
International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 06– Issue 06, November 2017

www.ijcit.com 277

Application of Unsupervised Learning for Detection

Cross-site Scripting (XSS) Security Breaches

Paloma Symmonds

 College of Engineering,

 Embry-Riddle Aeronautical University

Daytona Beach, FL, United States

Ali Alharbi

School of Engineering and Computer Science

Oakland University

Rochester, MI, United States

Email: aoalharbi [AT] aokland.edu

Ephraim Nielson

College of Technology and Computing

Utah Valley University

Orem, UT, United States

Abdulaziz Alshammari

School of Engineering and Computer Science

Oakland University

Rochester, MI, United States

Abstract—Advancements of technology in the field of networking

and computing bring with it a heightened importance for cyber

security. Currently, legal forms of identification, financial

information, and scientific data rely on this technology.

Moreover, as more dependence on cloud computing, data-base

storage, and online banking is applied keeping sensitive

information secure is paramount. JavaScript Cross-site based

attacks continue to be the most prevalent cause of compromised

information. Here, we demonstrate the feasibility of using

unsupervised learning algorithms to detect attacks as part of the

Intrusion Detection System for malicious cross scripts with

attacked web sites. Our contribution is domain-based, in order to

track changes of the interaction. Profiles are made from web-

crawled pages and parsed according to key scripting features.

The detection is done when scripting deviates from the main

clustering of those clean profiles data gathered

Keywords-component; Cybersecurity, unsupervised neural

networks, cyber-attacks, cross-site scripting, XSS, anomaly

detection

I. INTRODUCTION

Web attacks have become one of the greatest causes of

identity theft, stolen assets, and compromised information

security. In 2015 alone, 9 large-scale breaches and close to 429

million exposed identities were reported [1]. Despite the

severity of reported attacks, it is only a percentage of actual

cases of compromised information.

Of all cyber-attacks, JavaScript based attacks have been

shown to be one of the most prevalent [1, 2, 3]. JavaScript

attacks include injection type of attacks such as cross-site

scripting (XSS), drive-by downloads, and cross-site forgery

requests (CSFR). Despite the severity of these attacks, most

web programming languages do not provide a guarantee of safe

data transfer to the client by default [4].

While several methods of scripting attack prevention

systems continue to be developed, hackers continue to find new

methods to bypass current systems. Even large, established

companies with a high focus on security are shown to be

susceptible to such attacks [1, 6, 7, 23, 24].

In the case of XSS, since no pre-defined characteristics exist,

the method of detection is called “anomaly detection”.

Anomaly detection first examines what is deemed normal and

then detects deviations from the normal behavior [8,9,22].

In our work, anomaly detection is sufficient for classifying

XSS attacks under analysis techniques. Using this method, a

database of web application profiles will be created from

historical audited data for each domain tested. Subsequent

profiles will be created over a period of time as interaction with

the web application occurs. The generated new profiles that

were marked as normal profiles will be compared with the set

of existing profiles by using a machine learning technique

(anomaly detection). If the profile deviates significantly from

the profiles in the database, it is marked as an intrusive state.

The webpage might be infected by XSS, data invasion, or data

manipulation and need further analysis (Fig. 1).

While many methods of XSS detection have already been

introduced, our methodology differs in a few instances from

other works. Some of the differing characteristics are:

 Detection is not limited to untrusted behaviors. In other
words, untrusted user’s behavior will be detected as

Mohamed A. Zohdy

School of Engineering and Computer Science

Oakland University

Rochester, MI, United States

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 06– Issue 06, November 2017

www.ijcit.com 278

well other users who are merely injecting inputs into
the field’s area.

 It is not assumed that certain strings are malicious
based off previous trained networks. These
assumptions will not be made because scripting
methods for attacks are constantly evolving and could
change.

 Anomaly detection is host-based rather than network-
based. Host-based anomaly detection is more focused
on analyzing and extracting the data from web
applications directly.

 The intrusion detection process is carried out in the
server for static analysis and classification. This
process provides a quick response to untrusted
behavior to be detected and prevent a breach.

Figure 1. Anomaly detection flowchart

This paper is organized as follows. In section 2, we define
the Cross-Site Scripting (XSS) and one of its categories. In
other words, XSS has many types of attacks. Section 3
discussed how our methods is different among other techniques
with examples. We will then introduce the details of our XSS
detection scheme in Section 4. Section 5 describes the
technique and evaluates performance of the mechanism,
followed by discussing an example of Cross-Site Scripting and
how the technique can be implemented in Section 6. The paper
Conclusion and the acknowledgment in Section 7 and Section
8 respectively.

II. CROSS-SITE SCRIPTING

Cross-site scripting (XSS) can be defined as an attack
vector caused by malicious code that is injected into trusted
web applications using user input that is not properly validated
or sanitized [10, 11, 12]. Sanitization is the removal of
potentially harmful code from untrusted data [13]. XSS occurs
when malicious scripts are sent by one user to another end user
via a web application [12]. Other methods of implementing an
injection attack vector include technologies that are supported

by the browser being used (e.g. Flash, Active X, VBScript,
XUL, QuickTime, etc…) [3, 14, 25].

There are three types of XSS: persistent or stored, non-
persistent or reflective, and DOM-based. These different types
of XSS fall into two categories of execution and storage: client
side and server side. These definitions have been adopted by
the research community since 2012 as seen in the Online Web
Application Security Project (OWASP) [12].

A. Persistent XSS

The most damaging and costly XSS attack is the persistent,

or stored attack, because the injected attack is permanently

stored on the targeted server and is executed in the end user’s

browser any time that infected page is requested [12]. Because

of this, the focus of our work will be to detect and defend

against persistent or stored XSS.
To better understand persistent attacks, Fig. 2 is provided

[15]. The attacker first finds a vulnerability in a web
application where he/she can inject their code. These lines of
code – that are normally written in JavaScipt – are then sent to
the web application and directly embedded in the HTML
structure of the website stored in its database [5, 10, 11, 12].
When the victim requests the page with the added injection, the
content of that page is executed in the victim’s web browser.

Figure 2. Persistent XSS example.

The purpose of the malicious code executed is not limited

to a certain number of actions but is generally designed to

compromise a victim’s sensitive information or steal their

assets. One example would be to steal a victim’s session cookie

and send it to the attacker. This would allow the attacker to

hijack the victim’s session and steal personal information as

well as take over that account [12]. Other examples would be

web redirects to a malicious web page, disclosing a victim’s

files, installations of Trojan horses, or modification of

information [12]. In the case of social networking XSS, the

code executed could also act as a worm and propagate

throughout a victim’s page and infect those who come in

contact with them [15].

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 06– Issue 06, November 2017

www.ijcit.com 279

III. DISCUSSION

Other methods have been shown to be effective for
classification in areas where the untrusted areas of code can be
identified; however, using only these methods will eventually
be insufficient to identify attacks because:

 Injections do not always occur in permissible areas and
can be injected elsewhere in the HTML structure of the
web application [3, 14].

 Training data for the supervised neural network needs
to be up to date and routinely trained to keep up with
performance [17].

 Supervised neural networks can classify malicious
code as benign if intruders continually work below the
tolerance threshold and train the network to misclassify
increasingly abnormal code [18].

For example, while obfuscation is used in many malicious
attacks, the same obfuscation occurs in legitimate benign code
[16, 19]. A high number of eval() functions is also seen as a
characteristic of XSS; however, benign code uses the eval()
function for many legitimate purposes [14]. Another
characteristic historically viewed as typical of malicious
scripting would be a high keyword to word ratio and the
number of functions [16]. These keywords can be found on the
w3schools website1. This includes words such as: return,
arguments, if, try, var, setTimeout, catch, window, and length.
Further explanations for the features extracted for creating a
web application profile is described in detail in section 4.

The HTML code for the google search page is shown in
Fig. 3. By classification purposes, this page using supervised
machine learning and a complete page scan for features such as
the keyword to word ratio or the number of functions might
consider the page to be malicious because it contains many of
the characteristics that have been shown to be typical of
malicious scripting attacks.

Figure 3. Portion of the HTML extracted from the google search page.

While dynamic systems have been shown to have a high
success rate in correctly classifying true positive (TP)
malicious pages, the analysis is time consuming [13, 16]. After
successful identification of a page that has injected XSS, the

1 http://www.w3schools.com/js/js_reserved.asp

virtual machine on the honeyclient will need to be restored
since the platform cannot be trusted after an attack [16]. The
time and resources required for this process are therefore
expensive.

Current implementations of anomaly IDS using
unsupervised clustering have typically been relegated to
network-based systems.

We propose the creation of a host-based, anomaly detection
IDS that can accurately classify TP pages with a low number of
FN. Misclassification of FP web applications can also be
achieved using our methodology. Contributions of the IDS we
propose will contain the following:

 Analysis will be performed on the web application as a
whole, thus deviating from same-origin policy.

 Domain based – all profiles created from extracted
features will be kept in a database specific for that
specific domain.

 The use of unsupervised clustering to detect anomalies
in JavaScript and HTML content found in the web
application.

 Proposed future studies to complete the classification
of XSS in a web application by supervised learning or
dynamic analysis of web pages found to be suspicious.

Like the Profiler, we will be scanning the whole page for
features used to create the profiles of each web page before
mentioned. This will eliminate the chance of mistaking web
application code for client untrusted areas of code or in the case
of missing malicious scripts, because code was not injected
into normal client input areas.

IV. METHODOLOGY

The goal of our process is to separate benign web
application pages from pages with added cross-site scripting
(XSS) attacks with low number of false negatives (FN). This
indicates that a page with an injected script is classified as
benign. Anomaly-based detection systems typically have a
higher number of false positives (FP) than misuse detection
[16]. FP indicates a benign page that is categorized as
malicious. Other static applications using supervised neural
networks have been shown to classify true positive (TP) scripts
within 94.4% accuracy for drive-by download applications [16,
20] and 92.0% accuracy for obfuscated JavaScript attacks [19]
when the scripts themselves have been provided and the
training data is up to date [17]. Therefore, after anomaly
detection, we further propose a hybrid model combining the
clustering of web application profiles by their anomalies and
then extracting the scripts in question and using a supervised
neural network for classification of the script. For our
methodology, we will focus on the detection of anomalies with
low FN assignments.

Application of our intrusion detection system (IDS) for
anomaly cross-site scripting (XSS) attack detection is carried
out in a 4-stage process: First – a web crawler is employed to
extract all embedded HTML from the web application being

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 06– Issue 06, November 2017

www.ijcit.com 280

examined. Second – the HTML is then parsed for different
features for the purpose of creating the profile of the page.
Third – the profile is compared with other profiles created in
the database by use of a k-means algorithm. Fourth – the
profile is either saved into the database with other profiles if it
clusters among the other profiles, or it is quarantined and
defined as an intrusion if it differs significantly from the other
profiles or best matching unit (BMU).

A. Two Platforms for Testing

which to conduct experiments. Two different testing

platforms are created. One is for controlled testing using

profiles that are predicable. The second is a real world

environment with previously deemed benign web pages.

For the controlled area of testing, a simple test page we write

is created. The page contains simple HTML structures, an

executable, and an area for user input which is run as a local

host for preliminary testing. The code for this page is shown in

Fig. 4. This page is replicated two more times, with the

addition of an executable, and the addition of an HTML

element, respectively, directly above the comments section.

The comments section is used for client side inputs.

The second platform for testing, we take sites from DMOZ2

as our sample group. These websites come from a controlled

source and are reputed to be benign and free of any injected

malicious code.

The process for extracting the embedded HTML, parsing

into features, and organizing the data from both testing

platforms follow the same procedures.

Web applications to be analyzed are collected using a web

crawler to extract HTML code embedded in the page. The open

source web crawler we used is HTTrack3.

2 http://www.dmoz.org
3 https://www.httrack.com

Figure 4. Test page code

B. Features

The features of the web application are our way to map the
amount and characteristics of scripting and HTML content.
These individual features we put into a vector called the feature
vector, or the profile, of that page. This is indicative of the state
the page is currently in and, when compared to past and future
profiles, is indicative of the web application state whether its in
a protected state or in an intrusion state. In the process of
extracting features, no code is executed by design for static
analysis. This will allow our IDS to analyze the page quickly
[16].

Feature extraction is performed by parsing the HTML
document we create using Java. The JSOUP library is used to
import the HTML document as a string to analyze. We extract
11 features from that string that we will explain in more detail
below. There are many other features that will give a more
accurate profile of the web application state. The extraction of
those features have been performed in other works and are
recommended to be done for future work. The scope of our
methodology we limit for testing purposes of our model so full
extraction of features are not performed. These other features
can be found in the published works by Canali et. al. [16],
Likarish, Jung, and Jo [19] and Nunan et. al. [10]. The 11
features we use are as follows:

 Keyword to word ratio – these keywords we use can be
found on the w3school website.

 Percentage of script content on the page – the
percentage of content between <script></script> tags
compared to the rest of the HTML content of the page.

 Percentage of whitespace content on the page.

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 06– Issue 06, November 2017

www.ijcit.com 281

 Total embedded objects – a full description of these
can be found on the w3school website4.

 Total URLs – amount of URL redirects found on the
page.

 HTML elements with small areas – elements with less
than 10 pixels per side.

 Total <script> tags

 Double documents – repeating references to documents
or external resources.

 Functions used for de-obfuscation routines

 Total number of functions – variables assigned as a
function().

 Total number of the HTML event handlers –
setTimeout, setInterval, onclick, and onmouseover.

These features are then organized into a vector we use as a
profile of our web application. The first one we use as our
BMU since we assume it is benign. Subsequent profiles are
made for the domain as interaction occurs and are mapped in
relation to each other by means of clustering. We perform these
actions using our two different platforms. First the controlled
testing using profiles that are predicable. The second is a real
world environment with previously deemed benign web pages.

C. Organizing Testing Platforms for Analysis

For the first platform, we take our three pages and inject
benign HTML code in the form of comments. These are then
web-crawled for embedded HTML content, parsed, and
organized into profiles as described above. We also inject a
page with a redirect to a malicious external resource4 and make
its profile. Data collected from this domain and its results will
be covered in section 5.

For the second platform, we similarly take the domain and
its pages as the BMU of our clustering map. Several of the
pages we inject with code for the Samy Worm that was used in
the MySpace attack in 2005 [21].

This code is used as a more realistic attack in a real world
setting because the attack used for our first platform has a
signature typical of attacks, which is not allowed to be
executed in current browsers. Results for this platform are
discussed and illustrated in Section 5.

V. RESULTS.

In measuring the results of our two different platforms, it is
important to remember that the goal of our methodology is to
have the amount of false negative (FN) classification of
profiles to be as low as possible. While false positive (FP)
results are not as important for the reason that further testing
will need to be applied for definite classification, our goal is to
reduce the number of FP clustering as well. Overall accuracy

4 <script src=http://www.hackers.org/js/xss.js></script>
5 http://www.orange.biolab.si

will be an analysis of all the apparent clustering and the states
of their profiles whether injected with malicious content or not.

The metrics we will use will be based on the clustering of
the profiles. Benign profiles clustering around the best
matching unit (BMU) or the assumed benign profile we will
assign as true negative (TN). Malicious files that cluster around
the BMU we will call false negative (FN). Benign profiles that
deviate from the cluster we call a false positive (FP). Finally,
the profiles deviating from the BMU cluster that are assigned
to the web application with the injected attack we call true
positive (TP). Overall accuracy (ACC) of the system can be
shown by (1). True positive rate (TPR) or sensitivity of the
system is shown in (2). True negative rate (TNR) or specificity
is shown in (3).

 (1)

. (2)

 (3)

Using these metrics, we can measure the accuracy and
feasibility of our system for future work and implementation.
The first experiments are carried out on the supervised support
vector machine (SVM) to illustrate the clustering of such
profiles according to their features. This is done for
clarification and a visual representation of benign and
suspicious profiles. In the other part of testing, we use
unsupervised k-means clustering to find deviations for further
analysis. Our tools we use for our SVM and k-means
algorithms are found from the open source Orange design
application5 from python.

A. Results of Controlled Environment System

The first environment to test we use the first platform we
designed. We create 8 different benign profiles using the
techniques we stated in Section 4. This takes the profiles of the
original page, one with an added HTML element, and another
with an added executable. The remaining 8 profiles are created
by adding content through the comments section that can
include the use of HTML tags and JavaScript code. 5 are made
by inserting benign client side code and 3 are made by
inserting the redirect to a malicious external resource5. In this
preliminary test, the classification of the profiles is known to
illustrate the clustering visual, identify the deviations, and
check for accurate clustering. The clustering of these profiles
using a support vector machine (SVM) are shown in Fig. 5.
The blue markers represent profiles that we already know are
benign. The red markers represent the profiles that are known
to contain the malicious redirect.

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 06– Issue 06, November 2017

www.ijcit.com 282

Figure 5. Illustration of clustering results using SVM against 3 axes labeled

the percentage of whitespace, percentage of scripting content, and number of

<script> tags.

For illustration purposes the results show a general
clustering of the benign markers close to each other and the red
group cluster away from the others. By using the SVM
algorithm, we can separate the benign and malicious pages by
the margin, as shown in Figure 5. The SVM probability
distribution is shown in Fig. 6 to illustrate the probability of a
certain profile being assigned benign or likely being assigned
suspicious over an axis of the percentage of scripting to relative
density. With the study’s result, we want to investigate more in
the suspicious webpages and apply more training on them. Our
algorithm will continue processing the data until it repeatedly
reach the lowest possible result.

Figure 6. SVM probability distribution for profile organization and

clustering

As is shown, the probability of a correctly clustering the 8
benign and 3 maliciously classified profiles correctly is more

than 95% according to just the scripting content of the profiles.
While there is possibility for FP and FN clustering, the
combination of profile clustering according to the complete set
of features is more accurate. An unsupervised clustering
example is given in the next section to visually demonstrate the
ability of such a network to cluster a number of profiles
correctly. As will be shown, the more profiles added to the
network, the more accurate the system clusters. This is
important as previous work has shown to misclassify anomalies
when attacks happen rarely [17].

B. Result of DMOZ System

In the second environment for testing, we took pages from
the DMOZ domain. The HTML for each page was extracted
using the HTTrack web-crawler we previously used. A
simulated malicious injection attack was created by injecting a
benign DMOZ page with the Samy worm [21]. While the
Samy worm is now benign in browsers, the purpose of
injecting this attack is to show a deviation from the current site
style of design and formatting. Any anomaly and strong
deviation from site design is expected to be indicated as
suspicious.

A sample size of 270 profiles for testing are demonstrated
for anomaly identification. This is done using a pre-labeled,
known identification of each page and find clustering results.
This is done using a various clustering algorithms. The second
uses k-means for clustering and identifying suspicious
clustering for further classification.

Using a SVM, we produced the results of the 270 profile
sample in which 4 of the profiles were taken from pages
injected with the Samy worm. The results shown in Fig. 7
show the probability of files being correctly clustered with a
focus on scripting content.

Figure 7. SVM probability distribution for organization and clustering for a

sample size of 270 profiles with 4 injected profiles.

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 06– Issue 06, November 2017

www.ijcit.com 283

Clustering results according to scripting content show
correct identification of the attacked sites or a TP of 4 and a FP
rate of 1. The overall accuracy of the clustering is 99.6%, a
TPR of 80% and a TNR of 99.6%. While some FP profiles
were identified, the purpose of our work is to minimize the
amount of FN which we found to not exist using the current
method. Therefore, based off clustering, we can find the
suspicious profiles and the web application pages they are
associated with. From this we can see the feature of scripting
being one of the prominent means of identifying attacks.

The same experiment is carried out using other means
algorithms to determine the ability of a network to correctly
cluster profiles according to full content. The algorithms we
use are SVM, Logistic regression, Naïve Bayes, and k nearest
neighbor. The results for these algorithms are shown in Table
1. As is shown, all suspicious profiles were correctly separated
from normal profiles.

TABLE I. ACCURACY OF VARIOUS SUPERVISED CLUSTERING

ALGORITHMS IN CORRECTLY CLASSIFYING A SAMPLE SET OF 270 PROFILES

ACCORDING TO THEIR CONTENT

SVM Predicted

Actual

 Normal Suspicious

Normal 100.0% 0.0% 266 pages

Suspicious 0.0% 100.0% 4 pages

 266 pages 4 pages 270 total

Logistic Reg. Predicted

Actual

 Normal Suspicious

Normal 100.0% 0.0% 266 pages

Suspicious 0.0% 100.0% 4 pages

 266 pages 4 pages 270 total

Naïve Bayes Predicted

Actual

 Normal Suspicious

Normal 99.6% 0.4% 266 pages

Suspicious 0.0% 100.0% 4 pages

 265 pages 5 pages 270 total

kNN Predicted

Actual

 Normal Suspicious

Normal 100.0% 0.0% 266 pages

Suspicious 0.0% 100.0% 4 pages

 266 pages 4 pages 270 total

The second part of using this platform is to perform
clustering using k-means to determine suspicious profiles
based on deviation. Because clustering groups the webpages
together based on certain behaviors, the malicious webpages
can be discovered when they deviate from the benign
webpages. The accuracy of clustering is shown on a map with
different features being the various axis used. Clusters are
visually represented with different colors and show how
closely each profile relates to the other. Figure 8 shows the
confidence of the clustering with respect to the BMU. Figure 9
shows the use of k-means clustering to organize the 270 profile

sample set according to clustering with an emphasis on
scripting features.

Figure 8. Confidence probability of a profile being correctly clustered

according to the BMU.

Figure 9. Visual representation of clustering profiles according to 6 features

in a sample of 50, 75, and 270 profiles left to right respectively.

It should be noted in Fig. 9 that specific group coloring of
graph 1 does not necessarily correlate to the same grouping of
profiles in graphs 2 or 3. In Fig. 10 we see that as the sample

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 06– Issue 06, November 2017

www.ijcit.com 284

size increases, the division between the main clustering of
profiles increases. The third portion of the multi-dimensional
scale (MDS) shows a distinct separation of the main clustering
of profiles from the outliers. While definite classification is not
available at this time of clustering, further work is proposed to
classify the page by dynamic or data mining practices
discussed in section 6.

Figure 10. Multi-dimensional scale visual representation of clustering profiles

according to the 11 features used in samples of 50, 75, and 270 profiles, top to

bottom, respectively.

VI. DISCUSSION

Web crawling and parsing occurs in the server, many times,
cross-site scripting (XSS) attacks search for interpretation
differences in each of the individual browsers and exploit those
vulnerabilities [3]. This weakness has been the target of
attacks. For example, the newline character ‘\n’ used in the first
large scale XSS attack in 2005 for the tag <java\nscript>
bypassed sanitization processes but was executed as
<javascript> in browsers that removed whitespaces [21]. While
development of better Intrusion Detection Systems (IDS) that
account for this type of attack is a continual process, the
problem with interpreted languages – such as JavaScript – is
that the assumption that server side parsing/rendering on the
client side is consistent with the server side processing [3].

A proposed solution would be a periodic update of the
features used in the vector to our model using data mining
techniques after anomalous profiles have been classified as
malicious. In this way, the web application acts as a honeypot
and tracks the progress of attacks while gathering information
on their methods. This will create better profiles of the
JavaScript/HTML content of the web application for more
accurate clustering as well.

VII. CONCLUSION

In this research work, we introduced a new method of a
host-based, intrusion detection system (IDS) for scripting
injection and persistent cross-site scripting (XSS) attack
flagging. XSS is one of the top attacks used by hackers for

identity theft, loss of assets, and information fraud. Current
problems in identifying and correctly classifying such scripting
attacks stem from a failure to correctly identify untrusted areas
of injection and the lack of a signature for possible future
attacks in the case of static analysis, and expensive processing
requirements from dynamic analysis systems. Our
methodology has shown to be accurate in clustering the state of
a web application over a period of time and interaction using
JavaScript and HTML snapshots of the web application, we
call profiles. Deviant profiles place the web application in an
intrusion state and are sent for further analysis that will need to
be continued for future work.

VIII. ACKNOWLEDGEMENTS

This research work was conducted at Oakland University as
part of the UnCoRe program - supported by the National
Science Foundation under Grant No. CNS-1460897. Any
opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science
Foundation.

The authors would like to thank Dr. Huirong Fu, PI and
Program Coordinator of the UnCoRe program at Oakland
University.

REFERENCES

[1] Fossil, M., Johnson, E., and Mack, T. Symantec global internet security
threat report. Tech. rep., Symantec, 2016.Liang, Z., et al., The detection
and quantification of retinopathy using digital angiograms. Medical
Imaging, IEEE Transactions on, 1994. 13(4): p. 619-626.

[2] Percoco, N. J. Global security report 2010 analysis of investigations and
penetration tests. Tech. rep., SpiderLabs, 2010.

[3] Nadji, Y., Saxena, P., Song, D. “Document Structure Integrity: A Robust
Basis for Cross-Site Scripting Defense”. In: 16th Annual Network &
Distributed System Security Symposium, NDSS Symposium,
2009Heneghan, C., et al., Characterization of changes in blood vessel
width and tortuosity in retinopathy of prematurity using image analysis.
Medical image analysis, 2002. 6(4): p. 407-429.

[4] Wasserman, G. e Su, Z. “Static Detection of Cross-Site Scripting
Vulnerabilities”. In: 30th Internation Conference on Software
Engineering, 2008.

[5] Uto, N., Melo, S.P. “Vulnerabilidades em Aplicações Web e
Mecanismos de Proteção”. Minicursos SBSeg 2009. IX Simpósio
Brasileiro em Segurança da Informação e de Sistemas Computacionais,
Campinas, São Paulo, Brazil, 2009.

[6] Goldstein, M., Perlroth, N., & Sanger, D. E. (2014, October 03).
Hackers' Attack Cracked 10 Financial Firms in Major Assault. Retrieved
July 08, 2016, http://dealbook.nytimes.com/2014/10/03 /hackers-attack-
cracked-10-banks-in-major-assault

[7] Yang, R., Kang, V., Albouq, S., & Zohdy, M. (2015). Application of
Hybrid Machine Learning to Detect and Remove Malware. Transactions
on Machine Learning and Artificial Intelligence, 3(4), 16.

[8] Langin, C., et. al., "A Self-Organizing Map and its Modeling for
Discovering Malignant Network Traffic." (Mar 2009).

[9] Perlovsky and O. Shevchenko, "Cognitive neural network for
cybersecurity," 2014 International Joint Conference on Neural Networks
(IJCNN), Beijing, 2014, pp. 4056-4061.

[10] Nunan, E., Souto, E., dos Santos, M., and Feitosa, E., "Automatic
classification of cross-site scripting in web pages using document-based
and URL-based features," Computers and Communications (ISCC),
2012 IEEE Symposium on, Cappadocia, 2012, pp. 702-707.

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 06– Issue 06, November 2017

www.ijcit.com 285

[11] Grossman, J., Hansen R., Petkov, D.P., Rager, A. e Fogie, S.“Cross Site
Scripting Attacks: XSS Exploits and Defense”. Burlington, MA, EUA,
Syngress Publishing Inc. 2007.

[12] Wichers, D., Dabirsiaghi, A., Di Paolo, S., Heiderich, M., Vela Nava, E.
A., & Williams, J. (2013, October 29). Types of Cross-Site Scripting.

[13] Retrieved July 12, 2016, from https://www.owasp.org/
index.php/Types_of_Cross-Site_Scripting

[14] Ernst, M. “Static and dynamic analysis: synergy and duality”. In
Proceedings of WODA’2003 (ICSE Work-shop on Dynamic Analysis),
Portland, pp. 25–28, May 2003.

[15] Xu, W., Zhang, F., Zhu, S., “JStill: mostly static detection of obfuscated
malicious JavaScript code”, Proceedings of the third ACM conference
on Data and application security and privacy, February 18-20, 2013, San
Antonio, Texas, USA

[16] Hwang, D. (2013). Cross-Site Scripting (XSS). Retrieved July 12, 2016,
from http://hwang.cisdept.cpp.edu/swanew/Code.aspx?m=XSS

[17] Canali, D., Cove, M., Vigna, G., Kruegel, C., Profiler: a fast filter for the
large-scale detection of malicious web pages. Proceedings of the 20th
international conference on World wide web, Mar 2011, Hyderabad,
India. ACM, pp.197-206, 2011,

[18] Wang, G., Hao, J., Ma, J., and Huang, L. “A new approach to intrusion
detection using Artificial Neural Networks and fuzzy clustering”, Expert
Systems with Applications: An International Journal, v.37 n.9, p.6225-
6232, September, 2010

[19] Lee, S. C. and Heinbuch, D.V. "Training a neural-network based
intrusion detector to recognize novel attacks," in IEEE Transactions on

Systems, Man, and Cybernetics - Part A: Systems and Humans, vol. 31,
no. 4, pp. 294-299, Jul 2001

[20] P. Likarish, E. Jung and I. Jo, "Obfuscated malicious javascript detection
using classification techniques," Malicious and Unwanted Software
(MALWARE), 2009 4th International Conference on, Montreal, QC,
2009, pp. 47-54

[21] Konrad Rieck, Tammo Krueger, Andreas Dewald, Cujo: efficient
detection and prevention of drive-by-download attacks, Proceedings of
the 26th Annual Computer Security Applications Conference, December
06-10, 2010, Austin, Texas, USA

[22] Kamkar, S. (2005, October 5). MySpace Worm Explanation. Retrieved
July 14, 2016, from http://samy.pl/popular/tech.html.

[23] Yang, R. R., Kang, V., Albouq, S., & Zohdy, M. A. (2015). Application
of Hybrid Machine Learning to Detect and Remove
Malware. Transactions on Machine Learning and Artificial
Intelligence, 3(4), 16.

[24] Bazzi, T., Jasser, J., & Zohdy, M. (2016). Affine Arithmetic Self
Organizing Map. matrix, 5(04). Chicago

[25] Millan, M. DeJonge, A. Alshammari, A. Alharbi, A. Zohdy, M. 2D
HMM Application to IoT Security Attacks. IJICIC. In Progress.

Alshammari, A., Alhaidari, S., Alharbi, A., & Zohdy, M. (2017, June).
Security Threats and Challenges in Cloud Computing. In Cyber Security
and Cloud Computing (CSCloud), 2017 IEEE 4th International
Conference on (pp. 46-51). IEEE.

