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Abstract—Imperfection of Imaging systems and environmental 

effects cause images to be degraded by blurring and noise. 

Blurring due to relative motion between imaging system and 

object is simulated. Image restoration in the frequency domain 

by Wiener filter is implemented. The parameters of motion 

blur, length and direction, are varied. The parameter K (NSR-

Noise to Signal Ratio) and Gain of Wiener filter are evaluated. 

The quality of restored images is also observed and recorded. 

The study is carried out with six test images. With parameter 

K set to zero, the Wiener filter is put into inverse filter mode; 

Gain is negative in all cases and quality and appearance of 

restored images are very poor. Clear images are obtained with 

K > 0. Wiener filter’s Gain increases as K increases from 0 to a 

value termed ‘Optimum K’ when the Gain is maximum; the 

Gain reduces with further increase in K. Motion blur functions 

of the same length but opposite directions are equivalent as 

they have same values of Optimum K and Gain at Optimum K.  

With constant motion blur length, Wiener filter’s Optimum K 

and Gain at Optimum K rise and fall rhythmically as motion 

blur direction varies from 0
o
 to 180

o
. With constant motion 

blur direction, Wiener filter’s Optimum K and Gain at 

Optimum K decrease as motion blur length increases from 2 

pixels to 15 pixels.  

Keywords-degradation; Wiener filter restoration; motion blur 

parameters; noise to signal ratio; Gain; 

I.  INTRODUCTION  

Environmental effects and imperfections in the imaging 
system can cause the recorded images to be degraded by 
blurring and noise [1,2,3,4,5,6]. Blurring is present in any 
imaging system which uses electromagnetic radiation; for 
example, visible light and x-rays. Diffraction limits the 
resolution of an imaging device to features on the order of 
the illuminating wavelength.  

Scattering of light between the target object and imaging 
system by the atmosphere introduces additional blurring. 
Lenses and mirrors cause blurring because they have limited 
spatial extent and optical imperfections. Discretization 
results in yet more blurring because devices such as CCDs 
average illumination over regions rather than sampling it at 
discrete points. Relative motion between the camera and 
object is also another cause of image blurring. 

Noise is similarly omnipresent: any imaging device must 
use a finite exposure time, which introduces stochastic noise 

from the random arrival of photons. Optical imperfections 
and instrumentation noise such as thermal noise in CCD 
devices result in more noise. Sampling causes noise due to 
aliasing of high-frequency signal components and 
digitization produces quantization errors. Further noise can 
be introduced by communication errors and compression.  

Image restoration (sometimes known as deblurring or de-
convolution) is the process of reconstructing or estimating 
the true image from the degraded one 
[8,9,10,11,12,13,14,15]. A criterion of goodness that will 
yield some optimal estimate of the true image is formulated 
for the restoration process [16,17,18].  

Restoration is an inverse problem [17]. Whereas the 
forward problem has a unique solution, because of the 
causality principle, the inverse problem may have many 
solutions - when different models of the system predict 
similar observations, or no solution at all (inconsistent data). 
This is why a special mathematical theory exists that 
formalizes inverse problems [17,19,20,21].  

Image restoration is an area that also deals with 
improving the appearance of an image. It can be seen as a 
special kind of image enhancement [22]. However, unlike 
enhancement, which is subjective, image restoration is 
objective, in the sense that restoration techniques tend to be 
based on mathematical or probabilistic models of image 
degradation. Enhancement, on the other hand, is based on 
human subjective preferences regarding what constitutes a 
“good” enhancement result. The goal of enhancement is to 
produce the most visually pleasing image starting from a 
recorded image. The goal of restoration is to produce the best 
possible estimate of the original image starting from a 
recorded image. The goal of enhancement is beauty; the goal 
of restoration is truth.  

Wiener filter is the Mean Square Error (MSE) optimal 
frequency domain restoration filter for images degraded by 
additive noise and blurring. Wiener filter has an important 
parameter K which represents Noise to Signal Ratio (NSR) 
and Gain. Gain is measured in dB. Image restoration in 
general and Wiener filtering in particular are active areas of 
research in satellite remote sensing, medical and scientific 
imaging [23,24,25,26,27,28,29,30,31,32,33,34,35].  
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The operation of Wiener filter is studied extensively in 
this work with motion blur and with the aid of six test 
images. Motion blur has two parameters; length (L pixels) 
and direction (Angle θ degrees). The dependency of Wiener 
filter’s parameter K (NSR), Gain and restoration quality on 
motion blur length L and direction θ is investigated.  

II. METHOD 

A. Image Degradation Model 

Fig. 1 shows the degradation model. When an object is 
being imaged, the acquired (or observed) image, g(m,n) is 
usually not the same as the true image f(m,n). h(m,n) is the 
blurring function or Point Spread Function (PSF) of the 
imaging system. The PSF is the output of the imaging system 
for an input point source. h(m,n) represents the 
environmental effects and imaging system imperfections. 
η(m,n) is an additive noise from the surroundings. 

Figure 1.  Degradation Model. 

In many instances, the acquired (or observed) image 
g(m,n) can be modelled as two-dimensional convolution of 
the true image f(m,n) and the point-spread function (also 
called the blurring function) h(m,n) of a linear shift-invariant 
system plus some additive noise η(m,n) [1,2,3,11,35] as 
described by (1) and (2).                            

         ),(),(),(),( nmnmfnmhnmg             (1)      

where   is the convolution operator.  

             ),(),(),(),( vuvuFvuHvuG                (2) 

where H(u,v) is the Optical Transfer Function (OTF) and is 
the Discrete Fourier Transform of h(m,n), G(u,v) is the 
Discrete Fourier Transform of the acquired image g(m,n) and   

),( vu  is the Discrete Fourier Transform of the noise 

η(m,n).  

Discrete Fourier Transform pair for a sampled array 
f(m,n) of dimensions M by N to a frequency array F(u, v) are 
given by (3) and (4) [1,2,3,5,7]. 
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The task of image restoration is to solve (1) for f(m,n) in 
the spatial domain or (2) for F(u,v) in the frequency domain. 
Solution of (2) with the Minimum Mean Square Error 
criterion leads to (5) [1,4,5,6,7,16,17,18,27,29,33]. 
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where Sηη(u,v) and Sff(u,v) are the noise and true (ideal) 
image power spectra respectively. 

The estimate of the true image otherwise called restored 
image fe(m,n) is the inverse Fourier transform of Fe(u,v). The 
restoration filter is known as Wiener Filter and is illustrated 
in Fig. 2. It has the transfer function as in (6). Most often, 
noise to signal ratio (Sŋη/Sff) is unknown and is represented 
by a constant K as in (7). K is referred to as Noise to Signal 
Ratio (NSR) and is a key parameter of Wiener filter.                       
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Figure 2.  Wiener Restoration Filter. 

When K=0, the Wiener filter becomes an Inverse Filter 
as in (8) and (9). The Inverse Filter of a blurred image is a 
highpass filter. The parameter K of the Wiener filter is 
related to the low frequency aspect of the Wiener filter. The 
Wiener filter behaves as a bandpass filter, where the 
highpass filter aspect is due to the inverse filter and the 
lowpass filter aspect is due to the parameter K (NSR).  
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B. Motion Blur Model 

A physical model is often used to obtain the PSF. Some 
degradation processes can be easily expressed 
mathematically (convolution) and also restored simply in 
images. One of the possible causes of degradation is relative 
motion between the camera and the object [6,28]. The PSF 
for a camera with mechanical shutter is given as in (10).   
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where vL   is the length of motion during exposure; τ is 

the period of exposure; v is the relative motion of the scene 
with respect to the camera along a direction at angle θ with 
the horizontal axis [6]. 

Matlab code fspecial(‘motion’,L,θ) is used to simulate 
motion blur with length L and angle θ. The code returns a 
blurring function h(m,n) to approximate, once convolved 
with an image, the linear motion of a camera by L pixels, 
with an angle of θ degrees in a counter-clockwise direction 
[36,37]. The filter becomes a vector for horizontal and 
vertical motions. Tables I to IV illustrate some motion blur 
functions obtained with Matlab code fspecial(‘motion’,L,θ). 
All elements in a blurring function sum up to 1. The 
dimensions of the blurring function depend on L and θ.  

TABLE I.  MOTION BLUR FUNCTION WITH LENGTH 5 AND ANGLE 30  

 Column 

1 

Column 

2 

Column 

3 

Column 

4 

Column 

5 

Row 1 0.0000 0.0000 0.0268 0.1268 0.1464 

Row 2 0.0000 0.1000 0.2000 0.1000 0.0000 

Row 3 0.1464 0.1268 0.0268 0.0000 0.0000 

L=5 pixels and angle θ=30o {h(m,n)=fspecial('motion',5,30)}; 3 x 5 Matrix. 

TABLE II.  MOTION BLUR FUNCTION WITH LENGTH 5 AND ANGLE 0  

 Column 

1 

Column 

2 

Column 

3 

Column 

4 

Column 

5 

Row 1 0.2 0.2 0.2 0.2 0.2 

L=5 pixels and angle θ=0o {h(m,n)=fspecial('motion',5,0)}; 1 x 5 Matrix. 

TABLE III.  MOTION BLUR FUNCTION WITH LENGTH 4 AND ANGLE 90  

 Column 

1 

Row 1 0.1250 

Row 2 0.2500 

Row 3 0.2500 

Row 4 0.2500 

Row 5 0.1250 

L=4 pixels and angle θ=90o {h(m,n)=fspecial('motion',4,90)}; 5 x 1 Matrix. 

C. Motion Blur Simulation 

A blurring function h(m,n) with length L and angle θ is 
simulated. h is a MH x NH matrix. If f is an rgb colour 
image, f is a MF x NF x 3 matrix. The acquired image g is a 
MG x NG x 3. The dimensions are related as in (11) and 
(12).  

TABLE IV.  MOTION BLUR FUNCTION WITH LENGTH 10 AND ANGLE 

60  

  
Column 

1 

Column 

2 

Column 

3 

Column 

4 

Column 

5 

Column 

6 

Column 

7 

Row  

1 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0730 0.0242 

Row 

2 
0.0000 0.0000 0.0000 0.0000 0.0365 0.0766 0.0000 

Row 

3 
0.0000 0.0000 0.0000 0.0000 0.0864 0.0267 0.0000 

Row 

4 
0.0000 0.0000 0.0000 0.0499 0.0633 0.0000 0.0000 

Row 

5 
0.0000 0.0000 0.0134 0.0998 0.0134 0.0000 0.0000 

Row 

6 
0.0000 0.0000 0.0633 0.0499 0.0000 0.0000 0.0000 

Row 

7 
0.0000 0.0267 0.0864 0.0000 0.0000 0.0000 0.0000 

Row 

8 
0.0000 0.0766 0.0365 0.0000 0.0000 0.0000 0.0000 

Row 

9 
0.0242 0.0730 0.0000 0.0000 0.0000 0.0000 0.0000 

L=10 pixels and angle θ=60o {h(m,n)=fspecial('motion',10,60)}; 9 x 7 Matrix. 

            1 MHMFMG                        (11)      

                          1 NHNFNG                          (12)      

h(m,n) of dimension MH x NH is transformed to 
frequency domain as H(u,v) of dimension MG x NG using 
the Matlab code fft2 (Two-dimensional discrete Fourier 
Transform) as in (13). Each of the three colour components 
of f (MF x NF x 3) is transformed to frequency domain as 
F(u,v) of dimension MG x NG using Matlab code fft2 as in 
(14). G(u,v) with dimension MG x NG for each colour 

component is obtained as dot product ( *. ) of F(u,v) and 

H(u,v) as in (15). Dot product implies that each element of 
G(u,v) is a product of corresponding elements of F(u,v) and 
H(u,v). Equation (15) is the Matlab implementation of (2). 
Although the noise term in (2) is neglected in (15) but the 
noise term is still present in (15) in the form of 
computational approximation errors.  

Each component of g (MG x NG x 3) is formed by two-
dimensional discrete Inverse Fourier Transform of G(u,v) 
using Matlab code ifft2 as in (16).  Equations (13), (14) and 
(15) are repeated for the three colour components using the 
same two-dimensional blurring function h(m,n). The 
dimensions of H, F, G and g are all corrected to MG x NG in 
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(13), (14), (15) and (16); it’s required that Matrices in an 
equation should have the same dimensions.  

                     ),,(2),( NGMGhfftvuH                   (13)      

          ),,(2),(  NGMGffftvuF coomponentcolour       (14) 

                      ),(*).,(),( vuHvuFvuG                   (15)     

               )],([2 vuGifftg componentcolour                 (16)    

To evaluate the error introduced by any system or 
process, the value of Peak Signal to Noise Ratio (PSNR) is 
evaluated. PSNRc compares the true image f(MF x NF x 3) 
with equivalent size of the acquired image g1(MF x NF x 3) 
as in (17) [1,3,6,7,35,38]. g is a MG x NG x 3 matrix. g1 
(MF x NF x 3) matrix extracted from g (MG x NG x 3) as 
illustrated in Fig 3. g is the bigger matrix while g1 is the 
inner shaded matrix in Fig. 3.   
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Figure 3.  Extraction of MF x NF Matrix from MG x NG Matrix for each 

colour component.  

D. Wiener Filter 

h(m,n) of dimension MH x NH is transformed to 
frequency domain as H(u,v) of dimension MG x NG using 
the Matlab code fft2 (Two-dimensional discrete Fourier 
Transform) as in (13). Conjugate of H(u,v) is evaluated using 
the Matlab code conj as in (18). Each of the three colour 
components of g (MG x NG x 3) is transformed to frequency 
domain as G(u,v) using Matlab code fft2 as in (19). Fe(u,v) 
for each colour component is obtained as in (20) using the 

dot product ( *. ) and the dot division ( /. ). Dot division is 

similar to dot product as explained in subsection C above. 
Equation (20) is the Matlab implementation of (7). Each 
component of restored image fe(MG x NG x 3) is formed by 
two-dimensional discrete Inverse Fourier Transform using 
Matlab code ifft2 as in (21). Each component of restored 

image fe obtainable in (21) is a MG x NG matrix but a MF x 
NF portion is extracted as illustrated in Fig. 3. fe(MG x NG) 
is the bigger matrix while fe(MF x NF) is the inner shaded 
matrix in Fig. 3.   

                       )],([),(* vuHconjvuH                     (18)          

           ),,(2),(   NGMGgfftvuG coomponentcolour     (19)                       

]),(*).,(/[)].,(*).,([),( ** KvuHvuHvuGvuHvuFe  (20)   

                  )],([2    vuFifftf ecomponentcoloure                (21) 

PSNRr compares the true image f(MF x NF x 3) with the 
restored image fe(MF x NF x 3) as in (22).  The Gain of the 
Wiener restoration filter is evaluated as in (23). The higher 
the Gain, the more efficient is the Wiener restoration 
process.                                     
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cr PSNRPSNRGain                        (23)   

III. EXPERIMENTAL RESULTS AND DISCUSSIONS 

A. Six Test Images 

Six test images [39] are selected for testing the Wiener 
restoration filter. The Gain of the Wiener restoration filter 
using different values of parameter K (NSR) is evaluated for 
the six test images for various motion blur parameters 
Length (L) and direction (Angle θ).  The test images are 
named as Clock, Car, Letter, Lena, Road, and Girl. 

B. Effect of Variation of Parameter K (NSR) on Gain for 

constant Motion Blur Length and Direction 

Clock was motion blurred with Length L=15 pixels and 
Angle θ=45o. Car was motion blurred with Length L=10 
pixels and Angle θ=30o. Letter was motion blurred with 
Length L=15 pixels and Angle θ=45o. The motion blur 
parameters for the three test images were kept constant while 
Wiener filter parameter K (NSR) was varied. The Gain of the 
Wiener filter was evaluated and recorded for each value of 
parameter K for each of the three test images. The results are 
presented in Table V and plotted in Fig. 4. Tables VI, VII 
and VIII show the original or true image, the motion blurred 
image and restored images with different values of K for 
Clock, Car and Letter respectively.   

As observed in Table V and Fig. 4, Wiener filter’s Gain 
increases as K increases from 0 to a value termed ‘Optimum 
K’ when the Gain is maximum. The Gain reduces with 
further increase in K. Optimum K is determined 
experimentally and is indicated for each test image in Table 
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V and Fig. 4. As observed in Tables VI, VII and VIII, the 
visual appearance and quality of the restored image improve 
as K increases from 0 up to ‘Optimum K’. The visual 
appearance and quality of the restored image decrease with 
further increase in K. At K = 0 when the Wiener filter is an 
inverse filter, the appearance and quality of the restored 
image are very poor with negative Gain. Thus, the output of 
an inverse filter is masked with amplified noise. 

Lena was motion blurred with Length L=10 pixels and 
Angle θ=90o. Road was motion blurred with Length L=12 

pixels and Angle θ=75o. Girl was motion blurred with 
Length L=8 pixels and Angle θ=135o. The original image, 
blurred image and optimum K restored image for Lena, Road 
and Girl are shown in Table IX. The optimum K for the 
restoration of Lena, Road and Girl are found to be 0.0012, 
0.00045 and 0.0014 respectively with corresponding Gain of 
8.794 dB, 10.527 dB and 7.943 dB respectively as presented 
in Table IX.   

 

 

Figure 4.  Variation of Gain with LogK for three test images with constant motion blur length and direction. 

TABLE V.  GAIN FOR DIFFERENT VALUES OF PARAMETER K (NSR) WITH CONSTANT MOTION BLUR LENGTH AND DIRECTION FOR CLOCK, CAR AND LETTER  

 
The rows with bold elements correspond to maximum Gain at optimum K. 

 

K LogK
PSNRc 

(dB)

PSNRr 

(dB)

Gain 

(dB)
K LogK

PSNRc 

(dB)

PSNRr 

(dB)

Gain 

(dB)
K LogK

PSNRc 

(dB)

PSNRr 

(dB)

Gain 

(dB)

0 inf 21.945 5.7256 -16.22 0 inf 16.289 8.6399 -7.649 0.000 inf 14.097 4.954 -9.143

0.0000005 -6.301 21.945 20.344 -1.601 0.00000005 -7.301 16.289 16.616 0.327 0.00000005 -7.301 14.097 15.172 1.075

0.000005 -5.301 21.945 24.946 3.001 0.0000005 -6.301 16.289 21.037 4.748 0.0000005 -6.301 14.097 19.294 5.198

0.00005 -4.301 21.945 29.379 7.434 0.000005 -5.301 16.289 26.064 9.775 0.000005 -5.301 14.097 23.624 9.527

0.0003 -3.523 21.945 31.228 9.283 0.00005 -4.301 16.289 29.496 13.207 0.00001 -5.000 14.097 24.852 10.756

0.00035 -3.456 21.945 31.239 9.294 0.000069 -4.161 16.289 29.564 13.275 0.00006 -4.222 14.097 26.706 12.610

0.0004 -3.398 21.945 31.228 9.283 0.00007 -4.155 16.289 29.565 13.276 0.000065 -4.187 14.097 26.714 12.618

0.0005 -3.301 21.945 31.158 9.214 0.000071 -4.149 16.289 29.565 13.275 0.00007 -4.155 14.097 26.713 12.616

0.005 -2.301 21.945 27.902 5.957 0.0005 -3.301 16.289 27.628 11.339 0.0009 -3.046 14.097 23.603 9.507

0.05 -1.301 21.945 23.927 1.982 0.05 -1.301 16.289 18.338 2.049 0.008 -2.097 14.097 19.624 5.528

0.5 -0.301 21.945 17.551 -4.393 0.5 -0.301 16.289 10.857 -5.432 0.5 -0.301 14.097 9.421 -4.676

Clock 

Motion Blur                                                      

Length L=15 pixcels & Angle = 45 degrees

Car

Motion Blur                                                        

Length L=10 pixcels & Angle = 30 degrees

Letter

Motion Blur                                                       

Length L=20 pixcels & Angle = 10 degrees
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TABLE VI.  RESTORED IMAGES FOR DIFFERENT VALUES OF PARAMETER K (NSR) WITH CONSTANT MOTION BLUR LENGTH AND DIRECTION FOR CLOCK 

 

TABLE VII.  RESTORED IMAGES FOR DIFFERENT VALUES OF PARAMETER K (NSR)  WITH CONSTANT MOTION BLUR LENGTH AND DIRECTION FOR CAR 

 

 

 

Clock (Original) Clock (Blurred) Clock (Restored)  No. 1 Clock (Restored)  No.  2

L = 15 pixels & θ = 45 degrees PSNRr = 5.726 dB PSNRr = 20.344 dB

PSNRc = 21.945 dB Gain = - 16.219 dB Gain = - 1.600 dB

K= 0 K= 0.0000005

Clock (Restored)  No. 3 Clock (Restored)  No. 4 Clock (Restored)  No. 5 Clock (Restored)  No. 6

PSNRr = 24.946 dB PSNRr = 29.379 dB PSNRr = 31.228 dB PSNRr = 31.239 dB

Gain = 3.000 dB Gain = 7.434 dB Gain = 9.283 dB Gain = 9.294 dB

K= 0.000005 K= 0.0000005 K= 0.0003 O ptimum K= 0.00035

Clock (Restored)  No. 7 Clock (Restored)  No. 8 Clock (Restored)  No. 9 Clock (Restored)  No. 10

PSNr = 31.228 dB PSNRr = 31.159 dB PSNRr = 27.902 dB PSNRr = 17.551 dB

Gain = 9.283 dB Gain = 9.214 dB Gain = 5.957 dB Gain = - 4.394 dB

K= 0.0004 K= 0.0005 K= 0.005 K= 0.5

Car (Original) Car (Blurred) Car (Restored)  No. 1 Car (Restored)  No.  2

L = 10 pixels & θ = 30 degrees PSNRr = 8.640 dB PSNRr = 16.616 dB

PSNRc = 16.289 dB Gain = -7.649 dB Gain = 0.327 dB

K= 0 K= 0.00000005

Car (Restored)  No. 3 Car (Restored)  No. 4 Car (Restored)  No. 5 Car (Restored)  No. 6

PSNRr = 21.037 dB PSNRr = 26.064 dB PSNRr = 29.496 dB PSNRr = 29.564 dB

Gain = 4.748 dB Gain = 9.775 dB Gain = 13.207 dB Gain = 13.275 dB

K= 0.0000005 K= 0.000005 K= 0.00005 K= 0.000069

Car (Restored)  No. 7 Car (Restored)  No. 8 Car (Restored)  No. 9 Car (Restored)  No. 10

PSNRr = 29.565 dB PSNRr = 29.565 dB PSNRr = 18.338 dB PSNRr = 10.857 dB

Gain = 13.276 dB Gain = 13.276 dB Gain = 2.049 dB Gain = - 5.432 dB

O ptimum K= 0.00007 K= 0.000071 K= 0.05 K= 0.5
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TABLE VIII.  RESTORED IMAGES FOR DIFFERENT VALUES OF PARAMETER K (NSR) WITH CONSTANT MOTION BLUR LENGTH AND DIRECTION FOR LETTER 

 

TABLE IX.  RESTORED IMAGES AT OPTIMUM K FOR LENA, ROAD AND GIRL 

 

Letter (Original) Letter (Blurred) Letter (Restored)  No. 1 Letter (Restored)  No.  2

L = 20 & θ = 15 degrees PSNR 4.936 dB PSNR 15.172 dB

PSNR 14.097 dB Gain = -9.143 dB Gain = 1.075 dB

K= 0 K= 0.00000005

Letter (Restored)  No. 3 Letter (Restored)  No. 4 Letter (Restored)  No. 5 Letter (Restored)  No. 6

PSNR 19.295 dB PSNR 23.624 dB PSNR 24.852 dB PSNR 26.707 dB

Gain = 5.198 dB Gain = 9.527 dB Gain = 10.756 dB Gain = 12.610 dB

K= 0.0000005 K= 0.000005 K= 0.00005 K= 0.00006

Letter (Restored)  No. 7 Letter (Restored)  No. 8 Letter (Restored)  No. 9 Letter (Restored)  No. 10

PSNR 26.7140 dB PSNR 26.713 dB PSNR 19.625 dB PSNR 9.421 dB

Gain = 12.618 dB Gain = 12.617 dB Gain = 5.528 dB Gain = - 4.676 dB

O ptimum K= 0.000065 K= 0.00007 K= 0.008 K= 0.5

Lena (Original) Lena (Blurred) Lena (Restored at Optimum K) Details

L = 10 pixels & θ = 90 degrees

Blurred Image                                       

PSNRc = 25.891 dB

Restored Image                                    

PSNRr = 34.685 dB

Gain at Optimum K                  

= 8.794 dB

Optimum K = 0.0012

Road (Original) Road (Blurred) Road (Restored at Optimum K) Details

L = 12 pixels & θ = 75 degrees

Blurred Image                                       

PSNRc = 20.672 dB

Restored Image                                    

PSNRr = 31.199 dB

Gain at Optimum K                  

= 10.527 dB

Optimum K = 0.00045

Girl (Original) Girl (Blurred) Girl (Restored at Optimum K)  Details

L = 8 pixels & θ = 135 degrees

Blurred Image                                      

PSNRc = 27.942 dB

Restored Image                                                   

PSNRr = 35.885 dB

Gain at Optimum K                  

= 7.943 dB

Optimum K= 0.0014
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C. Effect of Variation of Motion Blur Direction on 

Optimum K (NSR) and Gain for Constant Motion Blur 

Length 

The Optimum K and the corresponding Gain were 
determined and recorded in Table X for Clock, Car and 
Letter with constant motion blur length L=10 pixels and for 
various motion blur direction θ = 0o, 15o, 30o, 45o,…, 345o, 
360o. The graph of Log of Optimum K versus motion blur 
direction θ is shown in Fig. 5 while Fig. 6 shows the graph of 
Gain at Optimum K versus motion blur direction θ.  

TABLE X.  OPTIMUM K AND GAIN FOR DIFFERENT VALUES OF 

MOTION BLUR DIRECTION  WITH CONSTANT MOTION BLUR LENGTH FOR 

CLOCK, CAR AND LETTER 

 
L is kept constant at L = 10 pixels while θ is varied. 

As observed in Table X and Fig. 5, Optimum K is exactly 
the same value for both θ and θ+180o. Similarly, as observed 
in Table X and Fig. 6, Gain at Optimum K is exactly the 
same value for both θ and θ+180o. The graph of both Log of 
Optimum K and Gain at Optimum K between 0o to 180o is 
repeated between 180o and 360o. This implies that motion 
blur functions of same length but of opposite direction are 
equivalent as they have the same effect on image and has the 
same potential for Wiener image restoration. 

Optimum K decreases as θ varies from 0o to 45o; it 
increases as θ varies from 45o to 90o; it decreases as θ varies 
from 90o to 135o; it increases as θ varies from 135o to 180o. 
The cycle is then repeated between 180o and 360o.  

Gain at Optimum K increases as θ varies from 0o to 45o; 

it decreases as θ varies from 45o to 90o; it increases as θ 

varies from 90o to 135o; it decreases as θ varies from 135o to 

180o. The cycle is then repeated between 180o and 360o. 

Figure 5.  Variation of Log of Optimum K with motion blur direction 

(Angle θ) for three test images with constant motion blur length L=10 

pixels. 

Figure 6.  Variation of Log of Optimum K with motion blur direction 

(Angle θ) for three test images with constant motion blur length L=10 

pixels. 

D. Effect of Variation of Motion Blur Length on Optimum K 

(NSR) and Gain for Constant Motion Blur Direction 

The Optimum K and the corresponding Gain were 
determined and recorded in Table XI for Clock, Car and 
Letter with constant motion blur direction θ = 45o and for 
various motion blur length L = 2, 5, 10, 15, 20 and 25 pixels. 
The graph of Log of Optimum K versus motion blur length L 
is shown in Fig. 7 while Fig. 8 shows the graph of Gain at 
Optimum K versus motion blur length L. Optimum K and 
Gain at Optimum K reduces as Length L increases from L = 
2 pixels to at least L = 15 pixels. 

 

Optimum 

K

Log of 

Optimum 

K

Gain at 

Optimum 

K

Optimum 

K

Log of 

Optimum 

K

Gain at 

Optimum 

K

Optimum 

K

Log of 

Optimum 

K

Gain at 

Optimum 

K

0 0.00067 -3.174 8.127 0.00019 -3.721 9.822 0.0001 -4.000 12.097

15 0.0006 -3.222 8.877 0.000161 -3.793 12.940 0.00011 -3.959 13.794

30 0.00047 -3.328 9.290 0.00007 -4.155 13.276 0.000085 -4.071 13.592

45 0.00035 -3.456 9.294 0.00007 -4.155 14.754 0.000075 -4.125 14.320

60 0.00041 -3.387 9.563 0.00007 -4.155 13.755 0.0001 -4.000 12.987

75 0.00046 -3.337 9.142 0.000081 -4.092 12.634 0.00011 -3.959 11.849

90 0.00064 -3.194 7.814 0.000081 -4.092 12.006 0.00013 -3.886 10.549

105 0.0005 -3.301 8.783 0.000078 -4.108 12.664 0.00011 -3.959 11.980

120 0.00046 -3.337 9.366 0.000072 -4.143 13.744 0.00009 -4.046 12.972

135 0.00045 -3.347 9.728 0.000075 -4.125 14.790 0.000073 -4.137 14.197

150 0.00048 -3.319 8.972 0.000077 -4.114 13.715 0.000082 -4.086 13.886

165 0.00062 -3.208 8.814 0.00014 -3.854 13.018 0.0001 -4.000 13.730

180 0.00067 -3.174 8.128 0.00019 -3.721 9.822 0.0001 -4.000 12.097

195 0.0006 -3.222 8.877 0.000161 -3.793 12.940 0.00011 -3.959 13.794

210 0.00047 -3.328 9.290 0.00007 -4.155 13.276 0.000085 -4.071 13.592

225 0.00035 -3.456 9.294 0.00007 -4.155 14.754 0.000075 -4.125 14.320

240 0.00041 -3.387 9.563 0.00007 -4.155 13.755 0.0001 -4.000 12.987

255 0.00046 -3.337 9.142 0.000081 -4.092 12.634 0.00011 -3.959 11.849

270 0.00064 -3.194 7.814 0.000081 -4.092 12.006 0.00013 -3.886 10.549

285 0.0005 -3.301 8.783 0.000078 -4.108 12.664 0.00011 -3.959 11.980

300 0.00046 -3.337 9.366 0.000072 -4.143 13.744 0.00009 -4.046 12.972

315 0.00045 -3.347 9.728 0.000075 -4.125 14.790 0.000073 -4.137 14.197

330 0.00048 -3.319 8.972 0.000077 -4.114 13.715 0.000082 -4.086 13.886

345 0.00062 -3.208 8.814 0.00014 -3.854 13.018 0.0001 -4.000 13.730

360 0.00067 -3.174 8.128 0.00019 -3.721 9.822 0.0001 -4.000 12.097

Clock Car Letter

θ
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TABLE XI.  OPTIMUM K AND GAIN FOR DIFFERENT VALUES OF 

MOTION BLUR LENGTH WITH CONSTANT MOTION BLUR DIRECTION FOR 

CLOCK, CAR AND LETTER 

 
θ kept constant at θ = 45o while L is varied. 

Figure 7.  Variation of Log of Optimum K with motion blur length L for 

three test images with constant motion blur direction θ =45o. 

Figure 8.  Variation of Gain at Optimum K with motion blur length L for 

three test images with constant motion blur direction θ =45o. 

IV. CONCLUSION 

Image degradation model, motion blur model and 
frequency domain restoration by Wiener filter have been 
extensively studied via experimental approach on six test 
images. The effects of motion blur parameters, Length and 

Direction, on Wiener filter’s restoration quality, Gain and 
parameter K (Noise to Signal Ratio) have been investigated.  

With constant motion blur parameters, Wiener filter’s 
Gain and restoration quality are found to increase as K 
increases from 0 to a value termed Optimum K when the 
Gain is maximum and restoration quality is the best. Further 
increment in K beyond Optimum K decreases Gain and 
restoration quality. When K equals 0, the restored images 
were masked with amplified noise and the Wiener filter 
functioned as an inverse filter. 

With constant motion blur length, Wiener filter’s 
Optimum K and Gain at Optimum K are found to rise and 
fall rhythmically as motion blur direction varies from 0o to 
180o. The variation patterns of Wiener filter’s Optimum K 
and Gain at Optimum K as motion blur direction varies 
between 0o to 180o are exactly repeated as motion blur 
direction varies between 180o to 360o. Motion blur functions 
of same length but opposite directions are found to be 
equivalent. With constant motion blur direction, Wiener 
filter’s Optimum K and Gain at Optimum K are found to 
decrease as motion blur length increases from 2 pixels to 15 
pixels. 
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