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Abstract -  
The power network of the smallest power loss cost is the radial 

one, on which each load is directly supplied from the 

substations. In this paper, we discussed the method for 

decreasing minimumly the power loss by smoothly increasing 

the weighted load of stations on the radial distribution network. 

Here we formalized the determination problem of power supply 

range of substations  on radial distuibution network to the non-

_linear programming model, and proposed the method that 

replaces the given model by linear programming one and its 

sloving method. 
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I. INTRODUCTION 

In traditional power distribution planning(PDP) on the 

radial distribution network, the models of minimizing 

theoptimal  location and size,  power supply range  of  

stations  and the investment cost are  proposed[1-3]. 

 Avobe models are defined of large-scale, nonlinear 

integer optimization problem.  Typical methods to solve this 

problem are Mathematical programming methods  which 

contain the Mixed integer linear programming[4,5] and Non 

linear programming[6,7],  Multi-objective programming[8], 

Dynamic programming[9] etc., and  Soft  calculation 

methods which contain the Genetic algorithm[10-14], Tabu 

search[15], and Particle  swarm optimization[16], 

Evolutionary algorithm[17], Ant colony system[18], 

Bacterial foraging[19] etc., Geometric calculation methods 

which contain an ordinary Voronoi diagram, the weighted 

Voronoi diagram[21-23].  These methods have merits and 

demerits respectively.  Mathematical programming methods 

had strict optimality but could hardly get a feasible optimized 

solution when faced with complex and large –scale 

problems[24]. Soft calculation methods provide near-optimal 

solutions for large-scale PDP problems but there is no 

guarantee that they will find a global optimal solution [24].  

Geometric calculation methods had good computational 

stability and can reduce the computing times; however, there 

is no guarantee that they will find better solution than Soft 

calculation method [25]. 

In [26]  improved weight was calculated by adding an 

adaptive control process of load ratio, the  substation site was 

determined by using the Voronoi diagram and then the power 

supply which could get a reasonable load rate for each 

substation is calculated. 

But the function expressing the improved weight is non 

linear. Therefore, there isn’t guarantee that it’s an optimal 

solution. 

Normal determination method of power supply range is 

one that determine the station’s locations and power supply 

range so that sum of station’s construction cost and annual 

management cost is minimized under the supposion of giving 

the power load distribution, numbers, capacity and upper 

limit of power supply range of newly constructed stations, so 

it is formalized such below. [26].  
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, here N is the total number of existing and newly constructed 

substations, n is the number of newly constructed substations, 

)( isf  is the intestment cost of substation i, )( isu  is the 

operation cost of newly constructed substation i , is  is the 

capacity of substation i, ir  is the load rate of substation i, iJ  

is the load collection carried by substation i, J is the 

collection of all load points, ikl  is the length of feeder 𝑘 
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added from substation i, ikp  is the load (active power) 

carried by feeder 𝑘 of substation 𝑖, 0m  is the depreciation 

years of the substations, 1m  is  the depreciation years of the 

substations’ low side, 0r  is the decount  rate, cos  is the 

power-factor (ration of  effective power and total power), iR  

is the limit of the power supply radius of substation,    is the 

investment cost per unit length of feeder,  




 2

2
321 cos

U
  is a feeder loss conversion factor,  1  

is the line resistance per unit length , 2  is unit energy  

consumption discount factor, 3  is the line loss hours per 

year, U is the line voltage of the substation low- voltage side. 

The main variabls of above model are the power supply 

ranges iR , but it’s difficult to get them. 

If the power supply radius of each substation is 

determinated, the corresponding power supply ranges are 

also determinated, thus investment, management and loss 

costs are determinated. 

So the determination of the power supply range is a key 

of determinating power supply range. 

Because some variables in the problem of determinating 

power supply range are non_negative integers, this problem 

becomes to the mixed integer non linear programming. 

In [26], after location of substations based on their 

weighted voronoi diagram(WVD) by using the transportation 

model, the power supply radius of each substation is 

determinated. 

The cost of [26]’s method is lower than the 

conventional algorithm. 

This paper’s method are also much faster than the 

conventional algorithm. 

The method of above paper determined the approximate 

WVD and the power supply range by solving the 

transportation model . 

Because WVD must be improved so that the difference 

between the supply capacity of substations and the arriving 

power of load point is minimum, power supply and WVD 

must be discussed on one system. 

But in the method of [26] improvement of WVD and 

power supply are individually discussed, thus it can’t 

guarantee that the given solution is optimal. 

Nowadays in several countries, the power networks are 

constructed by radial networksㄴ for the minimum of power 

loss and the investment cost, and existing power networks are 

also reconstructed as branch networks like radial ones. 

In this paper, we proposed the following problems to 

minimize the power loss of the power distribution network 

based on radial one. 

1. Propose the mathematical model and research its 

properties to eliminate the power loss  and evenly 

increase the weighted load of substations. 

2. Research the calculating method to get the 

optimical point of minimizing the power loss in the 

radial network. 

3. Check the efficiency of this method in several 

regions. 

 

II. POWER LOSS MINIMIZING PROBLEM ON 

THE POWER NETWORK 

2.1. weighted load of substations 

The power network of the smallest power loss cost is the 

radial one, on which each load point is directly supplied from 

the substations. 

Even on the branch type network, power supply is first 

discussed on the radial one and based on that, the power 

supply lines are constructed in branch one so that the line cost 

is low. 

Power loss quantity on the power network mainly 

consists of  power loss quantity on line and supply capacity 

loss of the substations which is expressed by the difference 

between power supply capacity and power quantity arriving 

to load point. 

Because the power loss of line is expressed by the 

difference between the supplying power of substation to load 

point and the arriving power of load point, both the capacity 

loss of substations and loss quantity on line can be decreased 

at same time if the weighted load which is expressed by the 

ratio of the latter and the former is evenly increased. 

The power supply capacity loss is  a-c and the line loss 

is  b-c when a is the sum of the substations’s power capacity, 

b is the sum of the supplying power and c is the arriving 

power capacity to the load point. 

The relationship is as following  

Therefore, the line loss can decrease if supply capacity 

loss of substations decrease. 

Thus, the minimizing problem of power loss is the 

weight decision one on the supposition that the weight of 

WVD is the weighted load of substations. 

Suppose that is  is the maximum power capacity of 

range D on the plane, icos  is the power factor and there are 

m substations of load rate i  and n load points of need power 

j . 

Let’s M  is the collection of substations and N is the 

collection of load points. ( nNmM  ||  ,|| ). 

Then the weighted voronoi diagram )( iwV  of 

substation i  is as following. 

MiiMklwlwNjwV kjkijii    }},{\  ,|{)( , 

where ijl  is the (Euclidean) distance between substation i 

and load point j, iw  is the weighted load of substation i. 

Especially,  the weighted voronoi diagram is the 

generalization of the usual voronoi diagrom because the 

weighted voronoi diagram )( iwV  of substation i  is the same 
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as the usual  voronoi diagram if )(  1 Miwi  . 

Weighted load iw  of substation i  expresses the balance 

relation between the supply capacity iiis  cos  of  substation 

i  and the arriving power iv , then it is formed as following, 

iii

i
i

s

v
w

 cos
 , 

where is  is the capacity of substation i, ir  is the maximum 

load rate of substation  i, icos  is the power factor of 

substation i, iv  is the arriving power capacity of the load 

points supplied from substation  i. 

Therefore, the weighted load of substation i is the ratio 

of the arriving power and the power supply capacity. 

Namely, suppose that ij is the power capacity 

supplying from substation i to load point j, 

iijij l
U

r
 2

2

0 cos  is the loss coefficient considerimg the 

distance from substation i to load point j, is  is the 

transformer installing capacity of substation i and icos  is 

the power factor, then the weighted load iw  of substation i 

is expressed as  following. 

i

n
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,                      (1) 

where U is the voltage, 0r  is the unit resistance, 

iii rs  cos  is the power supply capacity of substation i. 

In this time, the weighted load iw  changes as the power 

supply capacity ij  changes. 

Because the power need capacity of the loads changes 

as the time changes,  the stable power distribution can be 

accomplished when the power supply range is determinated 

by the weighte d voronoi diagram. 

 

2.2. The minimizing problem of power loss 

When  j  is the power need capacity of substation  j 

and ij  is the arriving power capacity of substation i to load 

point j, the sum of the arriving power quantity to load point j 

must be equal to  the power need capacity of that one. So 
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Now above expression changes as following under the 
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Because the sum of start power capacity ij supplying 

from the substation i to the loads cannot be more than the 

power supply capacity of the substation i, the following 

inequality holds. 
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Therefore, the minimizing problem of the power loss by 

the weighted load on the power network is formalized as 

following. 

maxmin
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In (2), it can be changed as following by introducing the 

non negative variable   to the target function. 

max ,  ,1 ,maxmin
1
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Therefore, the problem (2) is transformed the folloing 

equivalent problem. 
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The problem (3) is the non linear program one which the 

target function is linear and has the convex bound. 

In previous papers, the power supply radius of each 

substation was alphabetically determined by using the 

weighted voronoi diagram, and then solved the linear 

transtportation problem using the parametric method and 

determined the load point which is linked up with each 

substation by using this solution. 

At this time, there is no guarantee that the power supply 

range with the maximum weighted load is determined and the 

optimical load points linked to each substation are collected  

because the loss quality of the power on the line isn’t 

expressed in the linear function. 

Therefore, the problems for evenly increasing the 

weighted load and for reducing the line power transmission 

loss must be discussed on one system in order to calculate the 

power supply range for minimizing the power loss. 

 

2.3. The property of the problem for minimizing the 

power loss. 

 [Lemma 1] The following inequality is held at arbitrary 

point on the interval ]1  ,0[ . 

xaax )11(11  , 

where a is a given positive number which is smaller than 1. 

(proof) 011  ax and 0)11(  xa   if  x=0 

and aax  1111  and 

axa  11)11( if 1x . 

 Namely, xaax )11(11   at the boundary of 

interval [0, 1]  

About the function axy  11 , derivative of y is 
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        Because 10  ,10  xa , thus 

10  ,10  xa . 

Namely, because 10  ,10  xa  on the [0, 1], the 

function axy  11  is the strict convex one passing 

through the points (0, 0) and )1-1  ,1( a . 

And because the function xa )11(   is the linear 

one passing through the points (0, 0) and )1-1  ,1( a , 

the following enequality is held at the  arbitray point of the 

interval [0, 1]. 

xaax )11(11   

Especially, at the  arbitray point of the interval (0, 1), 

xaax )11(11  . 

 (end of proof)  

From (1), following relationship between the start 

power supply capacity ij  and the arriving power ij of 

substation i to load point j holds. 

22
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Because the loss coefficient )0(ij  is small as 

compared with j , we can say 14 jij  at the arbitrary i 

and j,no losing generality.  

Therefore, the corollary is following from lemma 1 

 [ Corollary 1 ] At arbitrary point of the interval [0,1], 
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Especially, the inequality (4) changes to the  following 

equality if  ij  is equal to 0 or 1. 
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then the problem (3) can be relaxed to the following linear 

programming. 
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If the allowable range of problem (5) isn’t empty set, 

there must be an optimical vector because it is the bounded 

closed set. 

 [Lemma 2] If the allowable range of the problem (5) 

isn’t empty set, the optimical value of (5) is the low bound of 

the one (3). 

(proof) Suppose that the allowable range of (5) isn’t 

empty set and the allowable ranges of (3) and (5) are 

individually  21   , SS . 

About 2Sx , 12 SS   because 1Sx  from the 

inequality (4). 

Therefore, 

 1S , }|max{}|max{ 12 SxSx    

Namely, the optimal value of  the problem (5) is the low 

bound of one of (3). (end of proof) 

 [Lemma 3] If the allowable range of problem (5) isn’t 

empty set and the optimal vector of (5) is 0-1 vector, then the 

vector is the optimal one of (3). 

 (proof) Because the target functions of the problem (5) 

and (3)about 0-1 vector of  the allowable range are equal, 

these two problems are equivalent  about 0-1vector.(end of 

proof)  
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range of  (5) is empty or the bounded closed set. 
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Clearly, njmiij   ,1  ,  ,1  ,0  , so nmij ,)(  is the 

allowing vector of  (5). And about an arbitrary non negative 

nmij ,)( , there is a non negative number  .(end of proof) 

Soppose that  )( **
ijx   is the optimical vector of  (3) 

and let’s 
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 njmi
ij

ijjij

ij   ,1  ,  ,1  ,
2

411 *

* 






 . (6) 

If  10 *  ij  about any load point j, that is supplied 

thepower from the several substations(for example, from 

substations kiii   ,  , 21 ) ) and the following problem can 

be discussed, in which the number of the load points is 

increased to 1n  when  this substation j is separated to k load 

points with the need  powers
*

jij k
 . 

1

1

1
1

1

*

  ,1  ,  ,1  ,0

  ,1  ,0

  ,1  ,1

  ,1  ,

1

1

njmi

mi

nj

mi

ij

i

n

j
ijj

m

i
ij

i

n

j
ijij





























          (7) 

.max

0








 

 [Theorem 2] If the allowable range of (7) is not empty, 

the optimal vector of  (3) is the one of (7). 

(Proof) From the proving process of  lemma 2, the 

arbitrary allowable vector of (7) is one of  (3) and  the target 

functions of  these are equal. 

Now suppose that the optical vector  )( **
ijx   of (3) is 

not one of  (7). 

Then there is an allowable vector  )( ijx  of  (7), the 

allowable value  of (7) is bigger than the optimal value 

* of  (3). 

At this time,  )( ijx  is the allowable vector of  (3) 

and the value of target function  is  . 

This contradicts the truth that  )( **
ijx  is the optimal 

vector of  (3). (end of  proof) 

Let’s discuss the following problem when  )( 0
0 ijx  is 

the optimal vector of (5) and  

njmi
ij

ijjij

ij   ,1  ,  ,1  ,
2

411 0

0 






 . 

.max

0

  ,1  ,  ,1  ,0

  ,1  ,0

  ,1  ,1

  ,1  ,

1

1

1

1

1

0





































njmi

mi

nj

mi

ij

i

n

j

ijj

m

i

ij

i

n

j

ijij

             ,     (8) 

where 1n means the same as (7) 

 [lemma 5] The allowable range of (8) is not empty. 

(proof) For the arbitrary  non negative number   and 

  of the interval [0, 1], 

 )11(11  . 

So 

njmiijij   ,1  ,  ,1  ,0  . 

Therefore, the allowable range of (5) belongs to the one 

of (8) and  the allowable range of (8) is not empty set because 

of the existence of the optimal vector of  (5). (end of proof) 

If the optimal vector )( 0
0 ijx   of (5) is determined, the 

power supply range of each substation is determined as 

following. 

MiNjwV iji    },1|{)( 0  

At this time the power supply radius of each substation 

is determined as following. 

MiwVjlL iiji    )},(|max{  

4). The minimizing problem of power loss on the radial 

network.  

The radial network needs that each load point must be 

supplied from only one substation. 

Therefore, the minimizing problem of power loss in 

radial network is one which variable x of (5) needs to be 0-1 

vector . 

Namely, the minimizing problem of power loss in radial 

network is formlized the following  mixed 0-1 linear 

programming. 

http://www.ijcit.com/


International Journal of Computer and Information Technology (ISSN: 2279 – 0764)  

Volume 08 – Issue 01, January 2019 

 

 

www.ijcit.com      32 

 

.max

0
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i

n

j

ijj

m

i

ij

i

n

j

ijij

             (9) 

If ji    ,  are the positive integers in the problem (9), 

i can be also selected as non negative integer, so (9) 

becomes to all integer linear programming. 

In reality, ji    ,  are all the positive integers. 

In reality, a load point can be supplied from the several 

substations because of its speciality. 

The consecutive problem of (9), that is, the following 

problem is the first step one for minimizing the power loss in 

radial network. 

.max

0

  ,1  ,  ,1  ,0

  ,1  ,0

  ,1  ,1

  ,1  ,

1

1

1






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

























njmi

mi

nj

mi

ij

i

n

j

ijj

m

i

ij

i

n

j

ijij

                  (10) 

(10) is the linear programming problem and there must 

be the optimal vector if its allowable range is not empty. 

At this time the optimal vector of (10) can be generally 

expressed as an convex polyhedron. 

 [attention]  Because the rank of the coefficient matrix 

of the linear transport problem is m+n-1, so the rank of the 

coefficient matrix of the first step problem of minimizing 

the power loss on the radial network is not bigger than 

m+n-1. 

Therefore, at the most m-1 load points are supplied from 

the substations of more than 2. 

Let’s S is the set of the optimal vectors of (10) and 

discuss the second step problem of minimizing the power 

loss. 

.max)(  ,)(

1 1

2
,  

 

m

i

n

j

ijijnmij Sx       (11) 

The problem (11) is the secondary concave 

programming one. 

The optimal vector )( 00
ijx  of this problem can 

evenly increase the weighted load and also minimize the cost 

for line moving. 

 

III. THE SOLVING METHOD OF MINIMIZING 

THE POWER LOSS IN RADIAL NETWORK 

In reality, because  the power need quatity is not smaller 

than the power supply capacity which the average loss 

coefficient is considered, we can first selecte an suitable 

positive number (proportion coefficient) which is bigger than 

1 and use the value that multiplies it to power supply ability 

of each substation as the new supply capacity, so that the 

allowing range of (9) exists. 

Therefore, without loss of generality we can suppose 

that the allowing range of  (9) certainly exists. 

Step 1. Sellect the suitable proportion coefficient p and  

renew the supply ability of each substation. 

Step 2. Calculate the optimical point of the moving 

restrict linear programming problem, the continuous one of 

(9) which replaces 10  ij  instead of }1  ,0{ij by 

using the group method. 

Step 3. If the x- optimal vector of consecutive problem is 

0-1 vector, it is the optimal point for minimizing the power 

loss on the radial network. 

Go to step 6. 

If the x- optimal vector  is not 0-1 vector, go to next step. 

Step 4. Discuss the concave quadric programming 

which replace the target function to  

.max)(),(

1 1

2  
 

m

i

n

j

ijijxf   

and find the local extremal vertex by using the group method 

and cutting one. 

Find the valid section linear inequality in order to 

determine the range, the local extreme vertex of which 

becomes to the optical point. 

For about the normal basic system of solutions  

ki
x

d
i

i ,1,
0









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


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







1

1
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k
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x
d , if 1kx is the local   

extreme vertex, the section inequality is 1
2

1




k

i i

i




, where  

ii

ik
i

Ixx

xxf

T

T
1)(

2 
 . 

Sever the allowable range by the valid section inequality 
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and go to next step if the allowable range is empty or go to 

step 2 if its’t empty. 

Step 5. Find the x—part of the  0-1 vector among the 

given local extreme vertexs, then the vector which   has the 

maximum value of them is the optimal point for minimizing 

the power loss. 

Goto step 6. 

Step 6. By using the above optimal vector, calculate the 

power supply capacity i  of each substation and determine 

the transform coefficients iii  / . 

Renew the need capacities of the load points which are 

supplied from the substation i to the values which are 

multiplied the i  to the original need qualities. 

Namely, though the load point j needs j , only ji  

is supplied because of the power loss. 

 

IV. APPLIED EXAMPLES 

[Example 1] We analyzed the reality of  the power 

distribution network in the region A and calculated the 

weighted loads of the substations and  the power loss quantity 

based on the above  model. 

Now the power distribution network of region A 

consists of the 10 substations and 507 load points, and it is a 

radial network. 

The power loss rate of the region A is calculated as table 

1. 

Table 1. Power loss rate of the existing power network 

(power factor=0.88, voltage=3kV) 

substation 
Equivalent 

resistance 

Average 

power  

supply radius 

 (km) 

Power 

loss 

ratio(%) 

1 0.004 6.69 25.7 

2 0.01232 6.94 11.48 

3 0.00415 5.11 19.1 

4 0.00838 8.87 19.6 

5 0.00678 6.06 17.75 

6 0.00206 3.9 15.14 

7 0.00159 5.15 14.71 

8 0.01316 15.9 20.61 

9 0.00334 1.72 13.63 

10 0.0045 8.23 12.21 

 

From the table 1, we can see that the power loss rate of 

the substations 8 and 1 isn’t smaller than 20 and existing 

average loss rate of this region is relatively big as 16.99%. 

Based on the above model, we constructed the radial 

network by separating the power supply range of the 

substations.  

The reault of calculating the power loss rate is shown in 

the table 2. 

Table 2. The power loss ratio of newly constructed 

radial power distribution network (power factor=0.88, 

voltage=3kV) 

subst

ation 

Supply 

capacity 

(kw) 

Average 

power 

Supply range 

(km) 

Power 

loss 

rate(%) 

Weighted 

load 

1 3400 5.35 5.78 0.84 

2 2300 3.54 17.88 0.72 

3 2500 5.34 14.67 0.76 

4 2000 2.71 13.66 0.75 

5 3700 7.86 18.79 0.72 

6 2800 7.59 6.86 0.81 

7 1700 8.2 4.69 0.82 

8 1400 11.38 21.32 0.78 

9 2100 6.62 17.65 0.73 

10 3100 4.68 12.3 0.77 

 

From the table 2, the power loss ratio of new radial 

network is not bigger than 21% and the regional average loss 

ratio is 13.36%, which can decrease the loss ratio 3.33% than 

the existing network. 

And the regional average power supply radius is 6.33km, 

which is shorter about 0.53km than the existing network. 

In this power network the minimum weighted load is 

also 0.73, maximum one is 0.84 and average one is 0.79, so 

this power network can satisfy the need power of the load 

points at more than 79%. 

As the result of calculation, the supply capacity of the 

substations in region A is smaller than the need quantity of 

the load points, so new substations must be constructed and 

we can know that the reasonable power distribution network 

can be constructed so that the ability of substations balances 

with need quantity of load points and eliminate the power 

loss. 

 [Example 2] 

We also analyzed the power distribution network of 

region B. 

We determined the weighted loads of the substations  

and calculated the power loss quantities by using the above 

model and method. 

Now the power distribution network of the region B 

consists of 6 substations and 428 load points and it is the 

radial network. 

Though the power supply radius of the existing network 

is smaller than the one of new method, but some load points 

cannot be supplied the power.( 7% of the load points linked 

to the substation 1,  4% of the ones linked to the substation 4 

and  16.9% of ones linked to the substation 5,etc) 

As the result of calculation, we can see that the 

reasonable power distribution network must be reconstructed 

so that the supply capacity of the substations in region B can 

satisfy the need quantity of load points and  eliminate the 

power loss. 
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Table 3 the power distribution network calculation data 

of the region B (power factor=0.85, voltage=10kV) 

substation 

supply 

capacity 

(kw) 

Supply  

quantity 

(kw) 

Loss 

quantity 

(kw) 

Arriving 

quantity 

(kw) 

1 4250 4189.7 800.58 3389.12 

2 10795 9413.31 804.94 8608.37 

3 11220 9581.57 634.29 8947.28 

4 5610 4936.83 463.19 4473.64 

5 8075 6644.09 204.76 6439.33 

6 8500 6988.13 209.88 6778.25 

 

substation 
Weighted 

load 

Power loss 

ratio 

(%) 

Supply 

radius 

(m) 

 

1 0.797 19.11 3297.18  

2 0.797 8.55 5033.26  

3 0.797 6.62 5122.75  

4 0.797 9.38 4671.96  

5 0.797 3.08 6731.78  

6 0.797 3 5410.98  

In the new network, the average power loss rate is 

8.29%, so we can eliminate more 2% than the existing 

network and  supply enough the power need quantity of 

every load points with the existing supply capacity of 

substations in region B. 

The comparison with the traditional method is shown in 

the table 4. 

Table 4. comparison with the traditional method 

substation 

supply 

capacity 

 (kw) 

Supply  

quantity 

 (kw) 

need   

quantity 

(kw) 

Power 

loss ratio 

(%) 

1 4250 4546.65 4030 12.82 

2 10795 8529.85 7765 9.85 

3 11220 11077.52 10175 8.87 

4 5610 5834.01 5156 13.15 

5 8075 9442.89 8720 8.29 

6 8500 3047.52 2790 9.23 

 

 

substation 

Supply 

radius 

(m) 

deviation 

(kw) 

Load points 

which cannot 

be 

supplied %)  

1 2065.74 296.7 7  

2 2225.54    

3 1789.52    

4 5378.79 224 4  

5 3444.6 1367.9 16.9  

6 1481.74    

Now the average power loss rate of existing power 

distribution network of the region B is 10.36% and the 

power supply capacity can satisfy the need quantity of the 

load points, but every load points cannot be supplied 

enough power because the reasonable power distribution 

network wasn’t constructed. 

 

V. CONCLUSION 

First, We proposed an mathematical model and 

researched the properties which can evenly increase the 

weighted load of the substations and eliminate the power 

loss. 

Second,We researched the calculating method to get the 

optimal solution for minimizing the power loss on the radial 

network. 

Third, We tested the effectiveness of this method in 

several regions. 
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