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Abstract - Data mining is the extraction of useful knowledge 

from stored data of organizations which can be used for 

decision making. Feature selection is an important 

dimensionality reduction technique for high dimensional 

datasets which is used in data mining. In recent years, feature 

selection stability becomes the hot topic of research in data 

mining. Stability becomes an important criterion for feature 

selection algorithms. While studying selection stability, there is 

also need to analyse stability measures. There are numerous 

ways to measure selection stability. This paper gives an 

overview of different categories of stability measures and also 

gives an account of important stability measures in each 

category. 
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I. INTRODUCTION 

Data mining is indispensable for business organizations 

for getting edge over their competitors. Feature selection is 

important technique of data mining for dimensionality 

reduction. Selection stability becomes important topic of 

research for feature selection algorithms. The stability of the 

feature selection methods is defined as the sensitivity of the 

feature selection algorithms to the small variation or 

perturbation of the dataset. The stability measures have been 

categorised in three main categories based on the 

representation of the output of the selection method [7]. 

These categories are stability by index, stability by rank and 

stability by weight. In stability by index, the indices of the 

selected features are considered. In this category, the 

selected features will not have particular order or 

corresponding relevant weight. In the category of stability 

by rank, the ranked list of the features will influence in 

stability evaluation. In stability by weight category, each 

feature is assigned a weight according to the degree of 

relevance. 

All the three categories of stability are generated from 

the features’ weights. However, each domain will be 

interested in different output and will be interested in 

particular category of stability of that particular output. It is 

important to emphasize that same rank does not necessarily 

having the same weight and same selected subset. The three 

requirements that each stability measurement should have 

[8] are as follows: 

 Monotonicity: If there is large overlap between 

selected subsets, the result should be in large 

stability. 

 

 Limits: Each stability assessment method's result 

should be bounded between constants such as [-1, 

1] or [0, 1]. These bounds are independent of any 

dataset factor including the dimensionality of the 

dataset m or the number of selected features k. 

These limits should be at minimum when the sets 

are completely unstable and become at maximum 

when they become identical or stable. 

 

 Correction for chance: The measurement should 

have a constant that correct the result in case of 

intersection by chance occur due to high 

dimensional selected subset. The larger the 

cardinality of selected subsets then there is more 

chance for larger intersection between subsets. 

 

Most of the measures will not consider all the above 

three requirements but the only measurement that considers 

all the three requirements is Kuncheva Index (KI) [8]. In 

addition to these requirements, there are some important 

properties that should be taken into consideration due to 

their impact on the stability result [1] [2]. These properties 

include:  

 The dimensionality of the dataset m. It is an 

important factor that may affect the stability of an 

algorithm.  

 

 The number of selected features k. These two 

factors implicitly mentioned in the correction for 

chance requirement. However, they should be 

considered in other ways too. For example, these 

two factors, i.e. m and k, are considered in order to 

rank two algorithms in terms of the stability. 

 

 The sample size n. It has significant impact on the 

stability. These three factors will be considered in 

justifying the differences in the stability of 

algorithms.  

 

 The data variance. It was demonstrated in [5] that 

the data variance has a huge impact on the stability. 

To judge or compare algorithms in terms of 

stability, the variance of the dataset and perhaps 

other important underlying characteristics of the 

dataset are taken into consideration.  
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 The symmetry of the measurement. The stability 

value should not be sensitive to the order of the 

results. 

 

Stability can be assessed simply by pairwise 

comparison between the results. Hence, the stability is 

higher if the similarity is greater. There are three different 

representations of the output of the feature selection 

methods, i.e., indexing, ranking, and weighting [7] and 

hence different measures should be fit in these 

representations. The remaining part of the paper will explain 

these measurements and others categorized by the output 

scheme. 

 

II. STABILITY BY INDEX 

 

In the stability by index category, the selected subset of 

features is represented as either a vector of indices 

corresponding to the selected features or as a binary vectors 

with cardinality equals m, where fi = 1 means that the ith 

feature is selected. In this category of measurements, there 

is the possibility of handling a number of selected features k 

≤ m but it is not possible with the rank or weight 

measurements. Hence, these measurements have common 

result's limits where some in the interval [0, 1] and others in 

[-1, 1] while others are not bounded at all. This category of 

measurements assesses the amount of overlap between 

results in order to assess the stability. The important 

measurements in the category of stability by index are as 

follows:  

 

A. Average Normal Hamming Distance (ANHD) 

 

Average Normal Hamming Distance measure was used 

in [3] to assess the stability of feature selection algorithm 

which is for subset of selected features. ANHD measures 

the amount of overlap between two subsets. ANHD ( Ĥ ) 

works with binary representation that represent the selected 

feature subset ḟik, 1 and 0 indicate whether the kth feature 

was selected in the ith run or not, respectively. 

 

 

 

                      1    m 

Ĥ (ḟi,ḟj) =         ∑   │ḟik-ḟjk│ 

                     m   k=1 

 

 

When m becomes larger, Ĥ becomes smaller which 

will lead to more stable algorithm. When small numbers of 

features were selected, i.e. have values equal to 1, and the 

rest are set to zero, then Ĥ will be small. This is due to the 

fact that selected features across ℓ-folds will be treated as 

unselected ones. If a feature fi is selected in all ℓ or not 

selected, there will have the same impact on the stability 

result. This property of ANHD will lead in most cases to 

wrong conclusion about the stability especially when k << 

m where the majority of the features are not selected. 

ANHD results will be in the interval [0, 1], where 0 is the 

most stable and 1 means not stable at all. ANHD cannot 

deal with different sizes of selected features' sets in relation 

with capability. As ANHD does not have the correction for 

chance constant, the result will be misleading. 

 

B. Dice's Coefficient 

 

Dice coefficient is a similarity measure used in [11] to 

calculate the overlap between two sets. It was related to 

Jaccard index. 

 

 

                             2│Ƒ'1∩Ƒ'2│ 

Dice (Ƒ'1,Ƒ'2) = 

                            │Ƒ'1│+│Ƒ'2│ 

 

 

Dice takes value between 0 and 1, where 0 means no 

overlap and 1 means the two sets are identical. There will be 

similarity between the measures Dice, Tanimoto and 

Jaccard. 

 

C. Tanimoto Distance and Jaccard's Index 

 

Tanimoto is similar to Dice and it measures the amount 

of overlap between two datasets and produces value in the 

range 0 and 1. 

 

 

                                         │Ƒ'1│+│Ƒ'2│-2│Ƒ'1∩Ƒ'2│ 

Tanimoto (Ƒ'1,Ƒ’2) =1 - 

                                          │Ƒ'1│+│Ƒ'2│-│Ƒ'1∩Ƒ'2│ 

 

 

It is easy to proof that Tanimoto is equivalent to Jaccard's 

index [9]: 

 

 

                                │Ƒ'1∩Ƒ'2│ 

Jaccard (Ƒ'1, Ƒ’2) = 

                                │Ƒ'1UƑ'2│ 

 

 

Although Dice, Tanimoto, and Jaccard behave 

similarly in all cases, Dice sometimes give slightly higher 

and more meaningful stability results with respect to the 

intersection between the two subsets. For example, assume 

that there will be two selected subsets with equal length, k = 

20, and they intersect in 10 features, which is exactly 50% 

of total number of features for each set. Dice is going to 

give a stability equals to this exact amount of overlap i.e., 

0.5, but Tanimoto and Jaccard are going to be 0.33 for each 

of them due the fact that they divide by the length of union 

of the two selected sets. These three measurements will give 

higher values when the subsets cardinalities get closer to m 
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because more overlaps by chance are higher. Hence, they 

don't have constant to correct in case of intersection by 

chance. An advantage of these measurements, unlike 

ANHD, they can deal with sets of different cardinalities. 

They do not take the dimensionality m in account but they 

comprise the number of selected features k in the 

measurement. 

 

D.  Kuncheva Index KI 

 

The drawback of most stability measurements is that 

the larger the cardinality of the selected features' lists, the 

more overlap between lists due to chance. To overcome this 

drawback, [8] proposed Kuncheva Index KI that contains 

correction term to avoid intersection by chance between the 

two subsets of the features. 

 

 

                          │Ƒ'1∩Ƒ'2│. m – k2 

KI (Ƒ'1, Ƒ’2) = 

                                k ( m – k) 

 

 

KI's results ranges [-1, 1], where -1 means there is no 

intersection between the lists and k = m/2. KI achieves 1 

when Ƒ'1 and Ƒ'2 are identical which means the cardinality of 

the intersection set equals k. KI values becomes close to 

zero for independently drown lists. KI is the only 

measurements that obey all the requirements appeared in 

[8]. KI becomes desirable because of the correction for 

chance term that was introduced in [8]. In the case of KI, 

larger value of cardinality will not affect the stability, but in 

other measurements, the larger the cardinality is, the higher 

the stability will be. In Jaccard Index, there will be impact 

of the number of selected features k on the stability. It gives 

higher stability values when k gets larger and closer to m. 

But KI does not suffer from the same drawback because the 

correction term gives negative weight to k. 

 

E. Percentage of Overlapping Gene (POG) 

 

POG is similar to Tanimoto and Jaccard measures and 

it is used to measure the consistency of the feature subsets 

by counting the amount of overlap between them. POG is 

not symmetric and hence POG(Ƒ'1,Ƒ'2) is not necessarily 

equal to POG(Ƒ'2,Ƒ'1), which is undesirable property in 

general. However, it will be symmetric if │Ƒ'1│ =│Ƒ'2│. 

[12] proposed a matrix that introduced a new variable z into 

POG and that consider the correlated molecular changes in a 

biological data set. [12] defined POGR as the percentage of 

overlapping genes, or features, related matrix to evaluate the 

consistence between two differentially expressed genes lists. 

 

                           │Ƒ'1∩Ƒ'2│ 

POG(Ƒ'1,Ƒ'2) = 

                              │Ƒ'1│ 

 

                             │Ƒ'1∩Ƒ'2│+ z 

POGR(Ƒ'1,Ƒ'2) = 

                                    │Ƒ'1│ 

 

Where z represents the number of genes in Ƒ'1 that are 

not in Ƒ'2 but they are significantly positively correlated to at 

least one gene in Ƒ'2. By having z there will be overcoming 

one drawback of the previous measurements. All previous 

measurements ignore the redundancy or the correlation 

between the values of the features. In previous measures, 

including POG, these two features no way to be counted 

positively toward the stability. In other words, fi and fj won't 

be considered as one feature even if they are redundant or 

positively highly correlated. However, by introducing z, 

there will be able to capture the correlation between the 

features and, thus, consider such features as one single 

feature. [12] introduced a new matrix normalized version for 

POG and POGR, or nPOG and nPOGR for short, to 

overcome the dependency between the result and the list 

length by introducing the expected of the shared features 

E(│Ƒ'1∩Ƒ'2│). In addition, they introduced the expected 

number of z, E(z) onto the POGR, as follow: 

 

 

 

                              │Ƒ'1∩Ƒ'2│-E(│Ƒ'1∩Ƒ'2│) 

nPOG(Ƒ'1,Ƒ'2) = 

                                   │Ƒ'1│-E(│Ƒ'1∩Ƒ'2│) 

 

                        

                               │Ƒ'1∩Ƒ'2│+z – E(│Ƒ'1∩Ƒ'2│)+E(z) 

nPOGR(Ƒ'1,Ƒ'2) = 

                                    │Ƒ'1│-E(│Ƒ'1∩Ƒ'2│) – E(z) 

 

 

Where E(│Ƒ'1∩Ƒ'2│) can be simply estimated by the 

average of the scores for arbitrary number of pairs of 

random lists of length │Ƒ'1│ and │Ƒ'2│respectively. 

Similarly, E(z) can be estimated as the average number of 

features in the list Ƒ'1 which are not shared but significantly 

positively correlated with features in the other list Ƒ'2. These 

two parameters are the correction for chance terms in these 

two measurements. Finally, the limit of the results in POG 

measures family varies. POG and POGR are bounded by 0 

and 1 while nPOG and nPOGR are in the interval [-1, 1] 

which make the latter obey Kuncheva requirements. 

 

F.  Consistency Measures 

 

All the previous measures' are based on to assess the 

overlap between the subsets by pairwise comparison of the 

subsets. Hence the complexity will be equal to or greater 

than O((m.(ℓ2 - ℓ))/2), where ℓ is the number of subsets of 

selected features. [10] proposed three consistency measures 

which will be superior in complexity time by overcoming 

such shortcomings. These measures calculate stability by 



International Journal of Computer and Information Technology (ISSN: 2279 – 0764)  

Volume 05 – Issue 01, January 2016 

 

www.ijcit.com    101 

taking the frequency of each selected feature. Here, each 

subset is processed only once to count the frequency of each 

selected feature and hence the complexity becomes O(k.ℓ). 

In the following three consistency measures, S as an input 

where S = f1,f2,....fℓ. Here x is the union of all subsets in S 

and t is the total frequency in S. 

 

a) Consistency Measure C 

 

              1   │x│ ri- 1 

C(S) =          ∑ 

            │x│  i    ℓ - 1 

 

b) Weighted Consistency Measure CW 

 

               │x│  ri           ri-1 

CW(S) =  ∑               

                 t       t        ℓ-1 

 

c) Relative Weighted Consistency Measure CWrel 

 

                         m(t-z+ 𝑚𝑖 ri(ri-1))-t2+z2 

CWrel(S, m) = 

                             m(h2+l(t-h)-z)-t2+z2 

 

where rt is the rate of occurrence, i.e. frequency, of feature fi 

and z and h are t mod m and t mod ℓ respectively. CWrel will 

show the amount of randomness in the feature selection 

process and it neither evaluates the amount of overlap 

between the subsets nor the frequency of the features. If 

CWrel gives small number and the others give higher 

numbers. It may indicate drawback in the process of 

selecting the features. There are no preferable features or the 

methods overfit, etc. [10]. Instead, the consistency measure 

C can be rewritten in a less complex way to show some 

hidden properties of this measure. Here t = 𝑟𝑡
│𝑥│
𝑡  and by 

subtracting │x│ from both sides the following equation can 

be obtained: 

 

            │x│ 

t-│x│=  ∑   ri-1 

                i 

 

 

∑│x│(k-1) = (k-1)│x│ 

 i 

 

Since W is a constant, we can rewrite C(S) as follow: 

 

                 t-│x│ 

C(S)  = 

              (k-1)│x│ 

 

G.  Symmetrical Uncertainty SU 

 

L. Yu et al in [11] and G. Gulgenzen et al in [4] used 

an entropy based nonlinear correlation called Symmetrical 

Uncertainty SU. It considers the similarity of the feature 

values and not features indices and hence it is different from 

the previous measures. SU is the correlation between the 

values of the selected features across different selected 

subsets hence it satisfies the nice and desirable property 

when evaluating stability. For example, consider that fi and 

fj to be duplicated feature which are considered as two 

different features when evaluating the stability and they 

were selected in Ƒ'1 and Ƒ'2 respectively. But, SU will 

consider them as a single feature by the values of the 

features. SU is symmetric because the information gain 

IG(fi│fj) = IG(fj│fi). SU is not bounded by any constants 

and is the undesirable property. The stability results can be 

normalized by considering the number of selected features 

k. The SU in [11] used it to calculate the similarity between 

two sets of feature groups but [4] used it as similarity 

measure between two sets of individual features.  

 

                         IG(fi│ (          jf  

SU(fi, fj) = 2[                     ] 

                       H(fi) + H(fj) 

 

Where fi and fj are ith and jth selected features and IG and H 

are the information gain and the entropy, respectively, as 

follows: 

 

IG(fi ((jf׀i - H)fi( =  H)fjf׀  

 

H(fi) = ∑ p(x) . lg2(p(x)) 

          xєfi 

 

H(fi׀fj) = ∑ p(y) ∑ p(x׀y) . lg2(p(x׀y)) 

             yєfj           xєfi 

 

The similarity between two sets will be the average of 

SU for all unique pairs of i and j. The SU is the most 

expensive measure and the complexity is due to the 

expensive computations of IG for each unique pairs of 

selected features. It depends on the number of selected 

features k, where the worst case is when k = m. There is 

need to normalize, discretize, and center the datasets before 

computing the SU. It also makes it even more expensive. 

 

 

III. STABILITY BY RANK 

 

In the stability by rank method, the evaluation is by the 

correlation between the ranking vectors. These methods also 

deal with full set of features. In other words, they cannot 

handle vector that correspond to different set of features or 

vectors with different cardinality. 

 

 

 

 



International Journal of Computer and Information Technology (ISSN: 2279 – 0764)  

Volume 05 – Issue 01, January 2016 

 

www.ijcit.com    102 

A. Spearman's Rank Correlation Coefficient SRCC 

 

To evaluate the stability of two ranked sets of features' r 

and r׳, A. Kalousis et al. in [7] adapted Spearman's Rank 

Correlation Coefficient. 

                                       (rt-r׳t)
2 

SRCC(r, r׳) = 6 – 1 ∑ 

                                 t    m (m2-1) 

 

The result of Spearman's will be in the range of [-1, 1]. 

The maximum will be achieved when the two ranks are 

identical while the minimum is when they exactly in inverse 

order and 0 means no correlation at all between r and r׳. 

 

B. Canberra Distance CD 

 

Canberra Distance is the absolute difference between 

two rank sets and the generalized form is given by: 

 

                  N  │ri-r׳i│ 

CD(r, r׳) = ∑ 

                   t     ri+ r׳i 

 

CD only has a lower bound. The result depends on the 

number of features. Hence the CD will be larger for the 

higher value of m. Therefore, CD can be normalized by 

dividing by m in order to obtain results between 0 and 1. A 

weighted version of CD was proposed in [6] called WCD: 

 

                            N  │min {rt,k+1}- min {r׳t,k+1}│ 

WCD(k+1)(r, r׳) = ∑ 

                           t=1    min{rt,k+1}- min{r׳t,k+1} 

 

In WCD, the most important features are located in the 

top-k positions of the ranked list. Hence, the variation in the 

upper position of the list should be more relevant than those 

in the lower part [6]. WCD can be normalized by the 

number of features in the same way as CD. 

 

IV. STABILITY BY WEIGHT 

 

In this category of measurements, there is the deal with 

the weight of the feature set w. This category has only one 

measurement called the Pearson's Correlation Coefficient 

PCC. It takes two sets of weights wi and wj for the entire 

feature set in the dataset and return the correlation between 

them as the stability. In contrast with the stability by index, 

this category cannot deal with different subsets size or 

subset of features. 

 

 

A. Pearson's Correlation Coefficient PCC 

 

[7] uses Pearson's to measure the correlation between 

the weights of the features that returned from more than one 

run. The Pearson's Correlation Coefficient PCC stability 

will be as following: 

 

                             ∑i (wi-µw)(w׳i- µw') 

PCC (w,w׳) = 

                        √∑I (wi-µw)2∑i (w׳i- µw')
2 

 

 

 

Here µ is the mean. PCC takes values between -1 and 1, 

where 1 means the weight vectors are perfectly correlated, -

1 means they are anti-correlated while 0 means no 

correlation. The stability will be shown higher when the 

weight is equal to zero for big number of features. However, 

this will not be an issue in situations as the algorithm 

assigns weight between 1 and -1. The PCC is a symmetric 

measure and is the only stability measure that handles 

feature weights. 

 

V. MEASUREMENTS CATEGORIES 

 

In Table 1, the stability measurements have been 

categorised based on four criteria i.e. Bounds, Symmetrical, 

Different size and Complexity. Most of the stability 

assessment methods have been clearly shown in the Table 1. 

The existing measures deals with one output scheme only 

but not with two or more different output schemes. The 

measures by rank and by weight are not able to handle 

different subset sizes but this property is common among all 

measurements belonging to the category by index. The 

running time complexities of these methods are more or less 

similar. 

 

VI. CONCLUSION 

  

This paper gives an account of various stability 

measures in each category. It also gives information about 

the capabilities of the stability measures. From this 

comparative study we can get information about the strength 

and weakness of each measure and their suitability for the 

required experiments on feature selection. 
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TABLE 1. THE CATEGORIES OF THE EXISTING STABILITY MEASUREMENTS. 

 

 

Results Measures 
Capability 

Reference 
Bounds Symmetrical Different Size Complexity 

Index 

ANHD [1,0] Yes Yes O((m.(l2-l))/2) [3] 

Dice [0,1] Yes Yes O((m.(l2-l))/2) [11] 

Jaccard [0,1] Yes Yes O((m.(l2-l))/2) [9] 

KI [-1,1] Yes Yes O((m.(l2-l))/2) [8] 

Tanimoto [0,1] Yes Yes O((m.(l2-l))/2) [9] 

Consistency [0,1] Yes Yes O((k.l)/2) [10] 

CW [0,1] Yes Yes O((k.l)/2) [10] 

CWrel [0,1] Yes Yes O((k.l)/2) [10] 

POG [0,1] No Yes O((m.(l2-l))/2) [12] 

nPOG [-1,1] No Yes O((m.(l2-l))/2)+O(c) [12] 

POGR [0,1] No Yes O((m.(l2-l))/2)+O(c) [12] 

nPOGR [-1,1] No Yes O((m.(l2-l))/2)+O(c) [12] 

SU [0,∞] Yes Yes O((m.(l2-l))/2) [11] 

Rank 

Spearman’s [-1,1] Yes No O((m.(l2-l))/2) [7] 

CD [0,∞] Yes No O((m.(l2-l))/2) [6] 

WCD [0,∞] Yes No O((m.(l2-l))/2) [6] 

Weight Pearson’s [-1,1] Yes No O((m.(l2-l))/2) [7] 

 

 


