
International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 05 – Issue 01, January 2016

www.ijcit.com 71

Job shop Scheduling under Answer Set Programming

Omar EL-Khatib

Computer Science Department

Taif University

Taif, SA

Email: omer.khatib [AT] tu.edu.sa

Abstract—Answer set programming (ASP) is a new

programming language paradigm combining the declarative

aspect with non-monotonic reasoning. In this paper, we will show

an application of job shop scheduling in Answer Set

Programming. The problem is a highly combinatorial and is

generally solved by specific programs written in procedural

languages. We present an approach to solve the job shop

scheduling problem in Answer Set Programming and compare

them with the standard ones. It turns out that, although Answer

Set Programming greatly simplifies the problem statement. It is

comparable in efficiency to specialized programs. (Abstract)
Keywords-component; job shop scheduling, answer set

programming, logic programming.

I. INTRODUCTION

Many real-life problems belong to the class of NP-

complete problems [19]. Logic Programming under answer set

semantics provides a powerful language for a logical

formulation of these problems. Its nondeterministic

computation liberates the user from the tree-search

programming. Answer set programming (ASP) is a form of

declarative programming that is emerged from logic

programming with negation and reasoning formalism that is

based on the answer set semantics [1, 2]. ASP is considered in

the late 1990s as a new programming paradigm [3]. Answer

set programming languages has been used to solve many real

life application problems, among them, production

configuration [4], decision support for NASA shuttle

controllers [5], synthesis of multiprocessor systems [6],

reasoning tools in biology [7, 8], team building [9],

composition of Renaissance music [10], and many more. A

number of solvers have been proposed, such as: smodels [11,

12, 13], dlv [14], cmodels [17], assat [15, 16], and clasp [18].

In this paper, we show an application of Answer Set

Programming to real life job shop scheduling problem

occurring in a factory. The job shop scheduling problem

(JSSP) is a very important practical problem. Efficient

methods of solving it can have major effects on profitability

and product quality. However, the JSSP is considered a

member among the worst class of NP complete problems [7].

In general, the difficulty of the general JSSP makes it very

hard for conventional search based methods to find near

optima in reasonable time.

The JSSP is to schedule jobs on different machines

minimizing the total time spent to complete all jobs. Given an

n-jobs and m-machines, each job comprises a set of operations

which must each be done on a different machine for different

specified processing time, in a given job-dependent order. Each

job must be processed in an uninterrupted fashion or a non-

preemptive scheduling environment. It is not necessarily for a

job to visit all the machines. The job can visit a subset of the

existing set of machines. Each job has a release time and a due

time to complete. The release time of a job is the arrival time

for that job. The due time is the time that the job must be

completed.

Example 1: assume we have 3-jobs j1, j2 and j3 and three

machines m1, m2, and m3. Table 1, shows the pre-specified

order of operation for each job on the machines. The pair (m,

t) specifies the processing time for a particular operation on

each machine. For example, to complete job J1, it must

completes three operations in the following order: visit

machine M1 for 7 unit of time, then machine M3 for 8 unit of

time, then machine M2 for 10 unit of time. The table also,

shows the due time and release time for each job.

Table 1 Job shop scheduling example, where (m, t) is the machine name

and processing time pair for the operation

Jobs
Operations Release

Time

Due

Time (m, t) (m, t) (m, T)

J1 1, 7 3, 8 2, 10 2 25

J2 2, 6 1, 4 3, 12 4 30

J3 1, 8 2, 8 3, 7 0 35

A standard 6x6 benchmark problem (i.e. j=6 and m=6)

from [20]. A legal schedule is a schedule of job sequences on

each machine such that each job's operation order is preserved,

a machine can process at most one operation at one time, and

different operations of the same job are not simultaneously

processed on different machines. The problem is to minimize

the total time elapsed between the beginning of the first

operation and the completion of the last operation (this is

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 05 – Issue 01, January 2016

www.ijcit.com 72

called the makespan). Other measures of schedule quality

exist, but shortest makespan is the simplest and most widely

used criteria. For example 2, the minimum makespan is known

to be 55.

Several methods used to solve the JSSP using B&B [22],

simulated annealing [23], tabu search [24, 25, 26] and genetic

algorithms [27, 28, 29, 30, 32], practical swarm optimization

[31]. However, up to our knowledge, there is no answer set

program implementation for the JSSP.

In this paper, we first give a brief overview of Answer Set

Programming and its semantics. We then, present the job shop

scheduling problem formally. After that, we present the

solution to the job shop scheduling problem under Answer Set

Programming. Finally, we present experimental results and

conclusion.

II. BRIEF OVERVIEW OF ANSWER SET PROGRAMMING

We briefly recall the basics about ASP. An ASP-program

is a collection of rules of the form

a0 a1, …, am, not am+1, …, an (1)

Where, each ai is an atom. The head of the rule is a

positive atom which is the left hand side of the clause in (1).

The body of the rule is composed of literals (a literal is an

atom or its negation, denoted by not a) which is on the right

side of the clause in (1). A rule without body is a fact. A rule

without head is a constraint. Also, the rules can be positive

(m>0); negative (n>0) or both (m>0 and n>0). The symbol not

stands for default negation, also known as negation as failure.

If P is a ground, positive program (no negation as failure

used), a unique answer set is defined as the smallest set of

literals constructed from the atoms occurring in program P

(minimal model). The last definition can be extended to any

ground program P containing negation by considering the

reduct of P with respect to a set of atoms X obtained by the

Gelfond-Lifshitz’s operator [1]. The reduct, PX, of P relative to

X is the set of rules:

a0 a1, …, am

for all rules (1) in P such that am+1, …, an X. Then PX is a

program without the negation not. Then X is an answer set for

P if X is an answer set for PX.

Once a program is described as an ASP-program P, its

solutions, if any, are represented by the answer set of P. One

important difference between ASP semantics and other

semantics is that a logic program may have several answer

sets or may have no answer set at all.

Answer Set Programming is a totally declarative language.

ASP programs are not algorithms describing how to solve the

problem; the program is just a formal description of the

problem. The solution is completely found by the solver. An

ASP solver requires grounded programs as input, and that is

why before searching the answer set or solutions, the program

is grounded by a preprocessor. Actually there are many ASP’s

solvers such as: smodels, dlv, assat, cmodels, and clasp. The

computation of answer sets is done in two phases: (i)

grounding of the logic program (P): which is eliminating

variables to obtain a propositional program ground(P). (ii)

Computation of answer sets on the propositional program

ground(P).

III. JOB SHOP SCHEDULING PROBLEM

Job shop scheduling is an optimization problem in which

jobs are assigned to resources at particular times. There are

several problem formulation for the JSSP, we have adopted

the one presented by [32] as follows:

Given a set of n-jobs J={j1, j2, …, jn}, and m-machines M =
{M1, …, Mm}. Let nj be the number of operations of job j.
Denote Ojkq the operation k of job j to be processed on machine
q, Tjkq and Pjkq be the start time and processing time of
operation Oikq respectively. Denote rj and dj the release time
(earliest start time) and due time (latest ending time) of job j.
Let Sj denote the set of operation pairs (Ojkp, Ojlq) of job j,
where Ojkp must be processed before Ojlq. Let Rq be the set of
operations Ojkq to be processed on machine q. Our goal is to
schedule all jobs on m-machines, while trying to minimize the
completion time or the makespan. The makespan is the total
time of the schedule (that is, when all the jobs have finished
processing). Given a schedule U, the completion time for a job

j is CU
j=max(Tjkq+Pjkq) for all k{1, …, nj}, j J and q M.

the makespan of a schedule S is the maximum completion time

over all jobs in schedule U: CU
max=maxjJ (Tjkq+Pjkq), k{1, …,

nj} and q M. The job shop scheduling problem is represented
as follows:

Minimize CU
max, where, CU

max = maxjJ(Tjkq + Pjkq)

Subject to:

1) Tjwq – Tjkq >= Pjkq, where (Ojkp, Ojwp) Sj, k, w {1, …,

nj}, jJ and q M.

2) Tjwq – Tikq >= Pikq or Tikq – Tjwq >= Pjwq, where Oikq, Ojwq

 Rq, i, j J, q M, k {1, …, ni} and w {1, …, nj}.

3) rj <= Tjkq <= dj – Pjkq, j J, k {1, …, nj}, and q M.

Equation (1) represents the sequence constraint; Equation
(2) represents resource constraints in a disjunctive format; and
equation (3) represents the release and deadline time
constraints.

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 05 – Issue 01, January 2016

www.ijcit.com 73

IV. PROBLEM DESCRIPTION AND RESOLUTION IN ASP

In this section, we describe job shop scheduling problem in

the language of gringo which is the grounder for the answer

set programming solver. Initially, all operations of each job

are in a waiting state. If an operation is selected for processing

then the operation waiting state is removed. Once the

operation processing is completed the operation state is in the

complete state. Similarly, initially all machines are in the

empty state. If a machine is selected for processing an

operation, then the machine empty state is removed. If the

machine completes processing the operation, then the machine

will be in the empty state again. Six conditions need to be

satisfied:

N1: When a machine selects an operation for a job, the

machine must not be busy.

N2: Each operation of a job selected for processing must

be in non complete state.

N3: each operation of a job selected for processing must be

completed before the due time.

N4: Each operation of a job selected for processing must

be after the release time for that job.

N5: The operation processing order must be preserved.

A. Constructing the data module D1 of ASP:

This module defines an instance of the JSSP. This module
consists of a list of jobs, operations and machine. The jobs list
is defined as a fact of the following form:

job(jobName, releaseTime, dueTime).

The operations list for each job is defined as a fact of the

following form:

operation(Job, operation, processTime, machine).

To define the order of processing of operations in each job,

the following operation dependency fact is defined:

dep(jobName, operation1, operation2)

This facts means that 'operation1' depends on 'operation2'

in a particular job.

The machines list available is defined as a fact of the

following form:

machine(machineName).

B. The job shop schduling preparation module D2:

This module defines new predicate that will simplify and

speeding up finding the answer set models of the JSSP. In this

module we assume that the total schedule time 'n' is specified

by the user. It consists of the following rules:

 The first group consists of determining operation

dependency. It is suffice to write the following rules:

dependent(J, O) :- dep(J, O, O1).

nonDependent(J, O) :- operation(J, O, P, M),

 not dependent(O).

The first rule defines all operations that are dependent

on some other operations, i.e. operations that cannot be

executed until some operation completes its execution.

The rule defines that operation 'O' of job 'J' is dependent

on some other operation. The second rule defines the

operations that are not dependent on other operations, i.e.

operations that are at the beginning of each job.

Therefore, we have two kinds of operations; the non-

dependent operations and the dependent operations.

 The second group consists of one rule that finds the total

time to execute all operations for each job. This is done in

ASP as:

totalTimeJob(J, T) :- T = #sum { P, O:

operation(J, O, P, M) }, job(J, R, D).

This rule uses the aggregates 'sum' to find the total

time needed to execute all operations of each job 'J'

available.

 The third group consists of finding the possible start time

of each operation in each job. The start time is a range of

possible times. Assume we have a job with the following

operations-processing time pair: (O1, t1), …, (Os, ts). In

addition, assume that the operations are ordered in the

same order listed, i.e. O2 depends on O1, O3 depends on

O2, …, Os depends on O(s-1). Assume also that the total

time of all operations is T = . This time T is the

minimum time needed to finish all operations of that job.

Let the total schedule time specified by the user is n. The

first operation O1 may start from 0 to n-T. The n-T is

because operation O1 cannot starts at n-T+1, since it needs

a minimum of T-time unit to complete. Similarly,

operation O2 may start from t1 (which is after completing

O1) to n-T+t1. The following set of rules will do that:

op(J, O, P, M, R, E) :- operation(J, O, P, M),

notDependent(J, O), totalTimeJob(J, T),

E=n-T, job(J, R, D), E<D.

op(J, O, P, M, R, D) :- operation(J, O, P, M),

notDependent(J, O), totalTimeJob(J, T),

E=n-T, job(J, R, D), E>=D.

 op(J, O, P, M, S, E) :-

operation(J, O, P, M), dep(J, O, O1),

op(J, O1, P1, M1, S1, E1),

totalTimeJob(J, T), S=T1+P1,

E = n-T+S, job(J, R, D), E<D.

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 05 – Issue 01, January 2016

www.ijcit.com 74

 op(J, O, P, M, S, D) :-

operation(J, O, P, M), dep(J, O, O1),

op(J, O1, P1, M1, S1, E1),

totalTimeJob(J, T), S=T1+P1,

E = n-T+S, job(J, R, D), E>=D.

The rules determines the possible range of time [S, E]

to execute an operation 'O' of job 'J; with processing time

'P' on machine 'M'. The first two rules are for non-

dependent operations. The rules compare the due time for

the job with possible time range and select the earlier

time. The second two rules determine the possible time

range [S, E] to execute dependent operations. It computes

the possible time range for the operation from the

dependent operation and compares the times with the due

time of the job. These four rules handle the constraint N3

and N4 that are listed in section IV.

 The fourth set of rules consists of finding the time range

for each machine, it is suffice to write:

Initial(M) :- operation(J, O, P, M),

 notDependent(J, O), job(J, R, D),

R=0, D>0.

minPr(M, Pr) :- Pr= #min { P : task(J, O, P, M),

notDependent(J, O) }, machine(M), initial(M).

minPr(M, 0) :- machine(M), not initial(M).

time(M, 0) :- machine(M).

time(M, P..n) :- minPr(M, P).

This group of rules determines the lower bound of the

time-steps from [0, n] for each machine – n is determined by

the user and represents the total time for the schedule.

The first rule determines the availability of non-dependent

operations for each machine. The second rule computes the

least time to start a machine 'M'. It computes the least

processing time among all non-dependent operations for a

particular machine. This time will be considered the lower

bound for the time of each machine. The third rule says that

the lower bound for a machine that do not have non-dependent

operations is zero. The fourth rule specifies that all machines

must start at zero. The fifth rule specifies that the time step for

all machines is the lower bound computed to the total time 'n'

of the schedule that is determined by the user. These rules

have great effects of the performance of ASP.

Note, the rules defined in this module are all facts and it

accelerates the search for a solution significantly.

C. The job shop schduling solver module D3:

This module describes solving the job shop scheduling

problem. We are mainly interested in finding a schedule of

processing all operations of all jobs in the shortest makespan.

The module D3 will contain fluent busy(M, T) – "machine

M is in a busy state at time T", fluent complete(J, O, T) –

"operation O of job name J is in a complete state at time T".

One type of action – 'select', will be used.

The transition diagram of D2 will be described by group of

axioms:

 The first group defines the executability conditions for

actions. We have one action "select(J, O, P, M, T)" which

means selecting an operation O with a processing time P

of job J to be executed on machine M at time T. The rules

are as follows:

 0 { select(J, O, P, M, T) : op(J, O, P, M, S, E),

 T>=S, T<=E } 1 :- machine(M), time(M, T),

not busy(M, T), avail(M, T).

The action "select" selects one operation among the

operations available to execute on a machine. The rule is a

choice rule that is bounded by 0 and 1. This means

selecting an action at any time for a machine is arbitrary. It

means further that an action is either selected or not

selected. These rules are the generate rules that will

generate all possible schedules. The rule will execute when

the machine 'M' is not busy at time 'T' ('not busy(M, T)')

and there is available jobs to select from 'avail(M, T)'. The

rules 'busy(M, T)' and 'avail(M, T)' will be explained later.

The 'not busy(M, T)' in the body of the rule handles the N1

constraint listed in section IV.

The rule states that all machines are in an empty state at

time zero.

 The second group contains causal laws describing direct

effect of actions. For example it is suffice to have the

rules:

complete(J, O, T+P) :- select(J, O, P, M, T),

 op(J, O, P, M, S, E), time(M, T),

 T>=S, T<=E.

busy(M, T) :- select(J, O, P, M, T1), time(M, T1),

 op(J, O, P, M, S, E),T1>=S, T1<=E,

 time(M, T), T>T1, T1<T+P.

The first rule says that if an action "select" selects an

operation for processing in a machine; then the operation

will be in a complete state after passing the operation's

processing time. The second rule says that a machine 'M'

will be busy all the time step when it is selected for

processing an operation 'O' of job 'J' with processing time

'P' at time 'T'.

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 05 – Issue 01, January 2016

www.ijcit.com 75

 Two auxiliary rules are needed as follows:

selectedMachine(M, T) :- select(J, O, P, M, T),

op(J, O, P, M, S, E),

time(T), T>=S, T<=E.

avail(J, O, T) :- op(J, O, P, M, S, E), time(M, T),

 T>=S, T<=E.

This first rule is trivial. It states that a machine is

selected when it has been selected for processing some

operation of a job at some time T. The second rule checks

the availability of the rules at each time T.

 The third group of rules are constraints that eliminate

unwanted answer set models, which are defined as

follows:

:- select(J, O, P, M, T), op(J, O, P, M, S, E),

 complete(J, O, T), time(M, T), T>=S, T<=E.

:- select(J, O, P, M, T), operation(J, O, P, M),

 time(M, T), job(J, R, D), T+P>D.

:- select(J, O, P, M, T), operation(J, O, P, M),

 time(M, T), job(J, R, D), T < R.

:- select(J, O, P, M, T), operation(J, O, P, M),

 dep(J, O, O1), not complete(J, O1, T),

 time(M, T).

:- select(J, O, P, M, T), op(J, O, P, M, S, E),

 time(M, T), T>=S, T<=E,

 op(J1, O1, P1, M, S1, E1), J!=J1,

 not complete(J1, O1, T), T+P>E1.

The first constraint states that an operation should not be

selected if it is already in a complete state. This is

constraint N2 of the section IV. The second constraint

states that an operation should not pass the due time of the

job (this is constraint N3 of the section IV). The third

constraint states that an operation should not be selected

for processing before its arrival time or release time (this

constraint N4 of section IV). The fourth constraint states

that an operation should not be selected if its pre-

operation is not in a complete state (i.e. order of

operations is preserved). This is constraint N5 of the

section IV. The fifth constraint rejects the selection of an

operation 'O' of a job 'J' that will cause another operation

'O1' of job 'J1' (J is different than J1) on the same machine

'M' out of its time range to execute. However, the second

and third constraint can be eliminated since they are

handled by the 'op/6' rules.

 The fourth group consists of rules that make sure that all

operations of all jobs are completed. This can be written

as:

finish(J, O) :- operation(J, O, P, M, S, E),

 complete(J, O, T), time(M, T).

:- not finish(J, O), operation(J, O, P, M).

The first rule finds all operations of a job that are

complete. The second rule is a constraint that rejects

answer set models that includes non complete operations.

 To find the schedule of minimum makespan , the

following optimization rules are added:

makespan(X) :- X =

 #max {T+P:select(J,O,P,M,T) }.

#minimize {X: makespan(X)}.

The first rule returns the makespan for the schedule

produced. It uses the aggregate max of clingo to find the

maximum time to complete the schedule. The second rule

finds the minimum makespan among all schedules

produced by the module M2.It uses the optimization

statement "minimize" of gringo to find the schedule with

the minimum makespan.

To complete the definition of the transition diagram of the

domain, we need to specify what fluents do not change as the

results of actions. This is a famous Frame Problem from

(McCarthy and Hayes, 1969) where the authors suggested to

solve it by formalizing the Inertia Axiom which says that

"things tend to stay as they are". This is a typical default

which can be easily represented in answer set programs. In our

particular case, it will have the form:

One special fluent is the complete state fluent, which once

an operation of a job is complete, then it will stay in that state

until the end of the schedule. This is represented as:

complete(J, O, T+1) :- complete(J, O, T),

op(J, O, P,M, S, E), time(T), T<n, T>=S.

V. EXPERIMENTAL RESULTS

Our experiments were designed to assess the performance

of each of the ASP on job shop scheduling problems. We used

the ten scheduling problems produced by Taillard with 7 jobs

and 7 machines. Each of these problems consists of forty-nine

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 05 – Issue 01, January 2016

www.ijcit.com 76

operations to be scheduled subject to sequencing restrictions

and resource capacity constraints. The operations are grouped

into seven jobs of seven operations each. Operations within

each job must be performed in order. Further, each job

requires one of seven resources and each resource can be used

by at most one job at a time.

Table (3) shows running the answer set program on several

instances of the job shop scheduling problem. The ASP was

run on An Intel core 2 due laptop with 1.2 GHz processor and

4GB RAM is used.

TABLE III. Experimental results of ASP

Problem

Instance

CPU time

in seconds

Shortest

makespan

found by ASP

Known

shortest

makespan

3x3 Example 1 0.094 42 42

4x4 Instance 2.29 272 272

5x5 Instance 4.96 333 333

Ft6: 6x6 0.45 55 55

7x7 instance1 47.00 590 590

7x7 instance2 36.44 558 558

7x7 instance3 54.77 605 605

7x7 instance4 59.51 671 671

Note that, the problems with large value of time steps can

have big influence on the program’s performance when

employing Answer Set programming as solution method,

since the number of answer set candidates that need to be

checked is heavily dependent on the number of time steps. For

larger problems such as 10x10 and 20x5 the cpu time is large

(more than 10 hours).

VI. CONCLUSION

In this paper, we present an approach that uses ASP to

represent the job shop scheduling problem to produce optimal

plans. Job shop scheduling is known to be a hard problem. We

have proposed to investigate and evaluate the capabilities of

ASP to job shop scheduling problem. Furthermore, we

investigated writing heuristic methods in answer set programs

to solve the job shop scheduling problem. ASP is expressive

enough to represents the constraint of the job shop scheduling

problem. The paper also shows the expressive use of the

aggregates and optimization sentences defined in the 'clingo'

solver. Job shop scheduling problem can be a killer

application of ASP when the time step increases and solving

other job shop scheduling problems is an interesting future

work.

Although we cannot solve the general case of the job shop

scheduling problem satisfactorily at the moment, we note that

the solution methodology proposed in our program could be

very useful for further development in future work. In

conclusion, ASP as a declarative programming language has

been shown to be an elegant and highly maintainable approach

for solving the job shop scheduling problem, but we have to

admit that there is still work to do in order to obtain a

competitive and robust solver.

REFERENCES

[1] M. Gelfond and V. Lifschitz, ―the Stable Model Semantics for Logic
Programming,‖ ICLP/SLP, pp. 1070-1080, 1988.

[2] C. Baral. "Knowledge Representation, Reasoning and Declarative
Problem Solving," Cambridge University Press, 2003.

[3] V. Marek and M. Truszczyński, "Stable models and an alternative logic
programming paradigm," In Apt, Krzysztof R. The Logic programming
paradigm: a 25-year perspective, pp. 169-181, Springer. 1991.

[4] T. Soininen and I. Niemela, ―Developing a declarative rule language for
applications in product configuration, ― In Gupta, G., ed.: Proceedings of
the First International Workshop on Practical Aspects of Declarative
Languages (PADL’99), pp. 305–319, Springer 1999.

[5] M. Nogueira, M. Balduccini, M. Gelfond, R. Watson, and M. Barry, "An
A-prolog decision support system for the space shuttle," Proceedings of
the Third International Symposium on Practical Aspects of Declarative
Languages (PADL'01), pp 169-183. Springer-Verlag, 2001.

[6] H. Shebabi, P. Mahr, C. Bobda, M. Gebser, and T. Schaub, "Answer set
vs integer linear programming for automatic synthesis of multiprocessor
systems from real-time parallel programs," Journal of Reconfigurable
Computing, 2009.

[7] E. Erdem, and F. Ture, "Efficient haplotype inference with answer set
programming," Proceedings of the Twenty-third National Conference on
Artificial Intelligence (AAAI'08), pp. 436–441, 2008.

[8] M. Gebser, T. Schaub, S. Thiele, and P. Veber, "Detecting
inconsistencies in large biological networks with answer set
programming," Theory and Practice of Logic Programming 11 (2), pp1–
38, 2011.

[9] G. Grasso, S. Iiritano, N. Leone, V. Lio, F. Ricca, and F. Scalise, "An
ASP-based system for team-building in the Gioia-Tauro seaport". In
Proceedings of the Twelfth International Symposium on Practical
Aspects of Declarative Languages (PADL’10), Volume 5937 of Lecture
Notes in Computer Science., Springer-Verlag, pp. 40–42, 2010.

[10] G. oenn, M. Brain, M. de Vos, and J. Fitch, "Automatic composition of
melodic and harmonic music by answer set programming". Proceedings
of the Twenty-fourth International Conference on Logic Programming
(ICLP’08). Volume 5366 of Lecture Notes in Computer Science.,
Springer-Verlag, pp. 160–174, 2008.

[11] P. Simons. ―Efficient implementation of the stable model semantics for
normal logic programs,‖ Research Report 35, Helsinki University of
Technology, September 1995.

[12] P. Simons, I. Niemels, and T. Soininen, "Extending and implementing
the stable model semantics". Artificial Intelligence 138 (1-2) pp. 181–
234, 2002.

[13] I. Niemelä and P. Simons. Smodels - an implementation of the stable
model and well-founded semantics for normal logic programs. In
Proceedings of the 4th International Conference on Logic Programming
and Nonmonotonic Reasoning, volume 1265 of Lecture Notes in
Artificial Intelligence, pages 420-429, Dagstuhl, Germany, July 1997.

[14] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F.
Scarcello. ―The DLV system for knowledge representation and
reasoning,‖ ACM Transactions on Computational Logic, 7(3):499–562,
July 2006.

[15] Yu. Lierler and M. Maratea, ―Cmodels-2: SAT-based answer set solver
enhanced to non-tight programs,‖ In Proc. of LPNMR-7, 2004.

[16] F. Lin and Yu. Zhao, ASSAT: ―Computing answer sets of a logic
program by SAT solvers,‖ Artificial Intelligemce 157(1-2), pp. 115-137,
2004.

[17] V. Lifschitz and A. Razborov. Why are there so many loop formulas?
ACM Transactions on Computational Logic, pp 261-268, 2006.

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 05 – Issue 01, January 2016

www.ijcit.com 77

[18] M. Gebser, B. Kaufmann, A. Neumann and T. Schaub, ―clasp: A
Conflict-Driven Answer Set Solver,‖ LPNMR'07, 2007.

[19] M. R. Gary and D. S. Johnson, "Computers and Intractability: a Guide to
the Theory of NP Completeness," Freeman 1979.

[20] .J. F. Muth and G. L. Thompson. Industrial Scheduling. Prentice Hall,
Englewood Cliffs, New Jersey, 1963.

[21] H. Shebabi, P. Mahr, C. Bobda, M. Gebser, and T. Schaub, "Answer set
vs integer linear programming for automatic synthesis of multiprocessor
systems from real-time parallel programs," Journal of Reconfigurable
Computing, 2009.

[22] P. Bucker, B.Jurisch, and B. Sievers. A branch and bound algorithm for
job-shop scheduling problem. Discrete Applied Math, vol 49, pp. 105-
127, 1994.

[23] H.R. Loureco. Local Optimization and the job shop scheduling problem.
European Journal of Operational Research 83, pp. 347-364, 1995.

[24] E. Nowicki and C. Smutnicki. A Fast Tabu search Algorithm for the
Job-Shop problem. Management Science, 42(6), pp. 797-813, 1996.

[25] E. Nowicki and C. Smutnicki. An advanced Tabu search Algorithm for
the Job-Shop problem. Journal of Scheduling, 8(2), pp. 145-813, 2005.

[26] C. Y. Zhang, P. Li and Z. Guan. A very fast TS/SA algorithm for the
job-shop scheduling problem. Computers and Operations Research, 35,
pp. 282-294, 2008.

[27] S. M. K. Hasan, R. Saarker and D. Cornforth. GA with Priority Rules for
Solving Job-Shop Scheduling Problems. Proceeding of the IEEE
Congress on Evolutionary Computation, CEC 2008, June 1-6, Hong
Kong, China, pp. 3804-3811, 2008.

[28] R. Qing-doa-er-ji and Y. Wang. A new hybrid genetic algorithm for job-
shop Scheduling Problem. Computers and Operations Research, 39(10),
pp. 2291-2299, 2012.

[29] D. Y. Sha and C. Hsu. A hybrid practical swarm Optimization for job-
shop schedulingptoblem. Computers and Industrial Engineering, 51(4),
pp. 791-808, 2006.

[30] L. Wang and D. Zheng. An effective hybrid optimization strategy for
job-shop scheduling problem. Computers and Operations Research, 35,
pp. 282-294, 2008.

[31] D. Y. Sha and C. Hsu. A hybrid practical swarm Optimization for job-
shop schedulingptoblem. Computers and Industrial Engineering, 51(4),
pp. 791-808, 2006.

[32] L. Wang and D. Zheng. An effective hybrid optimization strategy for
job-shop scheduling problem. Computers and Operations Research, 35,
pp. 282-294, 2008.

[33] S. Yang. An imporved Adaptive Neural Network for Job Shop
Scheduling. 2005.

