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advantage of GA over factor analytic and other such 

statistical models is that GA models can address 

problems for which there is no human expertise or 

where the problem seeking a solution is too complicated 

for expertise based approaches.  
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I. INTRODUCTION 
Genetic algorithms (GA) are machine learning 

search techniques inspired by Darwinian evolutionary 

models. The advantage of GA over factor analytic and other 

such statistical models is that GA models can address 

problems for which there is no human expertise or where 

the problem seeking a solution is too complicated for 

expertise based approaches. GA can be applied to 

challenges which can be formulated as function 

optimization problems. This makes GA ideal for application 

to discrete combinatorial problems and mixed-integer 

problems [1]. 

 Before a GA can be put to work on any problem, a 

method is needed to encode potential solutions to that 

problem in a form that a computer can process. One 

common approach is to encode solutions as binary strings: 

sequences of 1's and 0's, where the digit at each position 

represents the value of some aspect of the solution. Another, 

similar approach is to encode solutions as arrays of integers 

or decimal numbers, with each position again representing 

some particular aspect of the solution. This approach allows 

for greater precision and complexity than the comparatively 

restricted method of using binary numbers only and often "is 

intuitively closer to the problem space" [2] 

This technique was used, for example, in the work 

of Steffen Schulze-Kremer, who wrote a genetic algorithm 

to predict the three-dimensional structure of a protein based 

on the sequence of amino acids that go into it [3]. Schulze-

Kremer's GA used real-valued numbers to represent the so-

called "torsion angles" between the peptide bonds that 

connect amino acids. (A protein is made up of a sequence of 

basic building blocks called amino acids, which are joined 

together like the links in a chain. Once all the amino acids 

are linked, the protein folds up into a complex three-

dimensional shape based on which amino acids attract each 

other and which ones repel each other. The shape of a 

protein determines its function.) 

Before you can use a GA to solve a problem, a way 

must be found of encoding any potential solution to the 

problem. This could be as a string of real numbers or, as is 

more typically the case, a binary bit string. Let’s refer to this 

bit string from now on as the chromosome. A typical 

chromosome may look like this: 

10010101110101001010011101101110111111101 

 At the beginning of a run of a GA a large 

population of random chromosomes is created. Each one, 

when decoded will represent a different solution to the 

problem at hand. Let's say there are N chromosomes in the 

initial population [4-6]. Then, the following steps are 

repeated until a solution is found 

Test each chromosome to see how good it is at solving the 

problem at hand and assign a fitness score accordingly. The 

fitness score is a measure of how good that chromosome is 

at solving the problem to hand. 

Select two members from the current population. The 

chance of being selected is proportional to the chromosomes 

fitness. Roulette wheel selection is a commonly used 

method. 

Dependent on the crossover rate crossover the bits from 

each chosen chromosome at a randomly chosen point. 

Step through the chosen chromosomes bits and flip 

dependent on the mutation rate. 

Repeat step 2, 3, 4 until a new population of   N members 

has been created. 

 

II. ROULETTE WHEEL SELECTION 
 This is a way of choosing members from the 

population of chromosomes in a way that is proportional to 

their fitness. It does not guarantee that the fittest member 

goes through to the next generation, merely that it has a very 

good chance of doing so. It works like this: 

http://ai-junkie.com/ga/intro/gat2.html#_Stage_2:_Deciding_on_a_Fitness_Func
http://ai-junkie.com/ga/intro/gat2.html#_Stage_2:_Deciding_on_a_Fitness_Func
http://ai-junkie.com/ga/intro/gat2.html#_Tell_me_about_Roulette_Wheel_select
http://ai-junkie.com/ga/intro/gat2.html#_What's_the_Crossover_Rate?
http://ai-junkie.com/ga/intro/gat2.html#_What's_the_Mutation_Rate?
http://ai-junkie.com/ga/intro/gat2.html#_What's_the_Mutation_Rate?
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 Imagine that the population’s total fitness score is 

represented by a pie chart, or roulette wheel. Now you 

assign a slice of the wheel to each member of the 

population. The size of the slice is proportional to that 

chromosomes fitness score. i.e. the fitter a member is the 

bigger the slice of pie it gets. Now, to choose a chromosome 

all you have to do is spin the ball and grab the chromosome 

at the point it stops.te? 

 This is simply the chance that two chromosomes 

will swap their bits. A good value for this is around 0.7.  

Crossover is performed by selecting a random gene along 

the length of the chromosomes and swapping all the genes 

after that point. 

 e.g. Given two chromosomes   

10001001110010010  

01010001001000011  

Choose a random bit along the length, say at 

position 9, and swap all the bits after that point 

 So the above become:  

10001001101000011 

01010001010010010  

 

III. WHAT'S THE MUTATION RATE? 
 This is the chance that a bit within a chromosome 

will be flipped (0 becomes 1, 1 becomes 0 - this operation is  

called digit inversion. We give an example of inversion 

realization on low  level programming language assembler -

appendix 1[7]). This is usually a very low value for binary 

encoded genes, say 0.001 

 So whenever chromosomes are chosen from the 

population the algorithm first checks to see if crossover 

should be applied and then the algorithm iterates down the 

length of each chromosome mutating the bits if applicable. 

 

IV.  PRACTIC IMPLEMENTATION 
To hammer home the theory you've just learnt let's 

look at a simple problem: 

Given the digits 0 through 9 and the operators +, -, 

* and /,  find a sequence that will represent a given target 

number. The operators will be applied sequentially from left 

to right as you read. 

So, given the target number 23, the sequence 

6+5*4/2+1 would be one possible solution. 

If  75.5 is the chosen number then 5/2+9*7-5 

would be a possible solution. 

 Please make sure you understand the problem 

before moving on. I know it's a little contrived but I've used 

it because it's very simple.  

       

Stage 1: Encoding 

First we need to encode a possible solution as a 

string of bits… a chromosome. So how do we do this? Well, 

first we need to represent all the different characters 

available to the solution... that is 0 through 9 and +, -, * and 

/. This will represent a gene. Each chromosome will be 

made up of several genes. 

 Four bits are required to represent the range of 

characters used: 

 0:         0000 

1:         0001 

2:         0010 

3:         0011 

4:         0100 

5:         0101 

6:         0110 

7:         0111 

8:         1000 

9:         1001 

+:         1010 

-:          1011 

*:          1100 

/:          1101 

          The above show all the different genes required to 

encode the problem as described. The possible genes 1110 

& 1111 will remain unused and will be ignored by the 

algorithm if encountered. 

So now you can see that the solution mentioned 

above for 23, ' 6+5*4/2+1' would be represented by nine 

genes like so: 

0110 1010 0101 1100 0100 1101 0010 1010 0001 

 6        +        5        *        4         /        2        +       1 

 These genes are all strung together to form the 

chromosome: 

  011010100101110001001101001010100001 

Because the algorithm deals with random 

arrangements of bits it is often going to come across a string 

of bits like this: 

0010001010101110101101110010 

 Decoded, these bits represent: 

0010 0010 1010 1110 1011 0111 0010  

2        2        +        n/a     -        7        2  

Which is meaningless in the context of this 

problem! Therefore, when decoding, the algorithm will just 

ignore any genes which don’t conform to the expected 

pattern of: number -> operator -> number -> operator …and 

so on. With this in mind the above ‘nonsense’ chromosome 

is read (and tested) as:  

2   +   7 

 

Stage 2: Deciding on a Fitness Function 

This can be the most difficult part of the algorithm 

to figure out. It really depends on what problem you are 

trying to solve but the general idea is to give a higher fitness 

score the closer a chromosome comes to solving the 

problem.  With regards to the simple project I'm describing 

here, a fitness score can be assigned that's inversely 

proportional to the difference between the solution and the 

value a decoded chromosome represents.  

If we assume the target number for the remainder 

of the tutorial is 42, the chromosome mentioned above 

011010100101110001001101001010100001  

has a fitness score of 1/(42-23) or 1/19. 
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As it stands, if a solution is found, a divide by zero 

error would occur as the fitness would be 1/(42-42). This is 

not a problem however as we have found what we were 

looking for... a solution. Therefore a test can be made for 

this occurrence and the algorithm halted accordingly.  

 

 

Stage 3: Getting down to business 

Please tinker around with the mutation rate, 

crossover rate, size of chromosome etc to get a feel for how 

each parameter effects the algorithm. Hopefully the code 

should be documented well enough for you to follow what 

is going on! 

Note: The code given will parse a chromosome bit 

string into the values we have discussed and it will attempt 

to find a solution which uses all the valid symbols it has 

found. Therefore if the target is 42, + 6 * 7 / 2 would not 

give a positive result even though the first four symbols("+ 

6 * 7") do give a valid solution.  

 

V. CONCLUSIONS  
There are different selection techniques to use, 

different crossover and mutation operators to try and more 

esoteric stuff like fitness sharing and speciation to fool 

around with. All or some of these techniques will improve 

the performance of your GA- s considerably. 
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Appendix 1 –  Listing Example  of Digit  Inversion  on  Assembly language

  

 

 

 

 

.model small 

.stack 256 

.386 

.data 

    b dw 19 

    d dw 45 

    mode db 0 

    endOfLine db 13, 10, '$' 

    mes_bx db 'BX:', 13, 10, '$' 

    mes_dx db 'DX:', 13, 10, '$' 

    mes_pr db 'Direct: $' 

    mes_ob db 'Inverse: $' 

.code 

main proc 

.startup 

    mov ah, 09h 

        lea dx, mes_bx 

    int 21h 

        lea dx, mes_pr 

    int 21h 

    mov bx, b 

    call OutputDirect 

        lea dx, mes_ob 

    int 21h 

    mov mode, 1 

    call OutputDirect 

        lea dx, endOfLine 

    int 21h 

     

    lea dx, mes_dx 

    int 21h 

        mov bx, d 

        lea dx, mes_pr 

    int 21h 

    mov mode, 0 

    call OutputDirect 

        lea dx, mes_ob 

    int 21h 

    mov mode, 1 

    call OutputDirect 

.exit 

main endp;---------------------------------------------------------- 

OutputDirect proc near 

;---------------------------------------------------------- 

    pusha 

        cmp mode, 0 

    je @skip 

        not bx 

        @skip: 

        mov ah, 02h 

    mov cx, 16 

        @cycle: 

        shl bx, 1 

        jb @one 

            mov dl, '0' 

            jmp @output 

        @one: 

            mov dl, '1' 

        @output: 

            int 21h 

                    loop @cycle 

        mov ah, 09h 

    lea dx, endOfLine 

    int 21h 

        popa 

    ret 

OutputDirect endp 

End 
 


