
International Journal of Computer and Information Technology (ISSN: 2279 – 0764)  

Volume 11 – Issue 4, August 2022 

www.ijcit.com    137 
 

Sorting Real Numbers in Constant Time using 

n2/logcn Processors 
 

 

 Yijie Han         Pruthvi Kasani                            Sai Swathi Kunapuli 
School of Computing and Engineering    School of Computing and Engineering  School of Computing and Engineering 

University of Missouri-Kansas City        University of Missouri-Kansas City    University of Missouri-Kansas City 

Kansas City,MO 64110           Kansas City,MO 64110         Kansas City,MO 64110 

            Email: hanyij [AT] umkc.edu            Email: pruthvikasani [AT] mail.umkc.edu      Email: skmqw [AT] umkc.edu 

 
 

Abstract ---- We study the sorting of real numbers into a linked list 

on the PRAM (Parallel Random-Access Machine) model. We 

show that n real numbers can be sorted into a linked list in 

constant time using n2 processors. Previously n numbers can be 

sorted into a linked list using n2 processors in O(loglogn) time. We 

also study the time processor trade-off for sorting real numbers 

into a linked list on the PRAM (Parallel Random Access Machine) 

model. We show that n real numbers can be sorted into a linked 

list with n2/t processors in O(logt) time. Previously n real numbers 

can be sorted into a linked list using n3 processors in constant time 

and n2 processors in O(loglogn). And then we show that input 

array of n real numbers  can be sorted into linked list in constant 

time using n2/logcn  processors for any positive constant c. We 

believe that further reduction on the number of processors for 

sorting real numbers in constant time will be very difficult if not 

impossible. 

 

Keywords – Constant time sorting, sorting real numbers into a 

linked list, lower bounds for sorting, PRAM (Parallel Random 

Access Machine), EREW, CREW, CRCW. 
 

I.INTRODUCTION 

 

The requirement for parallel algorithms has become critical in 

these days and age. Our algorithm has a series of stages that 

takes many inputs from the input and can execute various 

instructions at the same time, combining all of the separate 

outputs to produce the final result. In this study, we use the 

PRAM (Parallel Random Access Machine) model[14,15] to 

sort n real numbers into a linked list. A Parallel Random Access 

Machine is a model that is used for the design of many parallel 

algorithms. In this model, n processors can conduct 

independent operations on n data sets in a unit of time. This 

may result in many CPU's accessing the same memory cells at 

the same time. This issue is resolved in various ways on the 

PRAM model: On the EREW (Exclusive Read Exclusive Write) 

PRAM[14,15], no two processors are allowed to read from or 

write to the same memory location at the same time, on the 

CREW (Concurrent Read Exclusive Write) PRAM[14,15], 

multiple processors are permitted to read from the same 

memory location at the same time but are not permitted to write 

to the same memory location at the same time, and in the 

CRCW (Concurrent Read  

Concurrent Write) PRAM[14,15], in which multiple processors 

are permitted to read from or write to the same memory 

location at the same time. Since, the CRCW PRAM allows 

multiple processors to read and write simultaneously into a 

memory cell arbitration schemes are used to resolve concurrent 

write conflict. On the Priority CRCW PRAM, the processor 

with the highest priority wins the write on the memory cell 

among the processors writing to the same memory cell. The 

processor's in dex can be used as the priority. On the Arbitrary 

CRCW PRAM, an arbitrary processor is chosen to win the 

write from among the processors to write on the same memory 

cell. On the Common CRCW PRAM, processors write to the 

same memory cell in a step must write the same value, which 

is then written into the memory cell. Priority CRCW PRAM is 

the strongest of the three CRCW PRAM models; Arbitrary 

CRCW PRAM is weaker than Priority CRCW PRAM; and 

Common CRCW PRAM is the weakest of the three. In this 

study, we shall design algorithm on the Common CRCW 

PRAM. Because Common CRCR PRAM is weaker than 

Arbitrary and Priority CRCW PRAM and therefore our 

algorithm also runs on the Arbitrary and Priority CRCW 

PRAM.  

 

Let Tp denote the complexity of a parallel algorithm with p 

processors. Let T1 be the time complexity of the best serial 

algorithm for the same problem. Then pTp ≥  T1. When pTp=T1, 

this parallel algorithm is an optimal parallel algorithm. 

 

When we have a TP time algorithm that uses P processors, we 

can represent or translate the time as TPP/p+TP when we 

employ p processors. 

 

A parallel algorithm for a problem of size n that uses 

polynomial number processors (i.e., nc processors for a 

constant c) and runs in polylog time (i.e., O(logcn) time for a 

constant c) is considered to belong to the NC class[4], where 

NC is Nick's class. 

 

NC algorithms, as well as fast and efficient parallel algorithms, 

are being developed by researchers in the field of parallel 

algorithms. 

 

In this paper, we will study sorting real numbers into a linked 

list in constant time using n2/logcn processors for any large 

http://www.ijcit.com/


International Journal of Computer and Information Technology (ISSN: 2279 – 0764)  

Volume 11 – Issue 4, August 2022 

www.ijcit.com    138 
 

constant c. Further reducing the number of processors seems to 

be very difficult if not impossible. 

 

On the CRCW PRAM with polynomial number of processors, 

it is known that sorting n real values into an array takes at least 

(logn/loglogn) time[2]. If we want to sort them into a padded 

array, we need at least (loglogn) time[5]. There are fast merging 

and sorting algorithms [15] but they do not achieve constant 

time. However, if we arrange them into a linked list, we can 

demonstrate that it is possible to do so in constant time. Thus, 

the lower bounds of (logn/loglogn)[2] and (loglogn)[5] are the 

bottom bounds for arranging integers in an array rather than 

"sorting" them.  

 

There have been previous results for sorting integers into a 

linked list[3, 6]. It is known there that n numbers in the range 

of {0, 1, …, m-1} may be sorted into a linked list in constant 

time using nlogm processors. Parameter n here is not related m. 

Except for our prior results for sorting real numbers into a 

linked list [7, 8, 9, 10], we do not know any other results for 

parallel sorting real numbers into a linked list, nor do we know 

any previous results for sorting real numbers in constant time. 

 

In [7, 8, 9] sorting integers and real numbers into a linked list 

is considered. The best result to sort real numbers into a linked 

list in constant time used n2 processors [8]. Although in [9] the 

number of processors is reduced to less than n2 by using linked 

list contraction [1,12,13] but the time is not constant.  

 

II.SORTING REAL NUMBERS INTO A LINKED LIST 

USING  𝑛2  PROCESSORS IN CONSTANT TIME. 

 
We assume that the n input real numbers are distinct. This 

can be achieved by replacing every real number a by a pair 

 (a, i) where i is the index of the number a in the input array. 

 
Firstly, let us discuss about the algorithm on how to sort the 

real numbers into linked list using constant time using n3 
processors. Let us say, A[0.....n-1] be the input array of n real 
numbers and we have n3 processors to achieve constant time. 

 Assign n processors to each element of the array to compare 
it with the other elements in the array. It will write as 1 for the 
elements that it greater than the given element and 0 for the 
elements if it is less than it. For example, we have the given 
input array elements as 4,2,5,1,6,3,9. Let us pick an element 5 
from the array. As said above, it marks 1 to the elements greater 
than 5 and 0 for the ones lesser than 5. So, the output is 
0,0,0,0,1,0,1. We use the n2 processors to the elements marked 
as 1 and find the smallest number among them (i.e., 6) in 
constant time [16,17] and link it to the element 5. So, here we 
have 6 and 9 out of which 6 is the minimum. So, 6 is linked to 
5. This process is executed in parallel to all the elements in the 
array, and we get the final sorted linked list of elements. This 
algorithm can be done in constant time using n3 processors. 

Now, we let us show the algorithm on sorting the real 
numbers into a linked list using n2 processors in O(loglogn) time 
on the Common CRCW PRAM. This algorithm is like the above 

algorithm where we assign n processors to compare a number 
to the rest of the elements in the array. Now, we need to compute 
the minimum of n numbers using n processors. This can be done 
in O(loglogn) time [16,17]. Let us say A[0....n-1] be the input 
array of n real numbers. As above, the comparison task of 
comparing one element A[i] to other elements takes constant 
time. Now, we need to find the minimum of elements in A that 
are larger than A[i]. Let us say m is the smallest element. Now, 
for each element in A[i] we will copy it into a new array Ai. This 
usually take constant time. We now compare A[i] with every 
element Ai[j] in Ai. If A[i] ≥ Ai[j] then we will do Ai[j] =MIN. 
Then we will find the smallest element Ai[k] in Ai. This takes 
constant time using n1+e processors (or O(loglogn) time with n 
processors) for Ai [16,17]. For all i=0, 1… n-1, this takes 

constant time with n2+ processors (or O(loglogn) time with n2 
processors). Ai[k] is the smallest element larger than A[i]. Thus, 
we can make a link from A[k] to A [i].  

Now we show our new algorithm which allows to sort n real 
numbers into a linked list in constant time with n2 processors. 

We divide the input numbers into √𝑛  groups. So, now each 

group has  √𝑛 numbers. Assign n3/2 processors for each group. 

So now the total number of processors to do this will be √𝑛 x 
n3/2 processors which is n2 processors. We already know that 

building a sorted linked list with n3/2 processors of √𝑛 numbers 

take constant time. Now we have  √𝑛 groups with sorted linked 

lists. Since we have √𝑛   groups there will be O(n) pairs of 
groups in total. Let us assign n processors for every pair of 
groups. So, we require n processors x O(n) pairs which is O(n2) 
processors total. So, for every number in the group, we can use 

√𝑛 processors. So, we require n processors for each group. Now, 
let us say we have a number A in Group 1. It finds the smallest 
number B larger than it in Group 2 by comparing with every 
number in group 2 and using the sorted linked list already built 
for group 2. This process is repeated for all the pairs of groups 

like Group 1, Group 3 and Group 1, Group 4 etc. We find √𝑛 −
1 smallest numbers larger than A. In general, if we do it in 

parallel each number find √𝑛 − 1 smallest numbers larger than 
it. Each number then uses n processors to find the minimum 

among these √𝑛 − 1 smallest numbers in constant time [16,17]. 
So, in total the proposed algorithm uses n2 processors to sort the 
n real numbers in a linked list in constant time. 

 

Theorem 1. n real numbers can be sorted into a linked list in 
constant time using n2 processors on the Common CRCW 
PRAM. 

 

Finally, let us discuss about the algorithm which is used to sort 

the real numbers in the linked list using less then n2 processors. 

Divide n numbers into n/t groups with t numbers in each group. 

First sort the t numbers in each group into a linked list in 

constant time using (n/t)t2 processors. Now for about every m 

nodes (between m and 2m nodes), we build a supernode. 

Initially we have n/t linked lists. Each linked list has t nodes. 

Combine about every consecutive m nodes to form a supernode. 

We have t nodes in linked list so we have O(t/m) super nodes. 

This can be down in O(n/p+log(c)nlogt) time [1,8,9], where 

http://www.ijcit.com/


International Journal of Computer and Information Technology (ISSN: 2279 – 0764)  

Volume 11 – Issue 4, August 2022 

www.ijcit.com    139 
 

log(1)n=logn and log(c)n=loglog(c-1)n. The t/m supernodes for 

each sorted link of t nodes forms a sorted supernode linked list. 

Two supernode sorted linked lists with t/m nodes each can be 

merged into one lined list in constant time using (t/m)2 

processors. Let us say supernode s in one supernode linked list 

is to be inserted between supernode s1 and supernode s2 of the 

other supernode linked list. Then s uses O(m) processors to 

compare it with every nodes in s1 and s2 to find the exact 

position it needs to be inserted. Now merge every pair of about 

m nodes using m2 processors in constant time. 

 
Finally, let us discuss about the algorithm which is used to 

sort the real numbers in the linked list using less then n2 
processors. Divide n numbers into n/t groups with t numbers in 
each group. First sort the t numbers in each group into a linked 
list in constant time using (n/t)t2 processors. Now for about 
every m nodes (between m and 2m nodes), we build a supernode. 
Initially we have n/t linked lists. Each linked list has t nodes. 
Combine about every consecutive m nodes to form a supernode. 
We have t nodes in linked list so we have O(t/m) super nodes. 
This can be down in O(n/p+log(c)nlogt) time [1,8,9], where 
log(1)n=logn and log(c)n=loglog(c-1)n. The t/m supernodes for 
each sorted link of t nodes forms a sorted supernode linked list. 
Two supernode sorted linked lists with t/m nodes each can be 
merged into one lined list in constant time using (t/m)2 
processors. Let us say supernode s in one supernode linked list 
is to be inserted between supernode s1 and supernode s2 of the 
other supernode linked list. Then s uses O(m) processors to 
compare it with every nodes in s1 and s2 to find the exact position 
it needs to be inserted. Now merge every pair of about m nodes 
using m2 processors in constant time. 

Therefore there are (n/t)2 pairs of linked lists. For every pair, 
we use (t/m)2 processors to merge supernode linked lists. So, we 
use (n/m)2 processors for merging the supernodes. For each 
supernode s we used nm/t processors (m processors for each of 
the n/t pairs) for comparing it with the nodes in other supernodes. 
Because we have n/m supernodes, therefore the process used is 
n^2/t processors. For merging the m nodes in one supernode list 
with m nodes in other supernosdes list we used 
(n/t)2(t/m)m=(n/m)(n/t)m=n2/t  processors and logm time. If we 
let m2=t then we used n2/t processors and logt time. 

      The two extremes are t=1 which we use n2 processors 
and sort real numbers into a linked list in constant time and when 
t=n where we use n processors and sort real numbers into a 
linked list in logn time.  

Theorem 2: n real numbers can be sorted into a linked list in 
O(logt) time with n2/t processors, where t can range from 1 to n. 

1.Prepare for Sorting Real Numbers into a Linked List Using 

n2/logcn Processors. 

 

A parallel algorithm for sorting n input real numbers into a 

linked list in constant time is described. This algorithm works 

by grouping input real numbers, let us say, splitting A[0…n-1] 

real numbers into 𝑛/√log 𝑛  groups. We enumerate all 

permutations of the √log 𝑛  numbers in every group. Among 

all these √log 𝑛!  permutations there is only one permutation in 

which these √log 𝑛 numbers are in sorted order (assuming that 

all input numbers are different). For each permutation of the 

numbers in a group we use √log 𝑛 processor 

 (one processor for each number) and therefore we used  

√log 𝑛! *√log 𝑛 processors for each group and for the n input 

real numbers we used (n/√log 𝑛) ∗ √log 𝑛! *√log 𝑛 =𝑛√log 𝑛! 

processors. For each group the permutation with the sorted 

order of numbers is selected in constant time by verifying the 

√log 𝑛 numbers are in sorted order using √log 𝑛 processors. 

This is how internal sorting is carried out. 

 

To continue the sorting process, each element e in a group G is 

compared to the elements in the next group Gi, 0 ≤ i < √log 𝑛, 

and fitted in a suitable position by determining its rank in Gi. 

This is done by using √log 𝑛 processors to compare it to every 

number in the (sorted) group G1.  e then enumerates 

(1 + √log 𝑛)√log 𝑛  possibilities using √log 𝑛  base √log 𝑛 

digits. There are (1 + √log 𝑛)√log 𝑛  patterns in these digits. 

The pattern 𝑎0𝑎1 … 𝑎√𝑛−1  denotes that e has rank 𝑎𝑖  in Gi. 

Associated with pattern 𝑎0𝑎1 … 𝑎√𝑛−1  is the pre-computed 

value 𝑎0+𝑎1 + ⋯ 𝑎√𝑛−1 which is the rank of e in 

𝐺0𝐺1…𝐺√log 𝑛−1 . For each permutation e then uses 

√log 𝑛 processors with the i-th processor pi to verify whether 

the rank of e in group Gi is ai. If the rank is not ai then pi will 

cancel this permutation by (concurrent) write to a predefined 

memory cell for this permutation. Thus only one permutation 

is not cancelled and the rank precomputed for this permutation 

is fetched. This determines the rank of e in 

𝐺0𝐺1…𝐺√log 𝑛−1 . e used (1 + √log 𝑛)√log 𝑛 ∗ √log 𝑛 

processors. Thus for n real numbers the total number of 

processors used is 𝑛 ∗ (1 + √log 𝑛)√log 𝑛 ∗ √log 𝑛 . The time 

complexity is constant time. 

 

In the next step we again combine √log 𝑛  groups into one 

group. This time we have, for each number e, (1 + log 𝑛)√log 𝑛 

patterns because the rank of e in each group of log 𝑛 numbers 

can be from 0 to log 𝑛. Thus we will use 𝑛 ∗ (1 + log 𝑛)√log 𝑛 ∗
log 𝑛 processors.  

 

For a positive integer c we will run the above process 2c times. 

Thus we will use O(c) steps and use 𝑛 ∗ (1 + (log 𝑛)𝑐)√log 𝑛 ∗
(log 𝑛)𝑐 processors. We have sorted (log 𝑛)𝑐 numbers in each 

of the 𝑛 (log 𝑛)𝑐⁄  groups. 

 

 

EXAMPLE: 

Let us now demonstrate our above approach using different 

numbers as an example. Assume A[0,...,n-1] is the input array 

of  n real values. Using  𝑛 ∗ (1 + log 𝑛)√log 𝑛 ∗ log 𝑛 

processors, we achieve this in constant time. For example, 

http://www.ijcit.com/


International Journal of Computer and Information Technology (ISSN: 2279 – 0764)  

Volume 11 – Issue 4, August 2022 

www.ijcit.com    140 
 

consider an input array of 2,3,8,6,12,19,5,4,1,0,9,7,10,18,16,13 

where n=16. 

In stage one of the process, we divide into groups depending 

on √log 𝑛 . When we solve, we get √log 16 =2, which 

represents two processors for each group. Following the 

procedure, we divided numbers into 8 groups with 2 numbers 

in one group, as indicated in 

[2,3],[8,6],[12,19],[5,4],[1,0],[9,7],[10,18],[16,13]. Each group 

is solved by determining the proper order from the all potential 

√log 𝑛! (For our example, 2!=2.) permutations. Thus the first 

group will have two permutations: 2, 3, and 3, 2 and it 

determined that 2. 3 is in sorted order. The second group will 

have two permutations: 8, 6 and 6, 8 and it determined that 6, 

8 is in the sorted order. And so on. Thus for each group we used 

4 processors and the total number of processors used is 

16/2*4=32. The time is constant. After this stage we get 

[2,3],[6,8],[12,19],[4,5],[0,1],[7,9],[10,18], [13,16].  

 

As we move on to stage II of the process, after we have 

completed internal group sorting, we will combine √log 𝑛=2 

groups into one group. To combine [2,3] and [6,8] into one 

group each of the 2, 3, 6, 8 will use 4 processors to determine 

its rank in each group. For example, 3 will use 4 processors, 

use 2 processors to determine its rank in [2,3] as 1 and use 2 

processors to determine its rank in [6,8] as 0. Then for each 

number we form (√log 𝑛 + 1)√log 𝑛 = 32 = 9  permutations:  

p0=00, p1=01, p2=02, p3=10, p4=11, p5=12, p6=20, p7=21, p8=22 

and use (√log 𝑛 + 1)√log 𝑛√log 𝑛 =9*2=18 processors, two 

processors for each permutation. Thus 3 use 2 processors to 

check p0 and finds that p0 is incorrect as it indicates that 3 has 

rank 1 in [2,3] and rank 0 in [6,8]. Thus p0 will be taken out of 

consideration (crossed out). The only permutation that is not 

crossed out is p3=10 as it indicates that 3 has rank 1 in [2,3] and 

rank 0 in [6,8]. Thus 3 picks the pre-computed rank of 0+1=1 

for p3. Thus at the end of this stage we got 

[2,3,6,8],[4,5,12,19],[0,1,7,9],[10,13,16,18]. 

 

.  

1. Sorting Real Numbers into a Linked List with n2/logcn 

processors. 

 

For a given total number of “n” inputs, dividing them into 
𝑛

(log 𝑛)𝑐⁄  groups with (log 𝑛 )𝑐  numbers in each group. As 

described in the Section 3 we use 𝑛 ∗ (1 + (log 𝑛)𝑐)√log 𝑛 ∗
(log 𝑛)𝑐 processors to sorted (log 𝑛)𝑐 numbers in each of the 
𝑛

(log 𝑛)𝑐⁄  groups in constant time. 

 

For each group of sorted (log 𝑛)𝑐  numbers we sample every 

(log 𝑛)𝑑 -th number (with 0 <d< c) and thus we sampled 

(log 𝑛)𝑐−𝑑  numbers from each group and among the n input 

numbers we sampled n/(log 𝑛)𝑑 numbers. 

 

We now sort these n/(log 𝑛)𝑑 numbers into a sorted linked list 

in constant time using (n/ (log 𝑛)𝑑)2  processors using the 

algorithm we described earlier . 

 

Now for each number a we use n/(log 𝑛)𝑑  processors to 

compare it to all the numbers on the sorted linked list and finds: 

the largest number smaller than a and l: the smallest number 

larger than a among numbers in the sorted linked list. Because 

numbers in the linked list are sorted and therefore s and l can 

be found in constant time. s and l are neighboring elements on 

the sorted linked list. 

 

Now between two neighboring elements s and l on the sorted 

linked list there can be at-most n/ (log 𝑛)𝑑  numbers fell in 

between. This is because for each group of sorted (log 𝑛)𝑐 

numbers there can be at most (log 𝑛)𝑑 numbers fell between s 

and l. For otherwise if more than (log 𝑛)𝑑  numbers fell in 

between s and l then there is at least sampled number fell in 

between s and l because we sampled every (log 𝑛)𝑑-th number 

from these (log 𝑛)𝑐 numbers. But between s and l there is no 

another sampled number.  

Thus there are at most n/(log 𝑛)𝑑 numbers fell in between s and 

l. 

 

Now for all numbers fell in between s and l we sort them into a 

linked list. We use n/(log 𝑛)𝑑 processor for each number (thus 

we used a total of 𝑛2 /(log 𝑛)𝑑 processors). Because there no 

more than n/(log 𝑛)𝑑 numbers between s and l and therefore 

we have at least m2 processors for the m numbers between s 

and l. Thus we can sort the numbers between s and l into a 

sorted linked list in constant time use the algorithm we 

described earlier . 

 

After the numbers in each interval between s and l are sorted 

into a linked list we can connects these linked lists into one 

sorted linked list.  

 

Because c is an arbitrarily large constant and d < c thus d can 

be an arbitrarily large constant. Thus we have: 

We have been able to optimize the existing algorithms with less 

number processors and time. Earlier, we showed algorithms 

like sorting of n real numbers into a linked list in constant time 

using n3 processors and sorting of n real numbers into a linked 

list in O(loglogn) time using n2 processors. Here we improved 

them to: 

 

Theorem 3: n real numbers can be sorted into a linked list in 

constant time with  n2/logcn processors on the COMMON 

CRCW PRAM 

      CONCLUSION 

 
We discussed about sorting n real numbers into a linked list 

using o(n2) processors in constant time. We have followed the 
approach to assign the processors by dividing the given input 
into groups. The approaches of solving correct order from 

http://www.ijcit.com/


International Journal of Computer and Information Technology (ISSN: 2279 – 0764)  

Volume 11 – Issue 4, August 2022 

www.ijcit.com    141 
 

potential permutations and finding rank made algorithm work 
efficiently to sort the given input of array.  

Currently we do not know how to reduce the number of 
processors further to reach constant time for sorting real 
numbers into a linked list. The problem is that after we sorted 
real numbers into a linked list we cannot sample every k-th 
number in constant time because sorted numbers are on linked 
list and not in an array.  

 

REFERENCES 

 

1. R. Anderson, G. Miller. Deterministic parallel list ranking. 

Algorithmic, Vol. 6, 859-868(1991). 

 

2. P. Beame, J. Hastad. Optimal bounds for decision problems 

on the CRCW PRAM. Proc. 1987 ACM Symp. On Theory of 

Computing (STOC’1987), 83-93(1987). 

 

3. P.C.P. Bhatt, K. Diks, T. Hagerup, V.C. Prasad, T. Radzik, 

S. Saxena. Improved deterministic parallel integer sorting. 

Information and Computation, 94, 29-47(1991). 

 

4. S. A. Cook. Towards a Complexity Theory of Synchronous 

Parallel Computation. L’ Enseignement  Mathématique, 27, 

99-124(1981). 

 

5. T. Goldberg, U. Zwick. Optimal deterministic approximate 

parallel prefix sums and their applications. Proc. 3rd. Israel 

Symp. On Theory and Computing Systems, 220-228(1995). 

 

6. T. Hagerup. Towards optimal parallel bucket sorting. 

Information and Computation. 75, 39-51(1987). 

 

7. Y. Han, N. Goyal, H. Koganti. Sort Integers into a Linked 

List. Computer and Information Science. Vol. 13, No.1, 51-

57(2020). 

 

8. Y. Han, P. Kasani. Sorting real numbers into a linked list on 

the PRAM model. {\it Proceedings of the 2021 Int. Conf. on 

Life Sciences, Engineering and Technology}. 45-49(2021). 

 

9. Y. Han, P. Kasani. Time processor trade-off for sorting real 

numbers into a linked list. Proc. International Conference on 

Computation Structures and Algorithms. 40-44(2021). 

 

10. Y. Han, T. Sreevalli. Parallel merging and sorting on linked 

list. International Journal of Computer and Information 

Technology (IJCIT). Vol. 10, No. 2, (March 2021), to appear. 

 

11. Y. Han. Uniform linked list contraction. Paper 2002.05034 

in arXiv.org.  

 

12.Y. Han. Matching partition a linked list and its optimization. 

Proc. 1989 ACM Symposium on Parallel Algorithms and 

Architectures (SPAA'89), 246-253 (June 1989). 

 

13.Y. Han. Parallel algorithms for computing linked list prefix. 

Journal of Parallel and Distributed Computing 6, 537-

557(1989). 

 

14.J.J´aJ´a. An Introduction to Parallel Algorithms. Addison 

Wesley, Reading, MA, 1992. 

 

15.R. M. Karp, V. Ramachandran, Parallel algorithms for 

shared-memory machines.  In Handbook of Theoretical 

Computer Science (Vol. A): Algorithms and Complexity, J. 

van Leeuwen, Ed., New York, NY: Elsevier, 869-941(1991).  

 

16.C. P. Kruskal. Searching, merging, and sorting in parallel 

computation. IEEE Trans. Comput., C-32, 942-946(1983). 

 
17. L. G. Valiant. Parallelism in comparison problems. SIAM J. 
on Computing, Vol. 4. No. 3, 348-355(1975). 

 

 

http://www.ijcit.com/

