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Abstract—Advancements of technology in the field of networking 

and computing bring with it a heightened importance for cyber 

security. Currently, legal forms of identification, financial 

information, and scientific data rely on this technology. 

Moreover, as more dependence on cloud computing, data-base 

storage, and online banking is applied keeping sensitive 

information secure is paramount. JavaScript Cross-site based 

attacks continue to be the most prevalent cause of compromised 

information. Here, we demonstrate the feasibility of using 

unsupervised learning algorithms to detect attacks as part of the 

Intrusion Detection System for malicious cross scripts with 

attacked web sites. Our contribution is domain-based, in order to 

track changes of the interaction. Profiles are made from web-

crawled pages and parsed according to key scripting features. 

The detection is done when scripting deviates from the main 

clustering of those clean profiles data gathered 

Keywords-component; Cybersecurity, unsupervised neural 

networks, cyber-attacks, cross-site scripting, XSS, anomaly 

detection 

I.  INTRODUCTION 

Web attacks have become one of the greatest causes of 

identity theft, stolen assets, and compromised information 

security. In 2015 alone, 9 large-scale breaches and close to 429 

million exposed identities were reported [1]. Despite the 

severity of reported attacks, it is only a percentage of actual 

cases of compromised information. 

Of all cyber-attacks, JavaScript based attacks have been 

shown to be one of the most prevalent [1, 2, 3]. JavaScript 

attacks include injection type of attacks such as cross-site 

scripting (XSS), drive-by downloads, and cross-site forgery 

requests (CSFR). Despite the severity of these attacks, most 

web programming languages do not provide a guarantee of safe 

data transfer to the client by default [4].  

While several methods of scripting attack prevention 

systems continue to be developed, hackers continue to find new 

methods to bypass current systems. Even large, established 

companies with a high focus on security are shown to be 

susceptible to such attacks [1, 6, 7, 23, 24]. 

In the case of XSS, since no pre-defined characteristics exist, 

the method of detection is called “anomaly detection”. 

Anomaly detection first examines what is deemed normal and 

then detects deviations from the normal behavior [8,9,22].  

In our work, anomaly detection is sufficient for classifying 

XSS attacks under analysis techniques. Using this method, a 

database of web application profiles will be created from 

historical audited data for each domain tested. Subsequent 

profiles will be created over a period of time as interaction with 

the web application occurs. The generated new profiles that 

were marked as normal profiles will be compared with the set 

of existing profiles by using a machine learning technique 

(anomaly detection). If the profile deviates significantly from 

the profiles in the database, it is marked as an intrusive state. 

The webpage might be infected by XSS, data invasion, or data 

manipulation and need further analysis (Fig. 1). 

While many methods of XSS detection have already been 

introduced, our methodology differs in a few instances from 

other works. Some of the differing characteristics are: 

 Detection is not limited to untrusted behaviors. In other 
words, untrusted user’s behavior will be detected as 
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well other users who are merely injecting inputs into 
the field’s area.  

 It is not assumed that certain strings are malicious 
based off previous trained networks. These 
assumptions will not be made because scripting 
methods for attacks are constantly evolving and could 
change.  

 Anomaly detection is host-based rather than network-
based. Host-based anomaly detection is more focused 
on analyzing and extracting the data from web 
applications directly. 

 The intrusion detection process is carried out in the 
server for static analysis and classification. This 
process provides a quick response to untrusted 
behavior to be detected and prevent a breach. 

 

Figure 1.  Anomaly detection flowchart 

This paper is organized as follows. In section 2, we define 
the Cross-Site Scripting (XSS) and one of its categories. In 
other words, XSS has many types of attacks. Section 3 
discussed how our methods is different among other techniques 
with examples. We will then introduce the details of our XSS 
detection scheme in Section 4. Section 5 describes the 
technique and evaluates performance of the mechanism, 
followed by discussing an example of Cross-Site Scripting and 
how the technique can be implemented in Section 6. The paper 
Conclusion and the acknowledgment in Section 7 and Section 
8 respectively. 

II. CROSS-SITE SCRIPTING 

Cross-site scripting (XSS) can be defined as an attack 
vector caused by malicious code that is injected into trusted 
web applications using user input that is not properly validated 
or sanitized [10, 11, 12]. Sanitization is the removal of 
potentially harmful code from untrusted data [13]. XSS occurs 
when malicious scripts are sent by one user to another end user 
via a web application [12]. Other methods of implementing an 
injection attack vector include technologies that are supported 

by the browser being used (e.g. Flash, Active X, VBScript, 
XUL, QuickTime, etc…) [3, 14, 25]. 

There are three types of XSS: persistent or stored, non-
persistent or reflective, and DOM-based. These different types 
of XSS fall into two categories of execution and storage: client 
side and server side. These definitions have been adopted by 
the research community since 2012 as seen in the Online Web 
Application Security Project (OWASP) [12]. 

A. Persistent XSS 

The most damaging and costly XSS attack is the persistent, 

or stored attack, because the injected attack is permanently 

stored on the targeted server and is executed in the end user’s 

browser any time that infected page is requested [12]. Because 

of this, the focus of our work will be to detect and defend 

against persistent or stored XSS.  
To better understand persistent attacks, Fig. 2 is provided 

[15]. The attacker first finds a vulnerability in a web 
application where he/she can inject their code. These lines of 
code – that are normally written in JavaScipt – are then sent to 
the web application and directly embedded in the HTML 
structure of the website stored in its database [5, 10, 11, 12]. 
When the victim requests the page with the added injection, the 
content of that page is executed in the victim’s web browser. 

 

Figure 2.  Persistent XSS example. 

The purpose of the malicious code executed is not limited 

to a certain number of actions but is generally designed to 

compromise a victim’s sensitive information or steal their 

assets. One example would be to steal a victim’s session cookie 

and send it to the attacker. This would allow the attacker to 

hijack the victim’s session and steal personal information as 

well as take over that account [12]. Other examples would be 

web redirects to a malicious web page, disclosing a victim’s 

files, installations of Trojan horses, or modification of 

information [12]. In the case of social networking XSS, the 

code executed could also act as a worm and propagate 

throughout a victim’s page and infect those who come in 

contact with them [15]. 
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III. DISCUSSION  

Other methods have been shown to be effective for 
classification in areas where the untrusted areas of code can be 
identified; however, using only these methods will eventually 
be insufficient to identify attacks because: 

 Injections do not always occur in permissible areas and 
can be injected elsewhere in the HTML structure of the 
web application [3, 14]. 

 Training data for the supervised neural network needs 
to be up to date and routinely trained to keep up with 
performance [17]. 

 Supervised neural networks can classify malicious 
code as benign if intruders continually work below the 
tolerance threshold and train the network to misclassify 
increasingly abnormal code [18]. 

For example, while obfuscation is used in many malicious 
attacks, the same obfuscation occurs in legitimate benign code 
[16, 19]. A high number of eval() functions is also seen as a 
characteristic of XSS; however, benign code uses the eval() 
function for many legitimate purposes [14]. Another 
characteristic historically viewed as typical of malicious 
scripting would be a high keyword to word ratio and the 
number of functions [16]. These keywords can be found on the 
w3schools website1. This includes words such as: return, 
arguments, if, try, var, setTimeout, catch, window, and length. 
Further explanations for the features extracted for creating a 
web application profile is described in detail in section 4.  

The HTML code for the google search page is shown in 
Fig. 3. By classification purposes, this page using supervised 
machine learning and a complete page scan for features such as 
the keyword to word ratio or the number of functions might 
consider the page to be malicious because it contains many of 
the characteristics that have been shown to be typical of 
malicious scripting attacks. 

 

Figure 3.  Portion of the HTML extracted from the google search page. 

While dynamic systems have been shown to have a high 
success rate in correctly classifying true positive (TP) 
malicious pages, the analysis is time consuming [13, 16]. After 
successful identification of a page that has injected XSS, the 

                                                           
1 http://www.w3schools.com/js/js_reserved.asp 

virtual machine on the honeyclient will need to be restored 
since the platform cannot be trusted after an attack [16]. The 
time and resources required for this process are therefore 
expensive.  

Current implementations of anomaly IDS using 
unsupervised clustering have typically been relegated to 
network-based systems.  

We propose the creation of a host-based, anomaly detection 
IDS that can accurately classify TP pages with a low number of 
FN. Misclassification of FP web applications can also be 
achieved using our methodology. Contributions of the IDS we 
propose will contain the following: 

 Analysis will be performed on the web application as a 
whole, thus deviating from same-origin policy. 

 Domain based – all profiles created from extracted 
features will be kept in a database specific for that 
specific domain.  

 The use of unsupervised clustering to detect anomalies 
in JavaScript and HTML content found in the web 
application. 

 Proposed future studies to complete the classification 
of XSS in a web application by supervised learning or 
dynamic analysis of web pages found to be suspicious. 

Like the Profiler, we will be scanning the whole page for 
features used to create the profiles of each web page before 
mentioned. This will eliminate the chance of mistaking web 
application code for client untrusted areas of code or in the case 
of missing malicious scripts, because code was not injected 
into normal client input areas. 

IV. METHODOLOGY  

The goal of our process is to separate benign web 
application pages from pages with added cross-site scripting 
(XSS) attacks with low number of false negatives (FN). This 
indicates that a page with an injected script is classified as 
benign. Anomaly-based detection systems typically have a 
higher number of false positives (FP) than misuse detection 
[16]. FP indicates a benign page that is categorized as 
malicious. Other static applications using supervised neural 
networks have been shown to classify true positive (TP) scripts 
within 94.4% accuracy for drive-by download applications [16, 
20] and 92.0% accuracy for obfuscated JavaScript attacks [19] 
when the scripts themselves have been provided and the 
training data is up to date [17]. Therefore, after anomaly 
detection, we further propose a hybrid model combining the 
clustering of web application profiles by their anomalies and 
then extracting the scripts in question and using a supervised 
neural network for classification of the script. For our 
methodology, we will focus on the detection of anomalies with 
low FN assignments. 

Application of our intrusion detection system (IDS) for 
anomaly cross-site scripting (XSS) attack detection is carried 
out in a 4-stage process: First – a web crawler is employed to 
extract all embedded HTML from the web application being 
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examined. Second – the HTML is then parsed for different 
features for the purpose of creating the profile of the page. 
Third – the profile is compared with other profiles created in 
the database by use of a k-means algorithm. Fourth – the 
profile is either saved into the database with other profiles if it 
clusters among the other profiles, or it is quarantined and 
defined as an intrusion if it differs significantly from the other 
profiles or best matching unit (BMU). 

A. Two Platforms for Testing 

which to conduct experiments. Two different testing 

platforms are created. One is for controlled testing using 

profiles that are predicable. The second is a real world 

environment with previously deemed benign web pages.  

For the controlled area of testing, a simple test page we write 

is created. The page contains simple HTML structures, an 

executable, and an area for user input which is run as a local 

host for preliminary testing. The code for this page is shown in 

Fig. 4. This page is replicated two more times, with the 

addition of an executable, and the addition of an HTML 

element, respectively, directly above the comments section. 

The comments section is used for client side inputs. 

The second platform for testing, we take sites from DMOZ2 

as our sample group. These websites come from a controlled 

source and are reputed to be benign and free of any injected 

malicious code. 

The process for extracting the embedded HTML, parsing 

into features, and organizing the data from both testing 

platforms follow the same procedures. 

Web applications to be analyzed are collected using a web 

crawler to extract HTML code embedded in the page. The open 

source web crawler we used is HTTrack3. 

                                                           
2 http://www.dmoz.org 
3 https://www.httrack.com 

 

 

Figure 4.  Test page code 

B. Features  

The features of the web application are our way to map the 
amount and characteristics of scripting and HTML content. 
These individual features we put into a vector called the feature 
vector, or the profile, of that page. This is indicative of the state 
the page is currently in and, when compared to past and future 
profiles, is indicative of the web application state whether its in 
a protected state or in an intrusion state. In the process of 
extracting features, no code is executed by design for static 
analysis. This will allow our IDS to analyze the page quickly 
[16]. 

Feature extraction is performed by parsing the HTML 
document we create using Java. The JSOUP library is used to 
import the HTML document as a string to analyze. We extract 
11 features from that string that we will explain in more detail 
below. There are many other features that will give a more 
accurate profile of the web application state. The extraction of 
those features have been performed in other works and are 
recommended to be done for future work. The scope of our 
methodology we limit for testing purposes of our model so full 
extraction of features are not performed. These other features 
can be found in the published works by Canali et. al. [16], 
Likarish, Jung, and Jo [19] and Nunan et. al. [10]. The 11 
features we use are as follows: 

 Keyword to word ratio – these keywords we use can be 
found on the w3school website. 

 Percentage of script content on the page – the 
percentage of content between <script></script> tags 
compared to the rest of the HTML content of the page. 

 Percentage of whitespace content on the page. 
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 Total embedded objects – a full description of these 
can be found on the w3school website4. 

 Total URLs – amount of URL redirects found on the 
page. 

 HTML elements with small areas – elements with less 
than 10 pixels per side. 

 Total <script> tags 

 Double documents – repeating references to documents 
or external resources. 

 Functions used for de-obfuscation routines  

 Total number of functions – variables assigned as a 
function(). 

 Total number of the HTML event handlers – 
setTimeout, setInterval, onclick, and onmouseover. 

These features are then organized into a vector we use as a 
profile of our web application. The first one we use as our 
BMU since we assume it is benign. Subsequent profiles are 
made for the domain as interaction occurs and are mapped in 
relation to each other by means of clustering. We perform these 
actions using our two different platforms. First the controlled 
testing using profiles that are predicable. The second is a real 
world environment with previously deemed benign web pages. 

C. Organizing Testing Platforms for Analysis 

For the first platform, we take our three pages and inject 
benign HTML code in the form of comments. These are then 
web-crawled for embedded HTML content, parsed, and 
organized into profiles as described above. We also inject a 
page with a redirect to a malicious external resource4 and make 
its profile. Data collected from this domain and its results will 
be covered in section 5. 

For the second platform, we similarly take the domain and 
its pages as the BMU of our clustering map. Several of the 
pages we inject with code for the Samy Worm that was used in 
the MySpace attack in 2005 [21]. 

This code is used as a more realistic attack in a real world 
setting because the attack used for our first platform has a 
signature typical of attacks, which is not allowed to be 
executed in current browsers. Results for this platform are 
discussed and illustrated in Section 5. 

V. RESULTS. 

In measuring the results of our two different platforms, it is 
important to remember that the goal of our methodology is to 
have the amount of false negative (FN) classification of 
profiles to be as low as possible. While false positive (FP) 
results are not as important for the reason that further testing 
will need to be applied for definite classification, our goal is to 
reduce the number of FP clustering as well. Overall accuracy 

                                                           
4 <script src=http://www.hackers.org/js/xss.js></script> 
5 http://www.orange.biolab.si 

will be an analysis of all the apparent clustering and the states 
of their profiles whether injected with malicious content or not. 

The metrics we will use will be based on the clustering of 
the profiles. Benign profiles clustering around the best 
matching unit (BMU) or the assumed benign profile we will 
assign as true negative (TN). Malicious files that cluster around 
the BMU we will call false negative (FN). Benign profiles that 
deviate from the cluster we call a false positive (FP). Finally, 
the profiles deviating from the BMU cluster that are assigned 
to the web application with the injected attack we call true 
positive (TP). Overall accuracy (ACC) of the system can be 
shown by (1). True positive rate (TPR) or sensitivity of the 
system is shown in (2). True negative rate (TNR) or specificity 
is shown in (3). 

 

     
     

           
       (1) 

     
  

     
.                  (2) 

                      
  

     
                  (3) 

 

Using these metrics, we can measure the accuracy and 
feasibility of our system for future work and implementation. 
The first experiments are carried out on the supervised support 
vector machine (SVM) to illustrate the clustering of such 
profiles according to their features. This is done for 
clarification and a visual representation of benign and 
suspicious profiles. In the other part of testing, we use 
unsupervised k-means clustering to find deviations for further 
analysis. Our tools we use for our SVM and k-means 
algorithms are found from the open source Orange design 
application5 from python. 

A. Results of Controlled Environment System 

The first environment to test we use the first platform we 
designed. We create 8 different benign profiles using the 
techniques we stated in Section 4. This takes the profiles of the 
original page, one with an added HTML element, and another 
with an added executable. The remaining 8 profiles are created 
by adding content through the comments section that can 
include the use of HTML tags and JavaScript code. 5 are made 
by inserting benign client side code and 3 are made by 
inserting the redirect to a malicious external resource5. In this 
preliminary test, the classification of the profiles is known to 
illustrate the clustering visual, identify the deviations, and 
check for accurate clustering. The clustering of these profiles 
using a support vector machine (SVM) are shown in Fig. 5. 
The blue markers represent profiles that we already know are 
benign. The red markers represent the profiles that are known 
to contain the malicious redirect. 
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Figure 5.  Illustration of clustering results using SVM against 3 axes labeled 

the percentage of whitespace, percentage of scripting content, and number of 

<script> tags. 

For illustration purposes the results show a general 
clustering of the benign markers close to each other and the red 
group cluster away from the others. By using the SVM 
algorithm, we can separate the benign and malicious pages by 
the margin, as shown in Figure 5. The SVM probability 
distribution is shown in Fig. 6 to illustrate the probability of a 
certain profile being assigned benign or likely being assigned 
suspicious over an axis of the percentage of scripting to relative 
density. With the study’s result, we want to investigate more in 
the suspicious webpages and apply more training on them. Our 
algorithm will continue processing the data until it repeatedly 
reach the lowest possible result. 

 

Figure 6.  SVM probability distribution for profile organization and 

clustering 

As is shown, the probability of a correctly clustering the 8 
benign and 3 maliciously classified profiles correctly is more 

than 95% according to just the scripting content of the profiles. 
While there is possibility for FP and FN clustering, the 
combination of profile clustering according to the complete set 
of features is more accurate. An unsupervised clustering 
example is given in the next section to visually demonstrate the 
ability of such a network to cluster a number of profiles 
correctly. As will be shown, the more profiles added to the 
network, the more accurate the system clusters. This is 
important as previous work has shown to misclassify anomalies 
when attacks happen rarely [17]. 

B. Result of DMOZ System 

In the second environment for testing, we took pages from 
the DMOZ domain. The HTML for each page was extracted 
using the HTTrack web-crawler we previously used. A 
simulated malicious injection attack was created by injecting a 
benign DMOZ page with the Samy worm [21]. While the 
Samy worm is now benign in browsers, the purpose of 
injecting this attack is to show a deviation from the current site 
style of design and formatting. Any anomaly and strong 
deviation from site design is expected to be indicated as 
suspicious. 

A sample size of 270 profiles for testing are demonstrated 
for anomaly identification. This is done using a pre-labeled, 
known identification of each page and find clustering results. 
This is done using a various clustering algorithms. The second 
uses k-means for clustering and identifying suspicious 
clustering for further classification.  

Using a SVM, we produced the results of the 270 profile 
sample in which 4 of the profiles were taken from pages 
injected with the Samy worm. The results shown in Fig. 7 
show the probability of files being correctly clustered with a 
focus on scripting content. 

 

Figure 7.  SVM probability distribution for organization and clustering for a 

sample size of 270 profiles with 4 injected profiles. 
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Clustering results according to scripting content show 
correct identification of the attacked sites or a TP of 4 and a FP 
rate of 1. The overall accuracy of the clustering is 99.6%, a 
TPR of 80% and a TNR of 99.6%. While some FP profiles 
were identified, the purpose of our work is to minimize the 
amount of FN which we found to not exist using the current 
method. Therefore, based off clustering, we can find the 
suspicious profiles and the web application pages they are 
associated with. From this we can see the feature of scripting 
being one of the prominent means of identifying attacks. 

The same experiment is carried out using other means 
algorithms to determine the ability of a network to correctly 
cluster profiles according to full content. The algorithms we 
use are SVM, Logistic regression, Naïve Bayes, and k nearest 
neighbor. The results for these algorithms are shown in Table 
1. As is shown, all suspicious profiles were correctly separated 
from normal profiles. 

TABLE I.  ACCURACY OF VARIOUS SUPERVISED CLUSTERING 

ALGORITHMS IN CORRECTLY CLASSIFYING A SAMPLE SET OF 270 PROFILES 

ACCORDING TO THEIR CONTENT 

SVM Predicted 

 

Actual 

 Normal Suspicious  

Normal 100.0% 0.0% 266 pages 

Suspicious 0.0% 100.0% 4 pages 

 266 pages 4 pages 270 total 

 

Logistic Reg. Predicted 

 

Actual 

 Normal Suspicious  

Normal 100.0% 0.0% 266 pages 

Suspicious 0.0% 100.0% 4 pages 

 266 pages 4 pages 270 total 

 

Naïve Bayes Predicted 

 

Actual 

 Normal Suspicious  

Normal 99.6% 0.4% 266 pages 

Suspicious 0.0% 100.0% 4 pages 

 265 pages 5 pages 270 total 

 

kNN Predicted 

 

Actual 

 Normal Suspicious  

Normal 100.0% 0.0% 266 pages 

Suspicious 0.0% 100.0% 4 pages 

 266 pages 4 pages 270 total 

 

The second part of using this platform is to perform 
clustering using k-means to determine suspicious profiles 
based on deviation. Because clustering groups the webpages 
together based on certain behaviors, the malicious webpages 
can be discovered when they deviate from the benign 
webpages. The accuracy of clustering is shown on a map with 
different features being the various axis used. Clusters are 
visually represented with different colors and show how 
closely each profile relates to the other. Figure 8 shows the 
confidence of the clustering with respect to the BMU. Figure 9 
shows the use of k-means clustering to organize the 270 profile 

sample set according to clustering with an emphasis on 
scripting features. 

 

Figure 8.  Confidence probability of a profile being correctly clustered 

according to the BMU. 

 

 

 

Figure 9.  Visual representation of clustering profiles according to 6 features 

in a sample of 50, 75, and 270 profiles left to right respectively. 

It should be noted in Fig. 9 that specific group coloring of 
graph 1 does not necessarily correlate to the same grouping of 
profiles in graphs 2 or 3. In Fig. 10 we see that as the sample 
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size increases, the division between the main clustering of 
profiles increases. The third portion of the multi-dimensional 
scale (MDS) shows a distinct separation of the main clustering 
of profiles from the outliers. While definite classification is not 
available at this time of clustering, further work is proposed to 
classify the page by dynamic or data mining practices 
discussed in section 6. 

 

Figure 10.  Multi-dimensional scale visual representation of clustering profiles 

according to the 11 features used in samples of 50, 75, and 270 profiles, top to 

bottom, respectively. 

 

VI. DISCUSSION 

Web crawling and parsing occurs in the server, many times, 
cross-site scripting (XSS) attacks search for interpretation 
differences in each of the individual browsers and exploit those 
vulnerabilities [3]. This weakness has been the target of 
attacks. For example, the newline character ‘\n’ used in the first 
large scale XSS attack in 2005 for the tag <java\nscript> 
bypassed sanitization processes but was executed as 
<javascript> in browsers that removed whitespaces [21]. While 
development of better Intrusion Detection Systems (IDS) that 
account for this type of attack is a continual process, the 
problem with interpreted languages – such as JavaScript – is 
that the assumption that server side parsing/rendering on the 
client side is consistent with the server side processing [3].  

A proposed solution would be a periodic update of the 
features used in the vector to our model using data mining 
techniques after anomalous profiles have been classified as 
malicious. In this way, the web application acts as a honeypot 
and tracks the progress of attacks while gathering information 
on their methods. This will create better profiles of the 
JavaScript/HTML content of the web application for more 
accurate clustering as well. 

VII. CONCLUSION 

In this research work, we introduced a new method of a 
host-based, intrusion detection system (IDS) for scripting 
injection and persistent cross-site scripting (XSS) attack 
flagging. XSS is one of the top attacks used by hackers for 

identity theft, loss of assets, and information fraud. Current 
problems in identifying and correctly classifying such scripting 
attacks stem from a failure to correctly identify untrusted areas 
of injection and the lack of a signature for possible future 
attacks in the case of static analysis, and expensive processing 
requirements from dynamic analysis systems. Our 
methodology has shown to be accurate in clustering the state of 
a web application over a period of time and interaction using 
JavaScript and HTML snapshots of the web application, we 
call profiles. Deviant profiles place the web application in an 
intrusion state and are sent for further analysis that will need to 
be continued for future work. 
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