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Abstract—Answer set programming (ASP) is a new 

programming language paradigm combining the declarative 

aspect with non-monotonic reasoning. In this paper, we will show 

an application of job shop scheduling in Answer Set 

Programming. The problem is a highly combinatorial and is 

generally solved by specific programs written in procedural 

languages. We present an approach to solve the job shop 

scheduling problem in Answer Set Programming and compare 

them with the standard ones. It turns out that, although Answer 

Set Programming greatly simplifies the problem statement. It is 

comparable in efficiency to specialized programs. (Abstract) 
Keywords-component; job shop scheduling, answer set 

programming, logic programming. 

I.  INTRODUCTION 

Many real-life problems belong to the class of NP-

complete problems [19]. Logic Programming under answer set 

semantics provides a powerful language for a logical 

formulation of these problems. Its nondeterministic 

computation liberates the user from the tree-search 

programming. Answer set programming (ASP) is a form of 

declarative programming that is emerged from logic 

programming with negation and reasoning formalism that is 

based on the answer set semantics [1, 2]. ASP is considered in 

the late 1990s as a new programming paradigm [3]. Answer 

set programming languages has been used to solve many real 

life application problems, among them, production 

configuration [4], decision support for NASA shuttle 

controllers [5], synthesis of multiprocessor systems [6], 

reasoning tools in biology [7, 8], team building [9], 

composition of Renaissance music [10], and many more. A 

number of solvers have been proposed, such as: smodels [11, 

12, 13], dlv [14], cmodels [17], assat [15, 16], and clasp [18]. 

In this paper, we show an application of Answer Set 

Programming to real life job shop scheduling problem 

occurring in a factory. The job shop scheduling problem 

(JSSP) is a very important practical problem. Efficient 

methods of solving it can have major effects on profitability 

and product quality. However, the JSSP is considered a 

member among the worst class of NP complete problems [7]. 

In general, the difficulty of the general JSSP makes it very 

hard for conventional search based methods to find near 

optima in reasonable time.  

The JSSP is to schedule jobs on different machines 

minimizing the total time spent to complete all jobs. Given an 

n-jobs and m-machines, each job comprises a set of operations 

which must each be done on a different machine for different 

specified processing time, in a given job-dependent order. Each 

job must be processed in an uninterrupted fashion or a non-

preemptive scheduling environment. It is not necessarily for a 

job to visit all the machines. The job can visit a subset of the 

existing set of machines. Each job has a release time and a due 

time to complete. The release time of a job is the arrival time 

for that job. The due time is the time that the job must be 

completed. 

Example 1: assume we have 3-jobs j1, j2 and j3 and three 

machines m1, m2, and m3. Table 1, shows the pre-specified 

order of operation for each job on the machines. The pair (m, 

t) specifies the processing time for a particular operation on 

each machine. For example, to complete job J1, it must 

completes three operations in the following order: visit 

machine M1 for 7 unit of time, then machine M3 for 8 unit of 

time, then machine M2 for 10 unit of time. The table also, 

shows the due time and release time for each job. 
 

Table 1 Job shop scheduling example, where (m, t) is the machine name 

and processing time pair for the operation 

Jobs 
Operations Release 

Time 

Due 

Time (m, t) (m, t) (m, T) 

J1 1, 7 3, 8 2, 10 2 25 

J2 2, 6 1, 4 3, 12 4 30 

J3 1, 8 2, 8 3, 7 0 35 

 

A standard 6x6 benchmark problem (i.e. j=6 and m=6) 

from [20]. A legal schedule is a schedule of job sequences on 

each machine such that each job's operation order is preserved, 

a machine can process at most one operation at one time, and 

different operations of the same job are not simultaneously 

processed on different machines. The problem is to minimize 

the total time elapsed between the beginning of the first 

operation and the completion of the last operation (this is 
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called the makespan). Other measures of schedule quality 

exist, but shortest makespan is the simplest and most widely 

used criteria. For example 2, the minimum makespan is known 

to be 55. 

Several methods used to solve the JSSP using B&B [22], 

simulated annealing [23], tabu search [24, 25, 26] and genetic 

algorithms [27, 28, 29, 30, 32], practical swarm optimization 

[31]. However, up to our knowledge, there is no answer set 

program implementation for the JSSP. 

In this paper, we first give a brief overview of Answer Set 

Programming and its semantics. We then, present the job shop 

scheduling problem formally. After that, we present the 

solution to the job shop scheduling problem under Answer Set 

Programming. Finally, we present experimental results and 

conclusion. 

II. BRIEF OVERVIEW OF ANSWER SET PROGRAMMING 

We briefly recall the basics about ASP. An ASP-program 

is a collection of rules of the form 

 

a0  a1, …, am, not am+1, …, an         (1) 

 

Where, each ai is an atom. The head of the rule is a 

positive atom which is the left hand side of the clause in (1). 

The body of the rule is composed of literals (a literal is an 

atom or its negation, denoted by not a) which is on the right 

side of the clause in (1).  A rule without body is a fact. A rule 

without head is a constraint. Also, the rules can be positive 

(m>0); negative (n>0) or both (m>0 and n>0). The symbol not 

stands for default negation, also known as negation as failure.  

If P is a ground, positive program (no negation as failure 

used), a unique answer set is defined as the smallest set of 

literals constructed from the atoms occurring in program P 

(minimal model). The last definition can be extended to any 

ground program P containing negation by considering the 

reduct of P with respect to a set of atoms X obtained by the 

Gelfond-Lifshitz’s operator [1]. The reduct, PX, of P relative to 

X is the set of rules: 

a0  a1, …, am 

for all rules (1) in P such that am+1, …, an  X. Then PX is a 

program without the negation not. Then X is an answer set for 

P if X is an answer set for PX. 

 

Once a program is described as an ASP-program P, its 

solutions, if any, are represented by the answer set of P. One 

important difference between ASP semantics and other 

semantics is that a logic program may have several answer 

sets or may have no answer set at all.  

Answer Set Programming is a totally declarative language. 

ASP programs are not algorithms describing how to solve the 

problem; the program is just a formal description of the 

problem. The solution is completely found by the solver. An 

ASP solver requires grounded programs as input, and that is 

why before searching the answer set or solutions, the program 

is grounded by a preprocessor. Actually there are many ASP’s 

solvers such as: smodels, dlv, assat, cmodels, and clasp. The 

computation of answer sets is done in two phases: (i) 

grounding of the logic program (P): which is eliminating 

variables to obtain a propositional program ground(P).  (ii) 

Computation of answer sets on the propositional program 

ground(P). 

III. JOB SHOP SCHEDULING PROBLEM 

Job shop scheduling is an optimization problem in which 

jobs are assigned to resources at particular times. There are 

several problem formulation for the JSSP, we have adopted 

the one presented by [32] as follows: 

Given a set of n-jobs J={j1, j2, …, jn}, and m-machines M = 
{M1, …, Mm}. Let nj be the number of operations of job j. 
Denote Ojkq the operation k of job j to be processed on machine 
q, Tjkq and Pjkq be the start time and processing time of 
operation Oikq respectively. Denote rj and dj the release time 
(earliest start time) and due time (latest ending time) of job j. 
Let Sj denote the set of operation pairs (Ojkp, Ojlq) of job j, 
where Ojkp must be processed before Ojlq. Let Rq be the set of 
operations Ojkq to be processed on machine q. Our goal is to 
schedule all jobs on m-machines, while trying to minimize the 
completion time or the makespan. The makespan is the total 
time of the schedule (that is, when all the jobs have finished 
processing). Given a schedule U, the completion time for a job 

j is CU
j=max(Tjkq+Pjkq) for all k{1, …, nj}, j  J and q  M. 

the makespan of a schedule S is the maximum completion time 

over all jobs in schedule U: CU
max=maxjJ (Tjkq+Pjkq), k{1, …, 

nj} and q  M. The job shop scheduling problem is represented 
as follows: 

Minimize CU
max, where, CU

max = maxjJ(Tjkq + Pjkq)  

Subject to: 

1) Tjwq – Tjkq >= Pjkq, where (Ojkp, Ojwp)  Sj, k, w  {1, …, 

nj}, jJ and q M. 

 

2) Tjwq – Tikq >= Pikq or Tikq – Tjwq >= Pjwq, where Oikq, Ojwq 

 Rq, i, j  J, q  M, k  {1, …, ni} and w  {1, …, nj}. 

 

3) rj <= Tjkq <= dj – Pjkq, j  J, k  {1, …, nj}, and q  M. 
 

Equation (1) represents the sequence constraint; Equation 
(2) represents resource constraints in a disjunctive format; and 
equation (3) represents the release and deadline time 
constraints. 
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IV. PROBLEM DESCRIPTION AND RESOLUTION IN ASP 

In this section, we describe job shop scheduling problem in 

the language of gringo which is the grounder for the answer 

set programming solver. Initially, all operations of each job 

are in a waiting state. If an operation is selected for processing 

then the operation waiting state is removed. Once the 

operation processing is completed the operation state is in the 

complete state. Similarly, initially all machines are in the 

empty state. If a machine is selected for processing an 

operation, then the machine empty state is removed. If the 

machine completes processing the operation, then the machine 

will be in the empty state again. Six conditions need to be 

satisfied:  

N1: When a machine selects an operation for a job, the 

machine must not be busy. 

N2: Each operation of a job selected for processing must 

be in non complete state. 

N3: each operation of a job selected for processing must be 

completed before the due time. 

N4: Each operation of a job selected for processing must 

be after the release time for that job. 

N5: The operation processing order must be preserved. 

A. Constructing the data module D1 of ASP: 

This module defines an instance of the JSSP. This module 
consists of a list of jobs, operations and machine. The jobs list 
is defined as a fact of the following form: 

job(jobName, releaseTime, dueTime). 

The operations list for each job is defined as a fact of the 

following form: 

operation(Job, operation, processTime, machine). 

To define the order of processing of operations in each job, 

the following operation dependency fact is defined: 

dep(jobName, operation1, operation2) 

This facts means that 'operation1' depends on 'operation2' 

in a particular job. 

The machines list available is defined as a fact of the 

following form: 

machine(machineName). 

B. The job shop schduling preparation module D2: 

This module defines new predicate that will simplify and 

speeding up finding the answer set models of the JSSP. In this 

module we assume that the total schedule time 'n' is specified 

by the user. It consists of the following rules: 

 The first group consists of determining operation 

dependency. It is suffice to write the following rules: 

dependent(J, O) :- dep(J, O, O1). 

nonDependent(J, O) :- operation(J, O, P, M),  

    not dependent(O). 

 

The first rule defines all operations that are dependent 

on some other operations, i.e. operations that cannot be 

executed until some operation completes its execution. 

The rule defines that operation 'O' of job 'J' is dependent 

on some other operation. The second rule defines the 

operations that are not dependent on other operations, i.e. 

operations that are at the beginning of each job. 

Therefore, we have two kinds of operations; the non-

dependent operations and the dependent operations.  

 The second group consists of one rule that finds the total 

time to execute all operations for each job. This is done in 

ASP as: 

 

totalTimeJob(J, T) :- T = #sum { P, O:  

operation(J, O, P, M) }, job(J, R, D). 

 

This rule uses the aggregates 'sum' to find the total 

time needed to execute all operations of each job 'J' 

available. 

 The third group consists of finding the possible start time 

of each operation in each job. The start time is a range of 

possible times. Assume we have a job with the following 

operations-processing time pair: (O1, t1), …, (Os, ts). In 

addition, assume that the operations are ordered in the 

same order listed, i.e. O2 depends on O1, O3 depends on 

O2, …, Os depends on O(s-1). Assume also that the total 

time of all operations is T = . This time T is the 

minimum time needed to finish all operations of that job. 

Let the total schedule time specified by the user is n. The 

first operation O1 may start from 0 to n-T. The n-T is 

because operation O1 cannot starts at n-T+1, since it needs 

a minimum of T-time unit to complete. Similarly, 

operation O2 may start from t1 (which is after completing 

O1) to n-T+t1. The following set of rules will do that: 

op(J, O, P, M, R, E) :- operation(J, O, P, M),  

notDependent(J, O), totalTimeJob(J, T), 

E=n-T, job(J, R, D), E<D. 

op(J, O, P, M, R, D) :- operation(J, O, P, M),  

notDependent(J, O), totalTimeJob(J, T), 

E=n-T, job(J, R, D), E>=D. 

 

 op(J, O, P, M, S, E)  :-  

operation(J, O, P, M), dep(J, O, O1),  

op(J, O1, P1, M1, S1, E1),  

totalTimeJob(J, T), S=T1+P1, 

E = n-T+S, job(J, R, D), E<D. 
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 op(J, O, P, M, S, D)  :-  

operation(J, O, P, M), dep(J, O, O1),  

op(J, O1, P1, M1, S1, E1),  

totalTimeJob(J, T), S=T1+P1, 

E = n-T+S, job(J, R, D), E>=D. 

 

The rules determines the possible range of time [S, E] 

to execute an operation 'O' of job 'J; with processing time 

'P' on machine 'M'. The first two rules are for non-

dependent operations. The rules compare the due time for 

the job with possible time range and select the earlier 

time. The second two rules determine the possible time 

range [S, E] to execute dependent operations. It computes 

the possible time range for the operation from the 

dependent operation and compares the times with the due 

time of the job. These four rules handle the constraint N3 

and N4 that are listed in section IV. 

 The fourth set of rules consists of finding the time range 

for each machine, it is suffice to write: 

Initial(M) :- operation(J, O, P, M),  

 notDependent(J, O), job(J, R, D),  

R=0, D>0. 

minPr(M, Pr) :- Pr= #min { P : task(J, O, P, M), 

notDependent(J, O) }, machine(M), initial(M). 

minPr(M, 0) :- machine(M), not initial(M). 

 

time(M, 0) :- machine(M). 

time(M, P..n) :- minPr(M, P). 

This group of rules determines the lower bound of the 

time-steps from [0, n] for each machine – n is determined by 

the user and represents the total time for the schedule. 

The first rule determines the availability of non-dependent 

operations for each machine. The second rule computes the 

least time to start a machine 'M'. It computes the least 

processing time among all non-dependent operations for a 

particular machine. This time will be considered the lower 

bound for the time of each machine. The third rule says that 

the lower bound for a machine that do not have non-dependent 

operations is zero. The fourth rule specifies that all machines 

must start at zero. The fifth rule specifies that the time step for 

all machines is the lower bound computed to the total time 'n' 

of the schedule that is determined by the user. These rules 

have great effects of the performance of ASP. 

 

Note, the rules defined in this module are all facts and it 

accelerates the search for a solution significantly.  

C. The job shop schduling solver module D3: 

This module describes solving the job shop scheduling 

problem. We are mainly interested in finding a schedule of 

processing all operations of all jobs in the shortest makespan.  

 

The module D3 will contain fluent busy(M, T) – "machine 

M is in a busy state at time T", fluent complete(J, O, T) – 

"operation O of job name J is in a complete state at time T". 

One type of action – 'select', will be used. 

The transition diagram of D2 will be described by group of 

axioms: 

 The first group defines the executability conditions for 

actions. We have one action "select(J, O, P, M, T)" which 

means selecting an operation O with a processing time P 

of job J to be executed on machine M at time T. The rules 

are as follows:  

 

    0 { select(J, O, P, M, T) : op(J, O, P, M, S, E),   

            T>=S, T<=E } 1 :- machine(M), time(M, T),  

not busy(M, T), avail(M, T). 

 

The action "select" selects one operation among the 

operations available to execute on a machine. The rule is a 

choice rule that is bounded by 0 and 1. This means 

selecting an action at any time for a machine is arbitrary. It 

means further that an action is either selected or not 

selected. These rules are the generate rules that will 

generate all possible schedules. The rule will execute when 

the machine 'M' is not busy at time 'T' ('not busy(M, T)') 

and there is available jobs to select from 'avail(M, T)'. The 

rules 'busy(M, T)' and 'avail(M, T)' will be explained later. 

The 'not busy(M, T)' in the body of the rule handles the N1 

constraint listed in section IV. 

 

The rule states that all machines are in an empty state at 

time zero.  

 The second group contains causal laws describing direct 

effect of actions. For example it is suffice to have the 

rules: 

complete(J, O, T+P) :- select(J, O, P, M, T),  

        op(J, O, P, M, S, E), time(M, T), 

 T>=S, T<=E. 

busy(M, T) :- select(J, O, P, M, T1), time(M, T1),  

 op(J, O, P, M, S, E),T1>=S, T1<=E, 

 time(M, T), T>T1, T1<T+P. 

 

The first rule says that if an action "select" selects an 

operation for processing in a machine; then the operation 

will be in a complete state after passing the operation's 

processing time. The second rule says that a machine 'M' 

will be busy all the time step when it is selected for 

processing an operation 'O' of job 'J' with processing time 

'P' at time 'T'. 
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 Two auxiliary rules are needed as follows: 

 

selectedMachine(M, T) :- select(J, O, P, M, T),  

op(J, O, P, M, S, E),  

time(T), T>=S, T<=E. 

avail(J, O, T) :- op(J, O, P, M, S, E), time(M, T), 

 T>=S, T<=E. 

 

This first rule is trivial. It states that a machine is 

selected when it has been selected for processing some 

operation of a job at some time T. The second rule checks 

the availability of the rules at each time T. 

 

 The third group of rules are constraints that eliminate 

unwanted answer set models, which are defined as 

follows: 

 

:- select(J, O, P, M, T), op(J, O, P, M, S, E),  

    complete(J, O, T), time(M, T), T>=S, T<=E. 

 

:- select(J, O, P, M, T), operation(J, O, P, M),  

    time(M, T),  job(J, R, D), T+P>D. 

:- select(J, O, P, M, T), operation(J, O, P, M),    

    time(M, T),  job(J, R, D), T < R. 

 

:- select(J, O, P, M, T), operation(J, O, P, M),    

   dep(J, O, O1), not complete(J, O1, T),  

   time(M, T). 

:- select(J, O, P, M, T), op(J, O, P, M, S, E),  

    time(M, T), T>=S, T<=E,  

    op(J1, O1, P1, M, S1, E1), J!=J1,  

    not complete(J1, O1, T), T+P>E1. 

 

The first constraint states that an operation should not be 

selected if it is already in a complete state. This is 

constraint N2 of the section IV. The second constraint 

states that an operation should not pass the due time of the 

job (this is constraint N3 of the section IV). The third 

constraint states that an operation should not be selected 

for processing before its arrival time or release time (this 

constraint N4 of section IV). The fourth constraint states 

that an operation should not be selected if its pre-

operation is not in a complete state (i.e. order of 

operations is preserved). This is constraint N5 of the 

section IV. The fifth constraint rejects the selection of an 

operation 'O' of a job 'J' that will cause another operation 

'O1' of job 'J1' (J is different than J1) on the same machine 

'M' out of its time range to execute. However, the second 

and third constraint can be eliminated since they are 

handled by the 'op/6' rules. 

 

 The fourth group consists of rules that make sure that all 

operations of all jobs are completed. This can be written 

as: 

finish(J, O) :- operation(J, O, P, M, S, E),  

                     complete(J, O, T), time(M, T). 

:- not finish(J, O), operation(J, O, P, M). 

 

The first rule finds all operations of a job that are 

complete. The second rule is a constraint that rejects 

answer set models that includes non complete operations. 

 

 To find the schedule of minimum makespan , the 

following optimization rules are added: 

 

makespan(X) :- X = 

 #max {T+P:select(J,O,P,M,T) }. 

#minimize {X: makespan(X)}. 

 

The first rule returns the makespan for the schedule 

produced. It uses the aggregate max of clingo to find the 

maximum time to complete the schedule. The second rule 

finds the minimum makespan among all schedules 

produced by the module M2.It uses the optimization 

statement "minimize" of gringo to find the schedule with 

the minimum makespan. 

 

To complete the definition of the transition diagram of the 

domain, we need to specify what fluents do not change as the 

results of actions. This is a famous Frame Problem from 

(McCarthy and Hayes, 1969) where the authors suggested to 

solve it by formalizing the Inertia Axiom which says that 

"things tend to stay as they are". This is a typical default 

which can be easily represented in answer set programs. In our 

particular case, it will have the form: 

One special fluent is the complete state fluent, which once 

an operation of a job is complete, then it will stay in that state 

until the end of the schedule. This is represented as: 

complete(J, O, T+1) :- complete(J, O, T),  

op(J, O, P,M, S, E), time(T), T<n, T>=S. 

V. EXPERIMENTAL RESULTS 

Our experiments were designed to assess the performance 

of each of the ASP on job shop scheduling problems. We used 

the ten scheduling problems produced by Taillard with 7 jobs 

and 7 machines. Each of these problems consists of forty-nine 
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operations to be scheduled subject to sequencing restrictions 

and resource capacity constraints. The operations are grouped 

into seven jobs of seven operations each. Operations within 

each job must be performed in order. Further, each job 

requires one of seven resources and each resource can be used 

by at most one job at a time. 

 

Table (3) shows running the answer set program on several 

instances of the job shop scheduling problem. The ASP was 

run on An Intel core 2 due laptop with 1.2 GHz processor and 

4GB RAM is used.  

 

TABLE III. Experimental results of ASP 

 

Problem 

Instance 

CPU time 

in seconds 

Shortest 

makespan 

found by ASP 

Known 

shortest 

makespan 

3x3 Example 1 0.094 42 42 

4x4 Instance 2.29 272 272 

5x5 Instance 4.96 333 333 

Ft6: 6x6 0.45 55 55 

7x7 instance1 47.00 590 590 

7x7 instance2 36.44 558 558 

7x7 instance3 54.77 605 605 

7x7 instance4 59.51 671 671 

 

Note that, the problems with large value of time steps can 

have big influence on the program’s performance when 

employing Answer Set programming as solution method, 

since the number of answer set candidates that need to be 

checked is heavily dependent on the number of time steps. For 

larger problems such as 10x10 and 20x5 the cpu time is large 

(more than 10 hours). 

VI. CONCLUSION 

In this paper, we present an approach that uses ASP to 

represent the job shop scheduling problem to produce optimal 

plans. Job shop scheduling is known to be a hard problem. We 

have proposed to investigate and evaluate the capabilities of 

ASP to job shop scheduling problem. Furthermore, we 

investigated writing heuristic methods in answer set programs 

to solve the job shop scheduling problem. ASP is expressive 

enough to represents the constraint of the job shop scheduling 

problem. The paper also shows the expressive use of the 

aggregates and optimization sentences defined in the 'clingo' 

solver. Job shop scheduling problem can be a killer 

application of ASP when the time step increases and solving 

other job shop scheduling problems is an interesting future 

work. 

 

Although we cannot solve the general case of the job shop 

scheduling problem satisfactorily at the moment, we note that 

the solution methodology proposed in our program could be 

very useful for further development in future work. In 

conclusion, ASP as a declarative programming language has 

been shown to be an elegant and highly maintainable approach 

for solving the job shop scheduling problem, but we have to 

admit that there is still work to do in order to obtain a 

competitive and robust solver. 
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