
International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 05 – Issue 06, November 2016

www.ijcit.com 529

The Extension of Digit Inversion in Genetic

Algorithm

Ixymbayeva S.Zhanyl

Computer Engineering and Software,

Faculty of S.Seifullin Kazakh

AgroTechnical University, Astana,

Email: Kazakhstan zhanyl.x60 [AT]

gmail.com

Nayzagarayeva A.Akkul

Infotmation Systems, Faculty of

S.Seifullin Kazakh AgroTechnical

University,

Astana, Kazakhstan

Tabys Tannurbek
Computer Engineering and Software,

Faculty of S.Seifullin Kazakh

AgroTechnical University, Astana,

Kazakhstan

Abstract--- In this paper we proposed stated, a Genetic

algorithms (GA) are machine learning search techniques

inspired by Darwinian evolutionary models. The

advantage of GA over factor analytic and other such

statistical models is that GA models can address

problems for which there is no human expertise or

where the problem seeking a solution is too complicated

for expertise based approaches.

Keywords— a Genetic algorithm (GA), inversion, assembly

language

I. INTRODUCTION
Genetic algorithms (GA) are machine learning

search techniques inspired by Darwinian evolutionary

models. The advantage of GA over factor analytic and other

such statistical models is that GA models can address

problems for which there is no human expertise or where

the problem seeking a solution is too complicated for

expertise based approaches. GA can be applied to

challenges which can be formulated as function

optimization problems. This makes GA ideal for application

to discrete combinatorial problems and mixed-integer

problems [1].

 Before a GA can be put to work on any problem, a

method is needed to encode potential solutions to that

problem in a form that a computer can process. One

common approach is to encode solutions as binary strings:

sequences of 1's and 0's, where the digit at each position

represents the value of some aspect of the solution. Another,

similar approach is to encode solutions as arrays of integers

or decimal numbers, with each position again representing

some particular aspect of the solution. This approach allows

for greater precision and complexity than the comparatively

restricted method of using binary numbers only and often "is

intuitively closer to the problem space" [2]

This technique was used, for example, in the work

of Steffen Schulze-Kremer, who wrote a genetic algorithm

to predict the three-dimensional structure of a protein based

on the sequence of amino acids that go into it [3]. Schulze-

Kremer's GA used real-valued numbers to represent the so-

called "torsion angles" between the peptide bonds that

connect amino acids. (A protein is made up of a sequence of

basic building blocks called amino acids, which are joined

together like the links in a chain. Once all the amino acids

are linked, the protein folds up into a complex three-

dimensional shape based on which amino acids attract each

other and which ones repel each other. The shape of a

protein determines its function.)

Before you can use a GA to solve a problem, a way

must be found of encoding any potential solution to the

problem. This could be as a string of real numbers or, as is

more typically the case, a binary bit string. Let’s refer to this

bit string from now on as the chromosome. A typical

chromosome may look like this:

10010101110101001010011101101110111111101

 At the beginning of a run of a GA a large

population of random chromosomes is created. Each one,

when decoded will represent a different solution to the

problem at hand. Let's say there are N chromosomes in the

initial population [4-6]. Then, the following steps are

repeated until a solution is found

Test each chromosome to see how good it is at solving the

problem at hand and assign a fitness score accordingly. The

fitness score is a measure of how good that chromosome is

at solving the problem to hand.

Select two members from the current population. The

chance of being selected is proportional to the chromosomes

fitness. Roulette wheel selection is a commonly used

method.

Dependent on the crossover rate crossover the bits from

each chosen chromosome at a randomly chosen point.

Step through the chosen chromosomes bits and flip

dependent on the mutation rate.

Repeat step 2, 3, 4 until a new population of N members

has been created.

II. ROULETTE WHEEL SELECTION
 This is a way of choosing members from the

population of chromosomes in a way that is proportional to

their fitness. It does not guarantee that the fittest member

goes through to the next generation, merely that it has a very

good chance of doing so. It works like this:

http://ai-junkie.com/ga/intro/gat2.html#_Stage_2:_Deciding_on_a_Fitness_Func
http://ai-junkie.com/ga/intro/gat2.html#_Stage_2:_Deciding_on_a_Fitness_Func
http://ai-junkie.com/ga/intro/gat2.html#_Tell_me_about_Roulette_Wheel_select
http://ai-junkie.com/ga/intro/gat2.html#_What's_the_Crossover_Rate?
http://ai-junkie.com/ga/intro/gat2.html#_What's_the_Mutation_Rate?
http://ai-junkie.com/ga/intro/gat2.html#_What's_the_Mutation_Rate?

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 05 – Issue 06, November 2016

www.ijcit.com 530

 Imagine that the population’s total fitness score is

represented by a pie chart, or roulette wheel. Now you

assign a slice of the wheel to each member of the

population. The size of the slice is proportional to that

chromosomes fitness score. i.e. the fitter a member is the

bigger the slice of pie it gets. Now, to choose a chromosome

all you have to do is spin the ball and grab the chromosome

at the point it stops.te?

 This is simply the chance that two chromosomes

will swap their bits. A good value for this is around 0.7.

Crossover is performed by selecting a random gene along

the length of the chromosomes and swapping all the genes

after that point.

 e.g. Given two chromosomes

10001001110010010

01010001001000011

Choose a random bit along the length, say at

position 9, and swap all the bits after that point

 So the above become:

10001001101000011

01010001010010010

III. WHAT'S THE MUTATION RATE?
 This is the chance that a bit within a chromosome

will be flipped (0 becomes 1, 1 becomes 0 - this operation is

called digit inversion. We give an example of inversion

realization on low level programming language assembler -

appendix 1[7]). This is usually a very low value for binary

encoded genes, say 0.001

 So whenever chromosomes are chosen from the

population the algorithm first checks to see if crossover

should be applied and then the algorithm iterates down the

length of each chromosome mutating the bits if applicable.

IV. PRACTIC IMPLEMENTATION
To hammer home the theory you've just learnt let's

look at a simple problem:

Given the digits 0 through 9 and the operators +, -,

* and /, find a sequence that will represent a given target

number. The operators will be applied sequentially from left

to right as you read.

So, given the target number 23, the sequence

6+5*4/2+1 would be one possible solution.

If 75.5 is the chosen number then 5/2+9*7-5

would be a possible solution.

 Please make sure you understand the problem

before moving on. I know it's a little contrived but I've used

it because it's very simple.

Stage 1: Encoding

First we need to encode a possible solution as a

string of bits… a chromosome. So how do we do this? Well,

first we need to represent all the different characters

available to the solution... that is 0 through 9 and +, -, * and

/. This will represent a gene. Each chromosome will be

made up of several genes.

 Four bits are required to represent the range of

characters used:

 0: 0000

1: 0001

2: 0010

3: 0011

4: 0100

5: 0101

6: 0110

7: 0111

8: 1000

9: 1001

+: 1010

-: 1011

*: 1100

/: 1101

 The above show all the different genes required to

encode the problem as described. The possible genes 1110

& 1111 will remain unused and will be ignored by the

algorithm if encountered.

So now you can see that the solution mentioned

above for 23, ' 6+5*4/2+1' would be represented by nine

genes like so:

0110 1010 0101 1100 0100 1101 0010 1010 0001

 6 + 5 * 4 / 2 + 1

 These genes are all strung together to form the

chromosome:

 011010100101110001001101001010100001

Because the algorithm deals with random

arrangements of bits it is often going to come across a string

of bits like this:

0010001010101110101101110010

 Decoded, these bits represent:

0010 0010 1010 1110 1011 0111 0010

2 2 + n/a - 7 2

Which is meaningless in the context of this

problem! Therefore, when decoding, the algorithm will just

ignore any genes which don’t conform to the expected

pattern of: number -> operator -> number -> operator …and

so on. With this in mind the above ‘nonsense’ chromosome

is read (and tested) as:

2 + 7

Stage 2: Deciding on a Fitness Function

This can be the most difficult part of the algorithm

to figure out. It really depends on what problem you are

trying to solve but the general idea is to give a higher fitness

score the closer a chromosome comes to solving the

problem. With regards to the simple project I'm describing

here, a fitness score can be assigned that's inversely

proportional to the difference between the solution and the

value a decoded chromosome represents.

If we assume the target number for the remainder

of the tutorial is 42, the chromosome mentioned above

011010100101110001001101001010100001

has a fitness score of 1/(42-23) or 1/19.

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 05 – Issue 06, November 2016

www.ijcit.com 531

As it stands, if a solution is found, a divide by zero

error would occur as the fitness would be 1/(42-42). This is

not a problem however as we have found what we were

looking for... a solution. Therefore a test can be made for

this occurrence and the algorithm halted accordingly.

Stage 3: Getting down to business

Please tinker around with the mutation rate,

crossover rate, size of chromosome etc to get a feel for how

each parameter effects the algorithm. Hopefully the code

should be documented well enough for you to follow what

is going on!

Note: The code given will parse a chromosome bit

string into the values we have discussed and it will attempt

to find a solution which uses all the valid symbols it has

found. Therefore if the target is 42, + 6 * 7 / 2 would not

give a positive result even though the first four symbols("+

6 * 7") do give a valid solution.

V. CONCLUSIONS
There are different selection techniques to use,

different crossover and mutation operators to try and more

esoteric stuff like fitness sharing and speciation to fool

around with. All or some of these techniques will improve

the performance of your GA- s considerably.

REFERENCES
1Sivanandam S, Deepa S: Introduction to Genetic

Algorithms. 2008, Springer

2 Fleming and Purshouse 2002, Genetic algorithms in

control systems engineering p. 1228.

3 Schulze-Kremer, Steffen. Molecular bioinformatics:

algorithms and applications. - Berlin; New York; de

Gruyter, 1995.

4 Painter TS (1933). "A new method for the study of

chromosome rearrangements and the plotting of

chromosome maps". Science 78 (2034): 585–586.

doi:10.1126/science.78.2034.585. PMID 17801695.

5 Gardner R.J.M. and Sutherland G.R. 2004. Chromosome

abnormalities and genetic counseling. Oxford.

6 Lehtonen S, Myllys L, Huttunen S (2009). "Phylogenetic

analysis of non-coding plastid DNA in the presence of short

inversions". Phytotaxa 1: 3–20.

7 Hyde, Randall. "Chapter 12 – Classes and Objects". The

Art of Assembly Language, 2nd Edition. No Starch Press. ©

2010

http://www.talkorigins.org/faqs/genalg/genalg.html#fleming2002
http://encyclopedia.thefreedictionary.com/Digital+object+identifier
http://dx.doi.org/10.1126%2Fscience.78.2034.585
http://www.ncbi.nlm.nih.gov/pubmed/17801695

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 05 – Issue 06, November 2016

www.ijcit.com 532

Appendix 1 – Listing Example of Digit Inversion on Assembly language

.model small

.stack 256

.386

.data

 b dw 19

 d dw 45

 mode db 0

 endOfLine db 13, 10, '$'

 mes_bx db 'BX:', 13, 10, '$'

 mes_dx db 'DX:', 13, 10, '$'

 mes_pr db 'Direct: $'

 mes_ob db 'Inverse: $'

.code

main proc

.startup

 mov ah, 09h

 lea dx, mes_bx

 int 21h

 lea dx, mes_pr

 int 21h

 mov bx, b

 call OutputDirect

 lea dx, mes_ob

 int 21h

 mov mode, 1

 call OutputDirect

 lea dx, endOfLine

 int 21h

 lea dx, mes_dx

 int 21h

 mov bx, d

 lea dx, mes_pr

 int 21h

 mov mode, 0

 call OutputDirect

 lea dx, mes_ob

 int 21h

 mov mode, 1

 call OutputDirect

.exit

main endp;--

OutputDirect proc near

;--

 pusha

 cmp mode, 0

 je @skip

 not bx

 @skip:

 mov ah, 02h

 mov cx, 16

 @cycle:

 shl bx, 1

 jb @one

 mov dl, '0'

 jmp @output

 @one:

 mov dl, '1'

 @output:

 int 21h

 loop @cycle

 mov ah, 09h

 lea dx, endOfLine

 int 21h

 popa

 ret

OutputDirect endp

End

