more
promising for similarity search, due to their fast query speed
and low storage cost. The basic idea of hashing-based methods
is to design a group of functions that map the high-
dimensional data to low-dimensional binary data, and
simultaneously preserve their similarities. After that, we can
simply return all the objects that are hashed into a ball
centered around the query binary code by hash lookup [20],
which can be finished in sublinear or even constant time.

From learning paradigm, there are three categories hashing
method: unsupervised methods, semi-supervised method, and
supervised method. Although supervised and semi-supervised
hashing method, such as Iterative Quantization Canonical
Correlation Analysis (ITQ-CC) [8], Minimal Loss Hashing
(MLH) [16], Two-Step Hashing (TSH) [12], Semantic
Hashing using Tags and Topic Modeling (SHTTM) [13],
Supervised Hashing With Kernels (KSH) [14], Supervised
Hashing with Latent Factor (LFH)[26], Semi-Supervised
Hashing (SSH) [20] have higher precision than unsupervised
hashing methods in semantic similarity search. But
unsupervised hashing method are more common in real
situation for there is often no label and similarity information
for supervised learning. What’s more, unsupervised hashing
method, such as LSH (Locality Sensitive Hashing) [5], SH
(spectral hashing) [21], Self-Taught Hashing (STH) [24],
Density Sensitive Hashing (DSH) [9], Anchor Graph Hashing
(AGH) [15], Spherical Hashing(SPH) [1], and Principal
Component Analysis Hashing (PCAH) [20] also can achieve
good performance in practical situation.

LSH (Locality Sensitive Hashing) [5] is a popular
approach for approximate similarity search. The idea is to use
a family of hash functions which satisfy the locality-sensitive
property: Pr(h(x i) = h(x j)) = sim(x i, x j) [4]. The intuition is
that with multiple hash functions, similar objects have a high
probability of being hashed into the same bucket, and

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 05 – Issue 01, January 2016

www.ijcit.com 34

dissimilar objects have a high probability of being hashed into
different buckets. Its variants [4][11] have been widely
studied. Charikar [4] use a random hyperplane r from zero-
mean multivariate Gaussian N(0, I) to multiply each data
point, which can keep locality-sensitive property:
sim(x i, x j) = x i⋅x j. Kulis [11] designed
sim(x i, x j) = k(x i, x j) = Φ(x i)

TΦ(x j) for some embedding
function Φ(x) that only uses the kernel matrix via sampling-
based method. LSH uses the hash-table structures to filter
most false positives and then only search the candidate objects
in the same buckets, which can achieve efficient approximate
similarity search. However, in practice LSH may lead to very
ineffective hash codes [20][23], since the hash functions using
data-independent random projection.

SH (Spectral Hashing) [21] (also referred as spectral
embedding) has been shown to be one of the state-of-art
approaches for compact binary codes construction. SH define
the similarity between each pair of points by Gaussian kernel

as

2

2

||
,

||
() ()

i jx x
w i j exp

 keeping the property of

neighbors in input space as neighbors in Hamming space, and
also requires the bits to be uncorrelated and balanced.
However, the performance of SH degraded tremendously as
the number of bits increases.

Graph based method also plays an important role in
machine learning system, widely used in information retrieval
and classification problem. It also can be easily used in hash
method. The key step of graph based method is to build a
neighborhood graph. Tony discussed several typical ways to
construct a sparse graph in [19]. But for a large scale
application, it is impractical for it cost O(n2d) time to
construct the graph matrix G, and cost O(n2) memory to store
it. Recently, Anchor Graph Hashing (AGH) [15] appears,
which use anchor points  1 to maintain the neighborhood
structure to construct big graph. The approximate adjacency
graph matrix can be easily constructed by a low-rank matrix
G = KKT, just as the kernel method. It can be better
approximate the semantic similarities, but not perform very
well measured by Euler distance.

PCA (Principal Component Analysis) is a linear data
transformation technique to minimize the mean square error
(MSE), which plays an important role in dimensional
reduction and machine learning. We can quantify the principal
components by a certain threshold to achieve binary codes.
However, there are three drawbacks of the standard PCA and
hence corresponding improvements were proposed: 1) PCA is
sensitive to outliers, due to it use l2 norm, so some robust PCA
are derived, such as L1-norm PCA [10] and R1-PCA [6]. 2)
Errors are accumulated with the real-value principal
components converted into binary codes as the code length
increasing, which is called HAE (Hamming Accumulated

1 Using k-means clustering to obtain m (m<< n) cluster
centers as anchor points

Errors) defined in [23], Wang proposed to correct the errors by
sequential projection learning method in [20]. 3) The linear
transformation can not capture the non-linear relationships, so
nonlinear or kernel method [17] can be used to deal with this
problem.

To address the drawbacks 2) and 3) simultaneously, we
propose an unsupervised nonlinear hashing with improved
sequential projection learning (UNHISPL) method. Most of
the previous hashing methods didn’t consider the HAE except
[20]. The differences between our method and [20] are: First,
we use Nyström method to transform the features into
nonlinear kernel features, to capture the similarity property of
the data. Second, we only store the sum of covariance matrix
instead of similarity matrix S and the points in pseudolabel
pairs, which is more memory efficient. We also use a more
efficient method to update the covariance matrix. Third, we
study the influences of similar and dissimilar pseudolabel
pairs separately in our models, which are equally treated in
[20].

II. UNSUPERVISED LINEAR HASHING WITH SEQUENTIAL

PROJECTION LEARNING

The main purpose of linear hash method is to learn a
binary code matrix Y = [y1, y2, ..., yn] ∈ {±1}b  × n from training
dataset X = [x1, x2, ..., xn] ∈ Rd  × n, and a hash function
W = [w1, w2, ..., wb] ∈ Rd  × b which can map each point to its
hash code (y i = sign(WTx i)). In this paper, a lowercase denote
a column vector, a capital denote a matrix or a set, and the
detail description of symbols are shown in Table I.

A. Linear Projection

Wang [20] proposed an unsupervised linear hashing to
maximize the entropy over each hash bit, which can be relaxed
to maximum variance, the formula is written as follows:

 JW = ∑iw i
TXXTw i = tr{WTXXTW} (1)

s.t WTW = I

X is normalized to have zero mean. The orthogonal constraint
WTW = I to decorrelate the hash bits, the solution can be
achieved in a single step through eigenvalue decomposition
just as the standard PCA. Actually, the solution is the top b
eigenvectors of the covariance matrix C = XXT. Suppose that
λ1 ≥ λ2 ≥ ...... ≥ λb are eigenvalues, and w1, w2, ...., wb are their
corresponding eigenvectors. Clearly the bigger eigenvalue is,
the more information the eigenvector carries (λ i = var(wk

Tx)).
However, in most practical data sets, the variance is mainly
contained in a few top principal directions, after those
directions are removed, the rest of picked eigenvalues are
small because of the orthogonal constraint WTW = I. Wang
revealed that nonorthogonal constraint has more significant
performance in [20].

B. Sequential Projection Learning

To learn a nonorthogonal solution, a sequential projection
learning method had been proposed in [20]. The idea is quite
intuitive, compute the eigenvector wk one by one. When

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 05 – Issue 01, January 2016

www.ijcit.com 35

Table 1 : Description of symbols

computed a eigenvector, some pseudolabel pairs are
generated, which will be used in the next projections learning
to correct the wrong partition on those pairs. The method of
generating pseudolabel pairs will be described in the next part.
Here Mk, Dk denote the set of similar and dissimilar
pseudolabel pairs generated in the k-th projection learning.
Suppose XL

k contains all the points in Mk and Dk, p denote the
number ofpoints. The similarity matrix Sk ∈ {±1, 0}p  × p, and
the entity S i j

k is assigned to 1 and  − 1 if the corresponding
data pair items (x i, x j) belong to Mk and Dk, or else assigned to
0. Then the objective function on all previous pseudolabel
pairs at k-th iteration can be represented as:

 0 , ,

1

k t t
i j i j

T T T T

w k i j k k i j k
t x x M x x

k

D

R w x x w w x x w

1

0

()
k

T t t tT

k L L k

t

w X S X w

 (2)

 Intuitively, it not only desires similar points to have the
same signs but also large projection magnitudes, meanwhile
dissimilar points not only with different signs but also as far as
possible [20]. The objective function for learning the k-th
projection contain the main part (1) and pseudolabel pairs’
error correction part (2) as following:

1

0

()
k

k
T T k t t t tT

w k L L k

t

J w XX X S X w

 (3)

Although all the previous pseudolabel pairs have
contribution to current projection learning. However, the
contribution is decayed exponentially by the factor δ. Note
that after each projection learning, the direction is removed

from X to minimize the redundancy in bits.2  The formula (3)
can be easily calculated through eigenvalue decomposition.

C. Generate Pseudolabel Pairs

As we known that, in each iterative projection learning
process, using a threshold to partition the real-valued
projection component into binary bit, always make wrong
partition on some pairs.The error accumulated in each iterative

projection, which defined as HAE (Hamming Accumulated
Errors) in [23]. Suppose in each iterative projection learning,
all points are projected on the direction wk (the blue horizontal
line), as shown in Fig.1. and the solid red vertical line is the
partition boundary. We can see that (r − , r + ) are probably
the similar pairs, (r − , R − ), (r + , R + ) are probably the
dissimilar pairs. Concretely, (x3, x4),  (x9, x10) are similar, but
have different sign of hash bit; (x1, x9),(x3, x7)
,(x4, x12), (x6, x10) are dissimilar, but have the same sign of
hash bit. So we can generate the pseudolabel pairs as follow:

{(,) () () 1,| | ,| | , (,) }.

{(,) () () 1,| | ,| | , (,) }.

T TM x x h x h x w x b w x b d x x
i j i j i j i j

T TD x x h x h x w x b w x u d x x
i j i j i j i j

∣

∣
(4)

Where M denote the set of similar pairs, D denote the set of
dissimilar pairs, h(x) = sign(wTx) , d(x i, x j) is the Euclidean
distance between x i and x j. Note that, we only select one pair
of (x i, x j) and (x j, x i) in M or D. We add the distance
constraints to make sure that they are near true similar or
dissimilar pairs on Euclidean distance.

2 X can be updated by
T

k kX X w w X

Symbols Description

X original data matrix, a column denote a point x i

Y binary hash code, a column denote a hashing code y i corresponding to x i

Z nonlinear data matrix, transformed from X, a column denote z i corresponding to x i with different dimensionality

W hash function, each column w i denote a projection vector

Mk the set of similar pseudolabel pairs generated in k-th projection learning process

Dk the set of dissimilar pseudolabel pairs generated in k-th projection learning process

XL
k the points appearance in Mk and Dk, XL

k ∈ Rd  × p, p is the number of points, d is dimensionality

Ck
M the covariance matrix of the similar pseudolabel pairs in Mk

Ck
D the covariance matrix of the dissimilar pseudolabel pairs in Dk

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 05 – Issue 01, January 2016

www.ijcit.com 36

FIGURE 1：GENERATE THE PSEUDOLABEL PAIRS THROUGH THE PRINCIPAL COMPONENT W
T
 X

III. UNSUPERVISED NONLINEAR HASHING WITH

IMPROVED SEQUENTIAL PROJECTION LEARNING

D. Nonlinear Projection

To address the drawbacks of unsupervised linear hashing,
we present an unsupervised nonlinear hashing to effectively
capture the latent geometric information of the data. As
described in [15][23], the nonlinear hash function can be
defined as:

() (()), 1,2,3,.....T

k kh x sign w z x k b (5)

wk is the k-th projection vector. In [23], z(x) is the x’s
corresponding column of a regression matrix Z that measures
the underlying relationship between the raw samples and the
corresponding anchors. In this paper, we use the Nyström
method [22][7][25] to compute the nonlinear feature matrix Z
which can capture the similarity relationship. The Nyström
method is a technique derived from calculating numerical
approximations to eigenfunction problems, which use a
sampling-based approach to reconstruct the kernel matrix K
as:

K = ETA  − 1E = ZTZ (6)

where E i j = k(u i, x j), E ∈ Rm  × n, A i j = k(u i, u j), A ∈ Rm  × m, u i is
a random sample from the dataset as the landmark point. We

employ the Gaussian kernel as:
2

2

|| ||
(,) ()

i j

i j

x x
k x x exp

 , and A

is a positive semidefinite matrix, Z = A  − 1/2E. is set as in

[15].

For a new sample xn, we can easily get the nonlinear

feature
1

2
n nz A e

 ,

1 2, , ,(() () ())...... , T

n n n m ne k u x k u x k u x . Replace X by Z,

the formula (1) can be rewritten as:

JW = ∑iw i
TZZTw i = tr{WTZZTW} (7)

E. Improved Sequential Projection Learning

Given a set of points
1{ }n

i iz
, we can easily compute the

set (z i, z j) ∈ M if z i and z j are similar and (z i, z j) ∈ D if

dissimilar using formula (4) after each projection learning.
From empirical analysis, we expect the distance between each
similar pairs being minimized, dissimilar pairs being
maximized. We can write the objective function on the
pseudolabel pairs at the k-th iteration as:

2

2

: {|| || | }

: {|| || | }

T T T M

k k k k

T T T D

k k k k

min E w z w z M w C w

max E w z w z D w C w

 (8)

where CM and CD is the covariance matrix of the similar and
dissimilar nonlinear feature differences. Here we do not use
the similarity matrix S. This bring several advantages: First, it
can save memory, only need o(d2) storage space. Second, it
can deal with more large number of pseudolabels. Third, it
benefit for efficient updating operation in the next step.

The finial objective function of our nonlinear hashing
method for calculate the k-th projection can be described as
follow:

1 1

0 0

()
k

k k
T k t D k t M

w k k t t k

t t

J w C C C w

 (9)

where Ck = ZkZk
T,  and λ, μ is parameters trade-off between

―false positive‖ and ―false negative‖ rates. δ has the same
effect as in formula (3). The solution of wk can be easy
computed by eigenvalue decomposition.

To minimize the redundancy in bits, we will subtracting
the direction wk after the k-th projection learning, so the
contribution of subspace spanned by that direction is removed
from Z . We can update Z as following:

1

T

k k k k k k kZ Z w w Z U Z (10)

where Uk = (I − wkwk
T). We can efficiently update the

covariance Ck  + 1 = Zk  + 1Zk  + 1
T = (UkZk)(UkZk)

T, the same
updating are applied to Ck

M and Ck
D as follow:

1

1

1

T

k k k k

M M T

k k k k

D D T

k k k k

C U C U

C U C U

C U C U

 (11)

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 05 – Issue 01, January 2016

www.ijcit.com 37

Note that the complexity of update Ck  + 1 is O(m3), its

O(d2n) in sequential projection learning, d m n . The

update of CM, CD are also more convenient and efficient than
the same part in linear hashing with sequential projection
learning. The detail pseudo-code is in Algorithm 1.

Remarks: At beginning, there exist no pseudolabel pairs. As k

increasing, there are more and more pseudolabel pairs

accumulated from all previous projection learning. However,

the contribution of pseudolabel pairs is decayed exponentially

by the factor δ. Note that W is not orthogonal since the

pseudolabel pairs contained the whole space information.

IV. EXPERIMENTS

F. Datasets and Evaluation Metric

At the beginning of this part we will describe two
benchmark datasets: SIFT1M and GIST1M 3 . SIFT1M
contains one million SIFT features extracted from random
images. Each item in the data set is a 128-dimensional vector.
For limit of computing resources and convenience of
evaluation, we only randomly select 100K samples for training
and 1K as query samples. GIST1M contains one million GIST
features, each item is a 960-dimensional vector. We also
randomly select 100K samples for training and 1K as query
samples. We use the same criterion as in [20][9], that a point is

3 http://corpus-texmex.irisa.fr/

considered to be a true neighbor if it lies in the top 1% points
closest (measured by the Euclidean distance in the original
space). All the experiments are running on my own ordinary
PC with Intel Core i7-3770 CPU and 4GB RAM.

Four hashing performance measures are employed in our
empirical evaluations: mean average precision (MAP),
precision within hamming radius 2 (PH2), Recall and TOP-
300. To perform a fair evaluation, we use the same two criteria
as [20]. 1. Hamming ranking. All the points in the database are
ranked according to their Hamming distance from the query
and the desired neighbors are returned from the top of the
ranked list. The complexity of hamming ranking is linear. 2.
Hash lookup. A lookup table is constructed using the database
codes and all the points in the buckets that fall within a small
hamming radius r of the query are returned, it is very fast
when r is small.

G. Comparison with Existing Algorithms

Seven state-of-the-art hashing methods for nearest
neighbor search are compared. We wrote the code of LSH,
used the codes of other methods provided by the respective
authors.

1. Locality Sensitive Hashing (LSH [5]): Randomly select
projections from a Gaussian distribution with zero-mean and
identity covariance, use those projections to construct the hash
functions.

2. Principal Component Analysis Hashing (PCAH [20]):
Directly use the largest k principal directions of the covariance
matrix to construct hash functions.

3. Unsupervised Sequential Projection Learning Hashing
(USPLH [20]): Generate pseudolabels at each iteration using a
linear sequential projection learning method.

4. Anchor Graph Hashing (AGH [15]): Use a low-rank
matrix to approximate the adjacency matrix through anchor
graph. AGH with two-layer is used in our comparison for its
superior performance over AGH with one-layer.

5. Spectral Hashing (SH [21]): Quantize the values of
eigenfunctions computed along PCA directions of the data.

6. Kernelized Locality Sensitive Hashing (KLSH [11]):
Generalize the LSH method to the kernel space use sampling-
based method.

7. Unsupervised Nonlinear Hashing With Improved
Sequential Projection Learning (UNHISPL): Our proposed
method in this paper.

H. Results and Parameters

In the following experiments, we conduct the intensive
evaluation on seven hashing methods using two data sets.
Fig.2 show the evaluations of MAP, PH2, Recall, Precision-
Recall on SIFT1M, and the same evaluations on GIST1M
showed in Fig.3. From Fig.2 (a) and Fig.3 (a) , we can see that
two random projection based method (LSH,KLSH) have a low
MAP when the code length is short. PCAH has little
improvement as the code length increase, especially obvious

Input: data X , length of hash codes b, parameter λ , μ , δ.

Output: projection matrix W.

Computing the kernel feature Z1 for all training data using

formular (6) , Z1 are normlized to zero mean;

Initialize
1 1 1 1 1, 0, 0T M DC Z Z C C ;

for k=1 to b do

 Sum the covariance matrix:

D M

k k k kM C C C ;

 Calculate the first eigenvector e of M k and set:

 Wk =e;

 if k ≥ b break;

 Generate the pseudolabel pairs's (satisfying fomulation

(4)) difference covariance matrix ,M DC C ;

 Calculate the residual for Zk+1 using (10) ;

 Update
1 1 1, ,M D

k k kC C C
using (11) ;

 Sum covariance matrix :

1 1 ;M M M

k kC C C 1 1

D D D

k kC C C ;

end for

return W.

Algorithm 1:Unsupervised Nonlinear Hashing With

Improved Sequential Projection Learning

Hashing (UNHISPL)

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 05 – Issue 01, January 2016

www.ijcit.com 38

in Fig.3 (a), this means that the last projections make no use,
because of the orthogonal constraint WTW = I, which is
consistent with [9]. Our proposed method provides better
performance than USPLH show that nonlinear method is
better than linear method. Fig.2 (b) and Fig.3 (b) show that all
methods exception AGH, PH2 first go up, then go down as the
code length increasing. This is main because as the code
length increase there are often no nearest neighbor in radius 2
causing precision to zero 4 .  But AGH can maintain some
nearest neighbors by anchors, its success rate [14] is higher
than other methods, so its PH2 increasing as the code length
increasing. The Recall curve and Precision-Recall curve are in
the case of 32-bits for all method showed in (c) and (d) of
Fig.2 and Fig.3, it obvious that our proposed method achieve
better performance.

In Table.2 we can see that AGH cost most time in the
training process, because it need k-means cluster center to be
the anchor points. Compare the training time on SIFT1M and
GIST1M, We can see that as the dimensionality increase the
time of UNHISPL does not change, this is because the
nonlinear transformation through Nyström method causing the
dimensionality fixed to m 5 on both data sets in our
experiments. The query time is accumulated all 1K query
points. LSH, PCAH and USPLH are fast than AGH, SH,
KLSH and UNHISPL, because those hash methods need some
preprocess which cost a little more time.

4 For a query data, if there is no data located in its
hamming radius 2 , the precision will be 0.

5 m is fixed at 300 in our experiments. But for good
performance m shold be increasing as the number of training

point increasing. From experience, m n is ok

Figure 2: Performance evaluations on SIFT1M:

 (a) Map. (b) PH2. (c) Recall. (d) Recall-Precision.

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 05 – Issue 01, January 2016

www.ijcit.com 39

Figure 3: Performance evaluations on GIST1M:

(a) Map. (b) PH2. (c) Recall. (d) Recall-Precision.

Table 2: Time cost on SIFT1M and GIST1M

Method Name LSH PCAH USPLH AGH SH KLSH UNHISPL

Training Time (s) on SIFT1M 0.1087 0.1408 11.404 129.29 2.4378 1.2081 37.158

Training Time (s) on GIST1M 0.5844 2.0166 185.76 904.57 4.3097 2.8344 37.905

Query Time (s) on SIFT1M 0.0014 0.0013 0.0019 0.0146 0.0223 0.0076 0.0122

Query Time (s) on GIST1M 0.0054 0.0062 0.0093 0.0260 0.0183 0.0186 0.0214

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 05 – Issue 01, January 2016

www.ijcit.com 40

Fig.4 and Fig.5 are the precision of top 300 samples on
SIFT1M and GIST1M. We ranked all the point in database
according to their Hamming distance from the query point,
and select the nearest 300 points to calculate the precisions.
With the number of bits increasing, the performance of
UNHISPL are more and more good than other methods.

Since UNHISPL use random samples as the landmark
points for Nyström method in all of the experiments, the
results of UNHISPL are the average of 5 trials. The number of
landmark points are fixed to 300 in our experiments. As our
experience that using the centers of the k-means clustering as
the landmark points can significantly improve the accuracy of
the Nyström method. However, it may cost an enormous
amount of time to wait for the k-means clustering to
convergence, which cannot be tolerated for large databases.

We use cross validation to determine the parameters λ, μ,
and set λ = 1.0, μ = 0.5 and δ = 0.9 in our experiments. We
only generate 500 samples from each of the four boundary in
each iteration for USPLH and our method. We set the iteration
number of k-means cluster at 5 for AGH , and m=300 for
AGH and our method. The parameters in other methods are
recommended by the corresponding author.

V. CONCLUSIONS

In this paper, we derived an unsupervised nonlinear
hashing method for high dimensional nearest neighbor search.
The proposed method can capture the non-linear relationships
through Nyström method, which can also reduce the
dimensionality to the number of landmark points. The
proposed improved sequential projection learning method are
convenient to update operation. The generated pseudolabel
pairs contribute to achieve a good performance by reducing
the HAE through correcting some wrong partition pairs.
Experiments show that our proposed method performs better
than some of the state-of-the-art methods in Euclidean
distance for nearest neighbor search.

ACKNOWLEDGMENT

This work is supported by The 985 Project funding of Sun
Yat-sen University, Australian Research Council (ARC)
Discovery Project DP150104871 and National Science
Foundation of China General Projects funding 6117023. The
corresponding author is Hong Shen.

Figure 4: The Precision of Top 300 samples on SIFT1M

Figure 5: The Precision of Top 300 samples on GIST1M

REFERENCES

[1] Y Heo J P, Lee Y, He J, et al. Spherical hashing[C]//Computer Vision
and Pattern Recognition (CVPR), 2012 IEEE Conference on. IEEE,
2012: 2957-2964.

[2] Sham Kakade Alina Beygelzimer. Cover trees for nearest neighbor.
Proceedings of the thiry-fourth annual ACM symposium on Theory
of computing:97—104, 2006.

[3] Lars Arge, Mark De Berg, Herman Haverkort, Ke Yi. The priority R-
tree: A practically efficient and worst-case optimal R-tree. ACM
Transactions on Algorithms (TALG), 4(1):9, 2008.

[4] Moses S Charikar. Similarity estimation techniques from rounding
algorithms. Proceedings of the thiry-fourth annual ACM symposium
on Theory of computing:380—388, 2002.

[5] Mayur Datar, Nicole Immorlica, Piotr Indyk, Vahab S Mirrokni.
Locality-sensitive hashing scheme based on p-stable distributions.
Proceedings of the twentieth annual symposium on Computational
geometry:253—262, 2004.

[6] Chris Ding, Ding Zhou, Xiaofeng He, Hongyuan Zha. R 1-PCA:
rotational invariant L 1-norm principal component analysis for robust

subspace factorization. Proceedings of the 23rd international
conference on Machine learning:281—288, 2006.

[7] Charless Fowlkes, Serge Belongie, Fan Chung, Jitendra Malik.
Spectral grouping using the Nystrom method. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 26(2):214—225, 2004.

[8] Yunchao Gong, Svetlana Lazebnik. Iterative quantization: A
procrustean approach to learning binary codes. Computer Vision and
Pattern Recognition (CVPR), 2011 IEEE Conference on:817—824,
2011.

[9] Zhongming Jin, Cheng Li, Yue Lin, Deng Cai. Density Sensitive
Hashing. , 2012.

[10] Qifa Ke, Takeo Kanade. Robust L 1 norm factorization in the
presence of outliers and missing data by alternative convex
programming. Computer Vision and Pattern Recognition, 2005.
CVPR 2005. IEEE Computer Society Conference on, 1:739—746,
2005.

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 05 – Issue 01, January 2016

www.ijcit.com 41

[11] Brian Kulis, Kristen Grauman. Kernelized locality-sensitive hashing.
Pattern Analysis and Machine Intelligence, IEEE Transactions on,
34(6):1092—1104, 2012.

[12] Guosheng Lin, Chunhua Shen, David Suter, Anton van den Hengel. A
general two-step approach to learning-based hashing. Computer
Vision (ICCV), 2013 IEEE International Conference on:2552—2559,
2013.

[13] Qifan Wang, Dan Zhang, and Luo Si. Semantic hashing using tags
and topic modeling. In Proceedings of the 36th international ACM
SIGIR conference on Research and development in information
retrieval, pages 213–222. ACM, 2013.

[14] Wei Liu, Jun Wang, Rongrong Ji, Yu-Gang Jiang, Shih-Fu Chang.
Supervised hashing with kernels. Computer Vision and Pattern
Recognition (CVPR), 2012 IEEE Conference on:2074—2081, 2012.

[15] Wei Liu, Jun Wang, Sanjiv Kumar, Shih-Fu Chang. Hashing with
graphs. Proceedings of the 28th International Conference on Machine
Learning (ICML-11):1—8, 2011.

[16] Mohammad Norouzi, David M Blei. Minimal loss hashing for
compact binary codes. Proceedings of the 28th International
Conference on Machine Learning (ICML-11):353—360, 2011.

[17] Bernhard Schölkopf , Alexander Smola , Klaus-Robert Müller .
Nonlinear component analysis as a kernel eigenvalue problem. Neural
computation, 10(5):1299—1319, 1998.

[18] Chanop Silpa-Anan, Richard Hartley. Optimised KD-trees for fast
image descriptor matching. Computer Vision and Pattern
Recognition, 2008. CVPR 2008. IEEE Conference on:1—8, 2008.

[19] Jun Wang Tony Jebara. Graph Construction and b-Matching for
Semi-Supervised Learning. , 2009.

[20] Jun Wang, Sanjiv Kumar, Shih-Fu Chang. Semi-supervised hashing
for large-scale search. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 34(12):2393—2406, 2012.

[21] Yair Weiss, Antonio Torralba, Rob Fergus. Spectral hashing.
Advances in neural information processing systems:1753—1760,
2009.

[22] Christopher Williams, Matthias Seeger. Using the Nyström method to
speed up kernel machines. Proceedings of the 14th Annual
Conference on Neural Information Processing Systems, (EPFL-
CONF-161322):682—688, 2001.

[23] Chenxia Wu, Jianke Zhu, Deng Cai, Chun Chen, Jiajun Bu. Semi-
supervised nonlinear hashing using bootstrap sequential projection
learning. Knowledge and Data Engineering, IEEE Transactions on,
25(6):1380—1393, 2013.

[24] Dell Zhang, Jun Wang, Deng Cai, Jinsong Lu. Self-taught hashing for
fast similarity search. Proceedings of the 33rd international ACM
SIGIR conference on Research and development in information
retrieval:18—25, 2010.

[25] Kai Zhang, Ivor W Tsang, James T Kwok. Improved Nyström low -
rank approximation and error analysis. Proceedings of the 25th
international conference on Machine learning:1232—1239, 2008.

[26] Peichao Zhang, Wei Zhang, Wu-Jun Li, Minyi Guo. Supervised
Hashing with Latent Factor Models. , 2014.

