
International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 07 – Issue 06, November 2018

www.ijcit.com 243

Basic Tor Network Using VMWare for Security

Research

Ruhama Mohammed Zain

CyberSecurity Malaysia

Seri Kembangan, Malaysia

Email: ruhama [AT] cybersecurity.my

Abstract—This paper describes how to create separate virtual

machines for each Tor relay, directory server and client using

VMware Fusion. This approach offers a flexible and realistic

research experience in terms of installing, configuring and

updating each Tor node. The result was a working Tor network

that accurately simulated each node’s operating system resource

requirement (memory, disk space and CPU resources) and

utilisation. Another important aspect to the experimental setup is

the ability to interact with each Tor node easily via graphical user

interface.

Keywords-component; Tor network; experimental testbed;

virtualization; VMware, onion routers, relays

I. INTRODUCTION

Users have many different motivations for their desire to be
anonymous on the Internet. There are safety and security apart
from privacy reasons. Using Tor to stay anonymous may be the
only option for political dissidents, social activists and freedom
fighters around the world. Privacy and security researchers are
interested in anonymity networks such as Tor because of the
type of personal information at risk. Researchers seek
experimental setups with enough fidelity to reproduce the
character and response of a real Tor network. This is to avoid
conducting privacy experiments on the live Tor network and
putting actual Tor users in jeopardy. We describe how to create
Tor relays, directory server and client using discrete VMware
Fusion virtual machines. We propose that this method provides
a customizable and realistic experience for the researcher by
requiring them to install, configure and update the Tor nodes just
like any other operating system. The end result is a functioning
Tor network that reflects each node’s resource requirement in
terms of CPU, memory and disk space that can easily be
interacted with via graphical user interface.

Security and privacy researchers have been interested in the
Internet and privacy issues that it brings[1][2][3][4]. The subject
of anonymity is a closely linked topic and is covered by
[5][6][7][8]. The issues discussed range from the privacy of
Facebook pictures [9], the need for anonymity when reading and
reporting news inside oppressive regimes [10][11], and
suspicions about government monitoring and recording of
online activity [12]. Justifications like terrorism prevention have
been used but privacy advocates are very concerned that less

legitimate motives may threaten the lives and safety of innocent
Internet users unless they remain untraceable and anonymous.

Tor (The onion routing) is a tool that can help provide the
necessary anonymity and plausible deniability to users who want
them. The Tor browser allows anybody with little technical
expertise to send and receive information anonymously through
the Internet. It is easy to determine that someone is using Tor
because it is not a covert means to use the Internet. However,
Tor makes it difficult to track and identify users who are
accessing specific information or services on the Internet. In
other words, Tor can help safeguard both privacy and
anonymity of its users.

Tor was introduced by researchers at U.S. Naval Research
Laboratory [13] in 2004 as a privacy tool for anonymous
communication by users of the Internet. Tor is operated by
volunteers distributed all over the Internet. User traffic is
directed through three independent network relays called Onion
Routers. The three relays make up a Tor circuit. Only a special
type of Onion Router (the exit relay) is allowed to carry the exit
traffic to the final destination. To ensure anonymity, each relay
only knows the address of the previous and the next relay. As a
result, it is not trivial to determine the originator and destination
of a network traffic routed through Tor. In addition to that,
encryption is also used at each relay where a different key is used
for every communication between client to relay, relay to relay
and relay to destination.

The motivation for this paper stems from a requirement by
security researchers to create a Tor network that is isolated but
realistic enough to perform experiments to improve
understanding about threats and their countermeasures. A few
methods have already been used to simulate or emulate the live
Tor network. This paper presents another option that may be
useful for certain class of experiments.

Virtualization technology has enabled researchers to build
experimental networks using commodity hardware and software
easily. This allows the researcher to perform network
experiments without jeopardizing the performance and security
of a live production network. Virtualization has eliminated the
need to maintain separate physical machines with the associated
cost savings. It also allows the setup to be easily replicated and
transported for teaching or demonstration.

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 07 – Issue 06, November 2018

www.ijcit.com 244

According to [14], there are many options to conduct Tor
network research. Direct experiments on the Tor network,
formal modelling, simulation and emulation of the Tor network
are some of the examples mentioned. It should be mentioned
that there are ethical issues associated with conducting
experiments on the live Tor network. The potential issues
include harming the security of real Tor users and the
performance of the Tor network itself. Thus, security
researchers are always looking for safer alternatives to run Tor
experiments.

In this paper we used VMware virtualization platform to
generate discrete virtual machines that play the role of directory
server, relays, client and web server. The set of virtual machines
are set up as a small-scale but functioning Tor network. It can
be used to perform Tor experiments or to teach about how Tor
network functions in general.

II. TYPES OF VIRTUALIZATIONS

There are three broad categories of virtualization solutions.

Software virtual machines or Type 2 Hypervisor manage
both the host operating system and guest operating system [15].
VMware Workstation, VMware Fusion, Oracle Virtualbox and
Microsoft Virtual Server are examples of this category. This is
shown in Figure 1. There is a host operating between the host
hardware and the hypervisor.

Figure 1: Software virtual machine

Hardware virtual machines, also called Type 1
Hypervisor, have the virtualization technology reside directly on
the host hardware. The Hypervisor is directly above the host
hardware as shown in Figure 2. This baremetal technology
enables the hypervisor, modified code, or APIs to facilitate faster
transactions with hardware devices [15].

Figure 2: Hardware virtual machine

Virtual OS/containers, partitions the host operating system
into containers or zones [15]. Docker, Netkit, BSD jail and
chroot environment belong in this category. As Figure 3 shows,
there is no hypervisor in this setup.

Figure 3: Virtual OS/Containers

III. BENEFITS OF VIRTUALIZATION

Virtualization technology can be used to save cost by
eliminating the need to have many physical machines. In
addition to just buying one or two physical hardware there will
be less overall power consumption and space required to house
the machines. This is beneficial in scenarios such as server
consolidation and creation of virtual test environments [16]. It
is not surprising that cloud service providers like Google
Compute Engine and Amazon EC2 use virtualization to provide
their services [17]. Modern central processing units (CPUs) can
be utilized to their fullest by having them serve multiple virtual
machines. Likewise, the random access memory (RAM), disk
storage and input/output (I/O) devices can be utilized fully if
they are shared among many virtual machines [15]. As an added
benefit for the Tor experimenter, having a virtualized Tor
network within a single powerful physical machine makes it
easy to start and stop relays in order to make changes or record
an observation. It is easy to make backups of virtual machines
and create “snapshots” of the disk state which give ability to the
experimenter to restore the setup to a previous desired state very
quickly. All these are much more tedious to accomplish with
physical machines.

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 07 – Issue 06, November 2018

www.ijcit.com 245

IV. ETHICAL ISSUES WITH USING THE LIVE TOR NETWORK

FOR COLLECTING DATA

As mentioned in the Introduction, there are ethical issues if
activities such as usage data is collected from the live Tor
network [18]. Some of the issues are described next.

Legal requirements that disallows user data collection.
This is in regards to existing wiretapping and data protection
laws in many countries that prohibit unauthorized user data
collection. In the Tor network the problem can be further
amplified because of the need to collect data at many points in
the Tor network in order to give a full view of the end-to-end
Tor traffic. It is easy to see that the problem is even more
complicated if the Tor relays are located in different countries
with different sets of law. Maintaining user anonymity remains
another ethical issue even if all the laws are complied with.

User privacy that must be maintained and protected. The
data collected from the live Tor network must not fall into the
wrong hands and be subsequently used to correlate and
compromise user anonymity. Techniques such as data
sanitization may be required to remove any personally
identifiable information from the dataset.

Getting consent from Tor users. Users must be informed
that they are subject of research and that their consent is
required. Users of anonymity networks might not be agreeable
to the idea of being identified as a matter of principle.

Some of these ethical issues can be overcome if testing is
done inside an isolated Tor network. On the other hand, it is not
possible to conduct all manner of testing such as statistical data
collection because the traffic type and network scale will not
match the real Tor network. However, it is argued that at least
for a certain class of experiments and to avoid the ethical issues
mentioned above, it is preferable to have an isolated, albeit
small-scale Tor network.

Even if no user data collection will be performed on the live
Tor network it still carries some other risks. For example, the
introduction of experimental Tor relay nodes might cause real
users to be routed through the test relays. The users might then
be compromised because of misconfiguration or errors in the
relays. It might cause network performance problem or
exposure of user identity (loss of anonymity). Another thing that
cannot be done on the live Tor network is to independently
create a Tor directory server as an experiment on the live Tor
network because the list of directory servers is hard-coded into
the Tor source code [19].

V. TOR SECURITY AND PERFORMANCE FEATURES

A few Tor security and performance features will be
described next. Different aspects of security will be addressed
by different security features. Additionally, performance related
features will be explained briefly in the relevant sections.

Perfect forward secrecy

Instead of encrypting a single data structure many times
over, Tor employs incremental or telescoping path-building
design [13]. The node that initiates the circuit negotiates session
keys individually with each hop in the circuit. Session keys are
expired after some time and thus cannot be used to decrypt old
traffic. This is to ensure perfect forward secrecy. Therefore a
hostile node cannot simply record a session traffic and start a
replay attack by asking a compromised node to decrypt the
traffic. As a result, the circuit building process is more reliable
and no replay detection is necessary.

Support of TCP-based programs using SOCKS proxy

No modification of any Transmission Control Protocol
(TCP)-based programs is necessary to run them over Tor. This
is because Tor uses the standard Socket Secure (SOCKS) proxy
interface [13]. Therefore, there is no need to write separate
application proxies for each application protocol. Most modern
web browsers can function as SOCKS proxy client, including
the Tor web browser client which is based on Mozilla Firefox.

No traffic shaping

Tor does not support giving priority for certain type of traffic
over another or any traffic shaping [13]. Torchestra [20] is a
traffic shaping algorithm that has been proposed by researchers.
Additionally, there has yet to be any economical and practical
traffic padding scheme that can increase security against
anonymity compromising attacks [13].

Multiplexing many TCP streams over a single circuit

Tor multiplexes many TCP streams onto a single circuit [13].
One justification for doing this is because public key
cryptography operations are expensive in terms of CPU cycles
[21]. Factor in the fact that every Tor circuit requires multiple
public key cryptography operations and it is clear why
multiplexing was chosen. The second justification is because if
every single request requires a fresh circuit, it might reveal more
information than is necessary and that might cause a threat to
user anonymity.

Leaky-pipe circuit topology

In certain scenarios, it is desirable to allow the Tor circuit
initiators to route traffic to nodes in the middle of the established
circuit [13]. This way, any adversary listening at the end of the
circuit cannot see the traffic leaving the end node. This so-called
“leaky-pipe” topology may therefore defend against certain
traffic shaping and volume based attacks. Tor hidden service
providers can use this topology to securely offer their services.
Under this scheme, the server that offers the hidden service can
do so anonymously by setting up a rendezvous point that utilises
the ability to exit the Tor circuit from the middle.

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 07 – Issue 06, November 2018

www.ijcit.com 246

Centralised congestion control

Tor uses a series of end-to-end acknowledgements (ACKS)
as a form of centralized congestion control [13]. This allows
congestion or flooding detection by end nodes while maintaining
anonymity. Congestion can then be brought under control by
throttling the amount of data sent by the end nodes.

Directory servers

Tor uses trusted nodes called directory server as a means to
disseminate information about known routers and their current
state such as uptime, bandwidth, exit policies, Tor version,
platform, public keys, et cetera [13]. This approach is chosen
instead of flooding state information through the whole network.
In order for the directory information to be fully trusted, the
directories are cryptographically signed, thus ensuring only
reliable and trustworthy information are stored inside them.

Flexible exit policies

Each Tor node has exit polices that describe which hosts and
ports it will connect to [13]. Since Tor is a volunteer-based,
distributed network infrastructure the exit policies make it
convenient for volunteers to participate based on their comfort
level and willingness to route certain type of traffic and to certain
destinations of their choice.

End-to-end integrity checking

Integrity checks are done on data before it leaves the Tor
network. It is therefore difficult and almost impossible to alter
the contents of data cells that passes through a node without
failing the integrity check [13]. For example, alterations such as
marking or tagging the data for later observation as it leaves the
Tor network is difficult to do. Likewise, the integrity test will
also fail if the destination web server inside a request is changed
arbitrarily.

Rendezvous points for hidden services

Rendezvous points are used to protect the actual location of
hidden servers. The client and the hidden server can negotiate
the location where they wish to “meet” to request and receive
services. This way neither the client nor the server need to know
each other’s real identities.

We have just described some characteristics of the Tor
network that must be faithfully replicated in the experimental
setup.

VI. TOR EXPERIMENTAL RESEARCH REQUIREMENTS

Some of the parameters that are necessary in order to
accurately model the proper dynamics of the live Tor network
are (Bauer et al., 2011):

• Distribution of Tor router bandwidth

• Tor router exit policies

• Tor client behaviours

• Application traffic models

The actual selected parameters depend upon the chosen
method of study. Apart from measuring and analyzing the live
Tor network, current methods include simulations, analytical
modelling, simulations and small-scale network emulation [14].
Certain parameters are more suited to certain method of study.
It can be argued that conducting experiments directly on the live
Tor network would yield the most accurate results but this
method has some serious ethical implications and risks that must
be considered [18]. The implication and risks include divulging
the actual Tor users identities and adversely affecting the Tor
network performance.

In order to maintain fidelity, the Tor code must be run
unmodified. This way the experiment can actually mimic the
actual Tor behaviour.

Research on Tor network may be about hardening it to
withstand anonymity attacks or about improving its network
performance. The challenge is to make it safe enough so as not
to put user anonymity in jeopardy while at the same time keeping
it as realistic as possible. The results can then be relied upon to
improve understanding about the live Tor network.

Experimentor [14] is a Tor network emulation toolkit that
can model the distribution of Tot router bandwidth, client traffic
loads and applications. It provides a high degree of realism
without the risk of harming the live Tor users either through loss
of anonymity or reduced network performance [14].

In this paper, unmodified Tor code is chosen to ensure that
experiments are run with sufficient fidelity. Default values are
kept where possible or a set of static values are predefined in the
Tor configuration file for each Tor relay (/etc/tor/torrc). Relay
exit policies are configured by setting the appropriate ExitRelay
parameter values to reflect whether the relay is an exit node.
Tor client activities are limited to running the standard “curl”
tool to retrieve web pages at certain Uniform Resource Locator
(URL). The experimental testbed created using VMware Fusion
does not allow easy scripting to start multiple clients with
distinct applications. Therefore, no application traffic model is
taken into consideration. This does not affect the goal of the
experiment which is to conduct basic attack against anonymity
and not to address network performance specifically.

VII. VMWARE FUSION VIRTUALIZATION TECHNOLOGY

VMware virtualization solution runs on Linux, Microsoft
Windows and MacOS platforms. The free version called
VMware player are limited [22] in features compared to the paid
version. VMware allows different types of operating systems to
be installed including many Linux variants, Microsoft Windows

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 07 – Issue 06, November 2018

www.ijcit.com 247

and MacOS. This presents the opportunity to experiment with
Tor running on multiple virtual machines running on different
operating system types.

There are three basic networking options to link up the
created virtual machines. The first option is a “Host-only”
network which is a virtual network that only allows
communication with the underlying host operating system. The
second option is a “Network Address Translation (NAT)”
network. This option allows the virtual machines to access the
Internet through the host network interface. The third option is
to connect the virtual machines directly to the physical network
of the host machine, called the “Bridged” network.
Additionally, VMware Fusion allows a maximum of six more
isolated virtual networks. Taken together, VMware Fusion
appears to provide more flexibility and options for the
researcher.

VIII. VMWARE FUSION AS A TOR VIRTUALIZATION

PLATFORM

Under VMware, the choice of operating systems is not
limited to Linux or any particular Linux distribution. The
experimenter is therefore free to choose any of the supported
variants of Linux or Microsoft Windows platforms as a base to
install the Tor directory server, relays and client.

VMware Fusion is specifically designed for the MacOS
(Apple Macintosh operating system). It is mostly identical to
the VMware virtualization technology for the Microsoft
Windows and Linux platforms called VMware Workstation.
Unless there are specific differences in features, this paper shall
assume that any discussion about VMware Fusion is applicable
to VMware Workstation as well.

Using VMware forces the Tor experimenter to first install
the base operating system before installing the Tor components.
It is proposed that this provides greater learning opportunity
because of the need to be familiar with the operating system
installation process, the networking configuration steps, and the
process of updating and maintaining software components. This
is very close to running and maintaining a real Tor server for the
live Tor network. On the other hand, using Docker and Netkit
often means using pulling a Linux image (Docker) or a set
filesystem (Netkit), which may arguably require less work but at
the expense of realistic system administration experience. This
results in a trade-off between ease of use and realistic
administrative experience.

Installing a Tor node using VMware produces a virtual
machine but the operating system acts and functions exactly like
it would be on a dedicated hardware. Features such as graphical
user interface (GUI) is available for the experimenter if
desirable. All available tools on the operating system are
accessible, including GUI-based ones. The trade-off is a bigger
footprint, higher resource requirement and heavier demand on
the host machine’s central processing unit (CPU).

Keeping the individual virtual machine operating system up
to date is also easier using the VMware approach. All the
package manager tools are available which makes it easier to

update the Tor nodes compared to running Docker containers,
for example. It is also possible to only update a specific instance
of a Tor node because it is independent of all other instances.
This is not the case with other virtualization technologies like
Docker or Netkit.

After considering the advantages mentioned, it was decided
to use VMware Fusion as the virtualization platform to create
and install Tor nodes and gain realistic experience of assembling
the actual setup and behaviour of the Tor network.

IX. PHYSICAL SETUP

The experiments described in this paper was conducted on
the following hardware setup. The host hardware is an Apple
MacBook Pro (Retina, 15-inch, Mid 2015), with a 2.8 GHz Intel
Core i7 processor, 16 GB 1600 MHz DDR3 Random Access
Memory, AMD Radeon R9 M370X 2048 MB graphics card and
1 TB flash storage. The virtualisation platform is VMware
Fusion Professional version 8.5.6 (5234762) running on top of
OS X Yosemite version 10.10.5.

One new virtual network called vmnet7 was added to the
VMware Fusion networking stack by making changes to the
networking configuration settings. This new virtual network
and the built-in NAT (network address translation) network
were used to create a single flat network.

 The Tor nodes were installed on Ubuntu 16.04.2 LTS
(Xenial Xerus) which was then the latest stable long-term
support version of Ubuntu. This means configuration
information and support were easily available on the web. Tor
software version 0.2.9.10 was installed using Ubuntu “apt-get”
command to ensure the latest stable and supported release of Tor
is used (circa April 2017).

The real Tor network consists of Tor nodes and directory
servers distributed in different networks and autonomous
systems (AS) across different Internet Service Providers (ISPs)
in different countries. This requires them to be connected via
internetwork routers that exchange and maintain routing
information via routing protocols or static routes. A decision
had to be made whether to create multiple networks for the
experiments in this paper to add some degree of realism to the
experimental setup.

It was finally decided after much trial and error that a single
flat network will be used for the experiments. The reasons are
as follows:

• For the purpose answering the research question of this
paper it was decided that having multiple networks will
complicate the setup unnecessarily.

• Routing functionality would have to be introduced for
multiple networks. This can be done by installing and
configuring additional virtual machines that will function as
routers. In the actual Tor network the routers are usually special
purpose devices that implement routing functions. It was
decided that implementing routing functionality inside of
general purpose operating system installed on a virtual machine
adds little benefit to the research purpose. The same argument

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 07 – Issue 06, November 2018

www.ijcit.com 248

applies even if virtual routers based on customized Linux (such
as Smoothwall) or FreeBSD (such as pfSense) are used.

• Routing configuration can be done using routing
protocols such as BGP, EIGRP, RIP or using static routes. Some
level of expertise is required to set up and troubleshoot those
protocols and settings. The research purpose for this paper has
more to do with general Tor behaviour and anonymity features
and less to do with network performance. It was decided to
choose ease of implementation over realistic but complicated
internetwork routing setup that would have minimal benefit to
the research purpose.

X. LOGICAL SETUP

The experimental setup consists of 3 non-exit relays, 3 exit
relays, a directory server, a DNS server, a Tor client machine
and a web server. A mixture of 3 non-exit relays and 3 exit
relays was chosen so that the Tor circuits created will vary in
composition. This will generate multiple distinct circuits in the
experimental setup such that Tor relay selection and behaviour
can be studied.

The experimental Tor network has a web server that is used
as a target by the client. The web server runs Apache software
with PHP add-on library. Whenever the client makes a
successful connection, the web server returns a PHP generated
page that displays the IP address of the client. If the Tor network
works as expected the IP address will belong to the exit relay
being used at the time the connection is made through the Tor
network.

Only the three exit relays (exit1, exit2 and exit3) and the
DNS server are configured with gateways to the Internet. For
this purpose, they are each configured with two virtual network
interface cards (NICs). The first NIC is connected to the NAT
interface of the host machine to provide Internet gateway
functionality. The second NIC is connected to the experimental
Tor network. The Tor client machine’s DNS resolver is set to
the DNS server’s IP address and no default gateway or any route
to the Internet is set on the client machine. This is to ensure that
the client machine can only use the DNS server to resolve a fully
qualified domain name (FQDN) of a host on the Internet but
cannot by itself make the actual connection. However, if the
connection request is made over the experimental Tor network
it should succeed because it will be one of the exit nodes that is
making the final outbound connection to the Internet. This is the
expected result if the experiment is successful.

All virtual machines is set up to be in the same private
network of 192.168.1.0/24. All exit nodes and the DNS server
have a second connection to 192.168.177.0/24 network which is
the NAT network that has a gateway to the Internet.

Tor allows the port numbers for making Tor connections and
for fetching updates to the Tor directory to be set by the
experimenter. The two other ports that can also be set are the
SOCKS proxy port that the client uses to connect to the Tor
network and the Tor control port that is used to control aspects
of the Tor operations. The ports configured in this experimental
setup are described in Table 1.

Table 1: Configured port numbers

Port Name Port Number Purpose

SocksPort 9050 Connecting to

SOCKS proxy (by

the client)

DirPort 7000 Fetching updates

to the directory

OrPort 5000 Making Tor

connections

ControlPort 9051 Controlling

aspects of Tor

operations

To summarize, the small-scale experimental Tor network in
this project comprises a single directory server, 3 Tor non-exit
relays, 3 Tor exit relays, a target web server, a Tor client and a
DNS server. The configuration was based on hints and ideas
mentioned by Ritter [23], Liu [24], Fukui [25] and antitree [26].

XI. CONNECTIVITY VIA TOR NETWORK TO A WEB SERVER

For this experiment, the Tor client attempts to connect to a
web server through the created Tor network. A total of 3 relays
and 1 client are participating in the experiment. One exit relay
(exit1) and 2 non-exit relays (relay1 and directoryserver) form
the Tor circuit. The web server and the DNS server are not part
of the Tor circuit. The setup is shown in Figure 4.

Figure 4: Basic connectivity via Tor network to a web server

 The client uses the Linux “curl” command to retrieve a web
page that contains the remote address of the connecting machine.
This is the first step towards proving that the setup actually
functions as a Tor network. Traffic originating from the client
must be routed to the entry relay, passed on to the middle relay
and then to the exit relay before finally sent to the destination
web server. It must also be shown that traffic sent into the Tor

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 07 – Issue 06, November 2018

www.ijcit.com 249

network setup are properly encrypted at each Tor relay to
preserve the Tor client’s anonymity.

Figure 5 and Figure 6 show that the Tor client connection
into the Tor network to reach the web server is successful. It is
also proved that the remote IP address of the machine making
the connection to the web server is that of the exit relay (relay1)
instead of the Tor client.

Figure 5: Output of the curl command running on the client showing

the IP address of exit1

Figure 6: Using Firefox web browser on the client to access the web

server via Tor

The 3-hop Tor circuit created for use by the Tor client is
shown in Figure 7. The circuit comprises directoryserver
(192.168.1.4) which also functions as a Tor relay, relay1
(192.168.1.1) and exit1 (192.168.1.5).

Figure 7: Tor circuits created on the client machine

In order to verify that the anonymity of the Tor client is
preserved by this Tor network, a series of packet captures was
done at the following machines using the TCPDUMP utility:

• client

• directoryserver

• relay1

• exit1

• webserver

Wireshark protocol decoder was used to view the captured
packets graphically. The order of decoded traffic viewed are as
follows:

client  entry relay  middle relay  exit relay  web server

The first packet capture decoded are the packets captured at
the Tor client, which is the SOCKS proxy traffic over port 9050,
shown in Figure 8. The SOCKS proxy connection is made via
the loopback interface, 127.0.0.1.

Figure 8: Protocol decode of the SOCKS proxy connection over port

9050 at the client

The second packet capture decoded are the client packets
going to port 5000, which is the Onion Router port setting in the
Tor configuration files of all the Tor relays in the setup. In this
case, these are the packets sent by the Tor client to the entry
relay.

Figure 9 displays the protocol decode which shows the client
(192.168.1.100) making a connection to the entry relay
(192.168.1.4).

Figure 9: Protocol decode of the client connection to the entry relay

of the Tor network (client perspective)

The third protocol capture decoded was for the packets
captured at the entry relay (192.168.1.4), as shown in Figure 10.

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 07 – Issue 06, November 2018

www.ijcit.com 250

It is possible to clearly see the client IP address (192.168.1.100).
This is expected because the entry relay must know about the
client that is making the connection into the Tor network.

Figure 10: Protocol decode of the client connection to the entry relay

of the Tor network (entry relay perspective)

The fourth protocol capture decoded was for the packets
captured at the middle relay (192.168.1.1). As shown by Figure
11, there is a connection made by the entry relay (192.168.1.4)
to the middle relay (192.168.1.1) but the client’s IP address
(192.168.1.100) is not shown.

Figure 11: Protocol decode of the entry relay making a connection to

the middle relay

The fifth protocol capture decoded was for the packets
captured at the exit relay (192.168.1.5). As can be seen in Figure
12, the middle relay (192.168.1.1) is making a connection to the
exit relay (192.168.1.5). Once more the client IP address
(192.168.1.100) is not visible in the protocol decode.

Figure 12: Protocol decode of the middle relay making a connection

to the exit relay

The sixth packet capture decoded was for all packets
destined for port 80 (HTTP) at the exit relay. This is what is
visible to the exit relay as it makes the final outgoing connection
to the target webs server. As Figure 13 shows, the exit relay
(192.168.1.5) is making the connection to the web server
(192.168.1.200). The client identity stays hidden and invisible
under protocol analysis.

Figure 13: Protocol decode of the exit relay making a connection to

the web server (exit relay perspective)

The final protocol capture decode was for traffic captured at
the web server (192.168.1.200). It is confirmed here too that the
web server only sees the request coming from the exit relay
(192.168.1.5) and not from the client (192.168.1.100). The
protocol decode is shown in Figure 14.

Figure 14: Protocol decode of the exit relay making a connection to

the web server (web server perspective)

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 07 – Issue 06, November 2018

www.ijcit.com 251

This experiment shows that the created Tor network behaves
as expected in the most fundamental sense. Client anonymity
is preserved except to the entry relay. Likewise, only the exit
relay knows the final destination of the client request.

XII. ANALYSIS AND DISCUSSION

VMware virtualization technology proved to be a viable
platform to install, configure and manage Tor nodes. The
installation process requires no Tor source code modification
and closely resemble actual real-world installation steps. The
results from the experiments show that the created network
behaves just like a Tor network.

Each Tor node had to be installed from scratch, starting with
the base operating system. Each virtual machine had to be
provisioned and allocated the required memory and disk space,
which is similar when dealing with discrete physical machines.
VMware supports the Open Virtualisation Format (OVF) or
Open Virtual Appliance (OVA) format to create virtual machine
templates. This enables additional nodes to be created faster
compared to using installation disk images each time.

When running extended tests it is advisable to turn off
automatic updates in the host operating system. This is to
prevent automatic reboots that will terminate the running tests
prematurely.

In order to ensure the network remains isolated and not route
traffic to the actual Tor network, the “TestingTorNetwork”
option was enabled on all nodes and private IP addresses (RFC
1918) was used.

As expected, the created Tor network can generate Tor
circuits that can be used for basic traffic analysis experiments.
The Tor client is able to automatically select and use any
available exit relays.

The results of the packet sniffing experiment along the
various Tor nodes show that the virtual Tor network supports the
Tor encryption layers and anonymity is not compromised by
packet sniffing and decoding.

XIII. FUTURE WORK

It was demonstrated that the experimental Tor network
created using VMware Fusion virtualisation platform produced
results that mimic the behaviour of the real Tor network. As a
future work, an evaluation of whether the same virtualisation
platform can support more nodes is of research interest. Another
anticipated future work would be to evaluate whether the same
virtual network can be expanded to include multiple networks in
order to more closely mirror the real Tor network. In the
experiment, the type of traffic generated by the Tor client was
limited to web browsing and fetching a URL using the curl
command. This is not because the platform cannot support it but
more to do with the need to find creative ways to generate other
traffic types, something that is left for future work. An
evaluation of whether the same platform can be scripted to

generate multiple types of user traffic is also of great research
interest.

XIV. CONCLUSION

This research wanted to find out whether a functional,
isolated Tor network can be created using VMware
virtualisation platform. Experiments were conducted over the
network to confirm the Tor network functionality. The results
show that the virtual Tor network behaves much like the actual
Tor network even though it is limited by the number of nodes
and client created.

Creating a virtual Tor network comprising discrete virtual
machines for directory server, relay, client and target web server
offers a realistic and rich experience for the researcher. It is also
convenient to investigate what is happening inside each Tor
node using the available graphical user interface and the ability
to have multiple terminal windows opened at the same time. The
researcher also has access to all Linux tools, making it easy to
manage the nodes. In conclusion, the virtual machine based Tor
network provides another useful tool for the researcher.

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 07 – Issue 06, November 2018

www.ijcit.com 252

REFERENCES

[1] Chen, H., Beaudoin, C.E. & Hong, T., 2017. Securing online privacy: An

empirical test on Internet scam victimization, online privacy concerns,
and privacy protection behaviors. Computers in Human Behavior,
70(January), pp.291–302. Available at:
http://dx.doi.org/10.1016/j.chb.2017.01.003.

[2] Henze, M. et al., 2016. A comprehensive approach to privacy in the cloud-
based Internet of Things. Future Generation Computer Systems, 56,
pp.701–718.

[3] Weber, R.H., 2010. Internet of Things - New security and privacy
challenges. Computer Law and Security Review, 26(1), pp.23–30.
Available at: http://dx.doi.org/10.1016/j.clsr.2009.11.008.

[4] Anton, A.I., Earp, J.B. & Young, J.D., 2010. How Internet Users ’ Privacy
Concerns Have Evolved. IEEE Privacy & Security, 1936(February),
pp.21–27.

[5] Zarsky, T., 2003. Thinking outside the box: considering transparency,
anonymity, and pseudonymity as overall solutions to the problems in
information privacy in the internet society. U. Miami L. Rev., 1, pp.1–54.
Available at: http://heinonlinebackup.com/hol-cgi-
bin/get_pdf.cgi?handle=hein.journals/umialr58§ion=57.

[6] Christopherson, K.M., 2007. The positive and negative implications of
anonymity in Internet social interactions: “On the Internet, Nobody
Knows You’re a Dog.” Computers in Human Behavior, 23(6), pp.3038–
3056.

[7] Kennedy, H., 2006. Beyond anonymity, or future directions for internet
identity research. New Media & Society, 8(6), pp.859–876. Available at:
http://journals.sagepub.com/doi/10.1177/1461444806069641.

[8] Muftic, S., Abdullah, N. & Kounelis, I., 2016. Business Information
Exchange System with Security , Privacy , and Anonymity. , 2016.

[9] Child, J.T. & Starcher, S.C., 2016. Fuzzy Facebook privacy boundaries:
Exploring mediated lurking, vague-booking, and Facebook privacy
management. Computers in Human Behavior, 54(January), pp.483–490.
Available at: http://dx.doi.org/10.1016/j.chb.2015.08.035.

[10] Dawson, M. & Cárdenas-Haro, J.A., 2017. Tails Linux Operating System.
International Journal of Hyperconnectivity and the Internet of Things,
1(1), pp.47–55. Available at: http://services.igi-
global.com/resolvedoi/resolve.aspx?doi=10.4018/IJHIoT.2017010104.

[11] Cole, J., 2016. Dark Web 101. Air & Space Power Journal, (May), p.6.
Available at: http://www.dtic.mil/docs/citations/AD1005862.

[12] Stoycheff, E., 2016. Under Surveillance. Journalism & Mass
Communication Quarterly, 93(2), pp.296–311. Available at:
http://journals.sagepub.com/doi/10.1177/1077699016630255.

[13] Dingledine, R., Mathewson, N. & Syverson, P., 2004. Tor: The second-
generation onion router. SSYM’04 Proceedings of the 13th conference on
USENIX Security Symposium, 13, p.21. Available at:
http://portal.acm.org/citation.cfm?id=1251375.1251396.

[14] Bauer, K. et al., 2011. ExperimenTor : A Testbed for Safe and Realistic
Tor Experimentation. CSET.

[15] Daniels, J., 2009. Server Virtualization Architecture and Implementation
www.acm.org/crossroads Crossroads. , 16(1). Available at:
http://www.science.smith.edu/dftwiki/images/7/7f/ServerVirtualizationA
rchitectureAndImplementation2009.pdf [Accessed May 16, 2017].

[16] Kivity, A., Kamay, Y., Laor, D., Lublin, U. and Liguori, A., 2007. kvm:
the Linux virtual machine monitor. Proceedings of the 2008 Linux
Symposium, 1, pp.225–230.

[17] Pék, G. et al., 2014. On the Feasibility of Software Attacks on Commodity
Virtual Machine Monitors via Direct Device Assignment. Proceedings of
the 9th ACM Symposium on Information, Computer and
Communications Security (AsiaCCS’14), pp.305–316. Available at:
http://dx.doi.org/10.1145/2590296.2590299.

[18] Loesing, K., Murdoch, S.J. & Dingledine, R., 2010. A Case Study on
Measuring Statistical Data in the Tor Anonymity Network. International
Conference on Financial Cryptography and Data Security. Available at:
http://sec.cs.ucl.ac.uk/users/smurdoch/papers/wecsr10measuring.pdf
[Accessed May 17, 2017].

[19] The Tor Project, I., 2017d. tor - Tor’s source code. Available at:
https://gitweb.torproject.org/tor.git/tree/src/or/config.c [Accessed June
18, 2017].

[20] Gopal, D., 2012. Torchestra : Reducing interactive traffic delays over Tor.
University of California, San Diego.

[21] Uludag, S. et al., 2014. Secure and Scalable Communications Protocol for
Data Collection with Time Minimization in the Smart Grid. , (2122), p.14.
Available at: http://hdl.handle.net/2142/49985.

[22] VMware, I., 2017. Workstation for Windows - VMware Products.
Available at:
http://www.vmware.com/products/workstation.html#compare [Accessed
May 15, 2017].

[23] Ritter, T., 2014. Run Your Own Tor Network - ritter.vg. Available at:
https://ritter.vg/blog-run_your_own_tor_network.html [Accessed May
21, 2017].

[24] Liu, F., 2015. How to Setup Private Tor Network - Programming
Languages | Fengyun Liu. Available at:
http://fengy.me/prog/2015/01/09/private-tor-network/ [Accessed May 21,
2017].

[25] Fukui, T., 2017. Anonymous Routing of Network Traffic Using Tor.
Available at: https://witestlab.poly.edu/blog/anonymous-routing-of-
network-traffic-using-tor/ [Accessed May 21, 2017].

[26] antitree, 2016. Run a private tor network using Docker. antitree.com.
Available at: https://www.antitree.com/2016/07/01/run-a-private-tor-
network-using-docker/ [Accessed May 11, 2017].

http://www.ijcit.com/

