
International Journal of Computer and Information Technology (ISSN: 2279 – 0764)  

Volume 12– Issue 01, March 2023 

 

www.ijcit.com    8 
 

Comparative Analysis on the Evaluation of the 

Complexity of C, C++, Java, PHP and Python 

Programming Languages based on Halstead Software 

Science 

Kevin Agina Onyango 

Department of Information Technology 

Murang’a University of Technology 

Nairobi, Kenya 

Email: konyango [AT] mut.ac.ke 

Geoffrey Wambugu Mariga 

Department of Information Technology 

Murang’a University of Technology 

Nairobi, Kenya 

Email: gmariga [AT] mut.ac.ke

 

 

Abstract— Quality plays center stage in any software 

development industry. Software metrics have proven over time as 

the best measure to be used to assess and assure the software 

developers of the quality of their products. Halstead software 

science is an essential technique for measuring software 

complexity at the source code.  In this study, we present a 

comparative study using this technique to help the developer by 

evaluating the code complexity by considering the structural 

composition of a programming language. In this study, an 

experiment was done using Halstead metrics to evaluate the 

complexity of PHP, C++, Java, C and Python programming 

languages. This study demonstrate that Halstead gives a better 

approach in evaluating the level of complexity of programming 

languages at source code level. The results showed that C++ and 

Java are the most complex programming languages while Python 

was the least complex warranting less of the programmer's time 

and effort when developing a similar project. These findings can 

be used by the software developers to make decisions on the 

programming language to adopt when they want to come up with 

less complex software of high quality. In the future, the 

researchers will advance the study to incorporate other software 

paradigms and also modify the technique to capture also inter 

and intra-modular structural complexity of the various 

programming languages.  

 

Keywords; Code Complexity, Complexity Evaluation, Halstead 

Software Science, Programming Language 

I.  INTRODUCTION  

Software complexity explains how complex the 

components of systems are by defining how a particular set of 

features of the systems interrelate. For instance, the higher the 

interaction of these features, the higher the complexity 

meaning that the system will be complicated making it 

difficult to test, modify, maintain and understand [1, 2]. 

The planning, design, implementation, and testing phases of 

the software development process are all interconnected. The 

software industry relies on measuring the complexity of 

various software phases to produce efficient and reliable 

software programs. 

The difficulty of assessing software complexity has 

been embraced strongly by the software developers [3]. The 

amount of computing work required to develop, maintain, and 

execute software code can thus be defined as software 

complexity [4]. McCabes Cyclomatic Complexity metric and 

Halstead Software science are the popular techniques for the 

evaluation of software code complexity [5,6,4]. McCabes 

Cyclomatic Complexity gives the static analysis of code 

complexity by considering the linearly independent paths in a 

control flow graph, while Halstead measures considers the 

complexity of a program in terms of the interconnections of 

operands and operators [7,8]. This study tries to come up with 

a comparative study to show code complexity can be 

evaluated using Halstead software science to measure the 

complexity of various programming languages to give 

programmers a better direction on the type of programming 

language to choose when developing their projects. 

Maurice Howard Halstead as explained in [9] created 

Halstead complexity measures, which are software 

measurements considering a programming language at an 

algorithmic level to be composed of only operands and 

operators. Halstead's aimed at identifying these operands and 

operators are the main measurable features that contributes to 

the complexity of a programming language. This technique 

has been widely adopted since it is simple to compute and 

come with better support tools [10, 11].  

The rest of this paper is organized as follows: related works 

are discussed in section 2, section 3 describes the materials 

used and the experimental procedure used in this study, 

section 4 summarizes the study findings, a discussion of the 

experimental findings are presented in section 5 of this 

document while conclusions, recommendations and future 

scope of the study are presented in section 6.  

http://www.ijcit.com/


 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)  

Volume XX– Issue XX, XXXXXXXX 201X 

 

www.ijcit.com    9 
 

 

II. RELATED WORKS 

Today the idea of software code evaluation has attracted 

attention in the software industries. One of the popular 

techniques being used for software code evaluation process is 

Halstead software science. Several studies have been done to 

evaluate the complexity of different programming languages 

using the Halstead software science.  

Abdulkareem & Abboud in 20221 [8] conducted an 

experiment that used Halstead metrics to measure the 

complexity of function and branching structures in Java, 

Python, C++, and Javascript programming languages. The 

results demonstrated that Java has the highest effort 

requirement, difficulty, program length, estimated length, truth 

program length, volume, and program time while python has 

the least effort requirement.   

The complexity of a program that checks palindromes in 

five different languages namely; C, C++, PHP, JAVA, and 

Python, was measured using Halstead metrics. The results of 

the study were as follows in descending order: Difficulty: 

Java, C++, C, PHP, Python.  Effort: Java, C++, C, PHP, 

Python. Time: Java, C++, C, PHP, Python. Bugs delivered: 

C++, Java, C, PHP, Python as seen in Govil in his work in 

2020 [12].  
A study was done using Halstead metrics to measure the 

complexity level of a C++ and a Python program. The study 
focused on nested while… and for… loops. The results 
demonstrated that C++ is more complex than python in effort 
required, the number of bugs expected, and time requirements 
[13]. 

III.  METHODOLOGY 

A. Introduction  

This comparative study follows a repeat study 

methodology. The study is a repeat study of Govil’s work 

[12], who did a study to evaluate the complexity levels in five 

different languages namely; JAVA, C++, PHP, C, and Python, 

which was measured using Halstead metrics. Therefore, the 

materials and methods including the datasets and technique 

used for this study are mapped to the study being repeated and 

the comparative results presented. As shown in the subsequent 

sub-sections, the detailed explanation of the technique used 

and the nature of the experiment done gives a “blueprint” of 

the study and sufficient information for future repeat studies to 

be conducted from this study. 

 

B. Research Design 

This comparative study adopted an experimental design 

following the quantitate approach, where the technique used, 

that is, Halstead Software Science was used during the 

experiment to evaluate the code complexity of five different 

programming languages viz; C, C++, PHP, JAVA, and 

Python. The complexity results of these five programming 

languages are expressed in the figure – quantitative approach 

presented in four base metrics and nine derived metrics of the 

Halstead Software Science as elaborated in the subsequent 

sub-sections. 

 

C. The Technique Used 

To achieve the aim of the study, a comparative study was 

done using Halstead Software Science as it was considered the 

best metric for the implementation since it defines outstanding 

features that can easily be measured in a programming 

language. It is also being a software metric that reflects the 

implementation of algorithms in different programming 

languages and it is capable of measuring the complexity of a 

program code efficiently with better support tools.  

Halstead Software Science follows a mathematical 

formulation that is used to compute software metrics, this 

technique computes software complexity of programming 

languages in two-level viz four base metrics and nine derived 

metrics. 

 

Halstead Software Science  

Ƞ1= number of (distinct) unique operators 

Ƞ2= number of (distinct) unique operands 

Ν1=total number of operators 

Ν2=total number of operands 

 

All the nine (9) Derived Halstead metrics are computed from 

the above base measures as shown in the equations below: 

 

Program Vocabulary (Ƞ) = sum of (distinct) unique operands 

and (distinct) unique operators 

Ƞ= Ƞ1 + Ƞ2     (1) 

 

Length of a program (N)= Sum of the total number of 

operands and the total number of operators 

N= Ν1 + Ν2     (2) 

 

Estimated Length Ǹ = Ƞ1 log2 (Ƞ1) + Ƞ2 log2 (Ƞ2) (3) 

 

Truth Length =      (4) 

 

Program Volume (V)= (N1+N2) log2 (Ƞ1+ Ƞ2) or V= N log2 

(Ƞ)      (5) 

 

 

 

Program Difficulty (D)= Number of unique operators and total 

usage of operands. 

 

D== ( ) *(  )     (6) 

 

Program Effort (E)= This is the effort required in 

implementing or understanding the program. It is directly 

proportional to difficulty and volume. 

E= D*V      (7) 

 

http://www.ijcit.com/


 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)  

Volume XX– Issue XX, XXXXXXXX 201X 

 

www.ijcit.com    10 
 

 

Number of bugs (B)= calculating the flaws available in a 

program 

B =      (8) 

 

Program Time (T)= it is the time required to code the 

program. Time is directly proportional to effort. 

T =      (9) 

 

D. Dataset Used and Complexity Computation Experiment 

This study is a repeat study on the use of Halstead Software 

Science to evaluate and compare the results of the complexity 

level of codes written in C, C++, Java, PhP and Python 

programming languages [12]. The datasets (program codes) 

used in this study are a program to check whether a number is 

a Palindrome or not in these five different programming 

languages (C, C++, Java, PHP, and python). 

 

Scenario 1: Program to check Palindrome in C Programming 

Language 

 

Figure 1. Program to check Palindrome in C Programming Language 

 

The first scenario shown in Figure 1 is a code to check 

Palindrome in C Programming Language. The computation of 

Halstead Software Science base metrics results is shown in 

Table 1. 

 
TABLE 1.  HALSTEAD’S BASE METRICS FOR C PROGRAMMING 

LANGUAGE 

Operators Frequency Operands Frequency 

{} 2 int 2 

= 5 main () 1 

= = 1 n 5 

; 10 reverse_num 4 

while () 1 0 3 

% 1 remainder 3 

%d 3 original_num 5 

/ 1 printf () 3 

* 1 scanf () 1 

%n 1 10 3 

: 1 n2=10 N2=30 

! 1   

+ 1   

. 3   

else 1   

return 1   

, 6   

# 1   

include< > 1   

if () 1   

“ ” 4   

n1=21 N1=47   

 

http://www.ijcit.com/


 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)  

Volume XX– Issue XX, XXXXXXXX 201X 

 

www.ijcit.com    11 
 

 

Now the base metrics are used to compute the nine derived 

metrics, 

Program Vocabulary (Ƞ) = Ƞ1 + Ƞ2 

   = 21+10 

   = 31 

 

Length of a program (N) = Ν1 + Ν2 

   = 47 +30 

   = 77 

 

Estimated Length Ǹ = Ƞ1 log2 (Ƞ1) + Ƞ2 log2 (Ƞ2) 

   = 21 log2(21) +10 log2(10) 

   =92.24 + 33.22 

   = 125.46 

Truth Length =  

  = 125.46/77 

  = 1.63 

 

Program Volume (V)= (N1+N2) log2 (Ƞ1+ Ƞ2) or V= N log2 

(Ƞ) 

   = 77 log2 (31) 

   = 381.47 

 

Program Difficulty (D)= ( ) *(  )   

   = (21/ 2) * (30/10) 

   = 10.2 * 3 

   = 30.6 

 

Program Effort (E) = D*V 

   = 30.6*381.47 

   = 11,672.982 

 

Number of bugs (B)  =   

    = 381.47/ 3000 

   = 0.127 

 

Program Time (T)  =  

   = 11,672.982/18 

   = 648.488 sec.  

 

The second scenario shown in Figure 2 represents the same 

program scenario of checking Palindrome but now the 

implementation is done using C++ Programming Language. 

The computation of Halstead Software Science base metrics 

was done and the results are shown in Table 2. 

 

 

 

 

 

 

 

 

 

Scenario 2: Program to check Palindrome in C++ 

Programming Language  

 

 

 
 

Figure 2: Program to check Palindrome in C++ Programming Language 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.ijcit.com/


 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)  

Volume XX– Issue XX, XXXXXXXX 201X 

 

www.ijcit.com    12 
 

 

TABLE 2.  HALSTEAD’S BASE METRICS FOR C++ PROGRAMMING 

LANGUAGE 

 

 Now the base metrics are used to compute the nine derived 

metrics, 

Program Vocabulary (Ƞ) = Ƞ1 + Ƞ2 

   = 23+11 

   = 34 

 

Length of a program (N) = Ν1 + Ν2 

   = 53 +33 

   = 86 

 

Estimated Length Ǹ = Ƞ1 log2 (Ƞ1) + Ƞ2 log2 (Ƞ2) 

   = 23 log2(23) +11 log2(11) 

   =104.052 + 38.054 

   = 142.106 

 

Truth Length =  

  = 142.106/86 

  = 1.6524 

 

 

Program Volume (V)= (N1+N2) log2 (Ƞ1+ Ƞ2) or V= N log2 

(Ƞ) 

   = 86 log2 (34) 

   = 437.5218 

 

Program Difficulty (D)= ( ) *(  )   

   = (23/ 2) * (33/11) 

   = 11.5 * 3 

   = 34.5 

 

Program Effort (E) = D*V 

   = 34.5*437.5218 

   = 15,094.5021 

 

Number of bugs (B)  =   

    = 437.5218/ 3000 

   = 0.1458 

 

Program Time (T)  =  

   = 15,094.5021/18 

   = 838.58 sec.  

 

The third scenario shown in Figure 3 represents the same 

program scenario of checking Palindrome but now the 

implementation is done using JAVA Programming Language. 

The computation of Halstead Software Science base metrics 

was done and the results are shown in Table 3. 

 

 

Operators Frequency Operands Frequency 

{ } 2 Int 2 

= 6 main ( ) 1 

= = 1 N 3 

; 12 Num 7 

while ( ) 1 digit 3 

% 1 reverse 5 

/ 1 0 3 

* 1 count 4 

+ 1 Cin 1 

! 1 10 3 

: 2 Endl 1 

. 3 n2=11 N2=33 

else 1   

return 1   

, 3   

# 1   

include < > 1   

if ( ) 1   

“ ” 4   

do 1   

<< 6   

>> 1   

( ) 1   

n1= 23 N1=53   

http://www.ijcit.com/


 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)  

Volume XX– Issue XX, XXXXXXXX 201X 

 

www.ijcit.com    13 
 

 

Scenario 3: Program to check Palindrome in JAVA 

Programming Language  

 

 
 

 
Figure3.  Program to check Palindrome in JAVA Programming Language 

 

 
 

 

 

 

 

 

 

TABLE 3.  HALSTEAD’S BASE METRICS FOR JAVA PROGRAMMING 

LANGUAGE 

 
Operators Frequency Operands Frequency 

{} 3 main ( ) 1 

[ ] 1 String 1 

= 7 Int 1 

while ( ) 1 Num 5 

else 1 reversedNum 4 

if ( ) 1 Remainder 3 

= = 1 originalNum 5 

+ 3 0 2 

% 1 10 2 

/ 1 171 1 

! 1 n2=10 N2=25 

“ ” 2   

. 6   

; 7   

* 1   

, 3   

void 1   

public 2   

static 1   

class 1   

System 2   

out 2   

Args 1   

println ( ) 2   

n1=24 N1=52   

 

 

Now the base metrics are used to compute the nine derived 

metrics, 

 

Program Vocabulary (Ƞ) = Ƞ1 + Ƞ2 

   = 24+10 

   = 34 

 

http://www.ijcit.com/


 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)  

Volume XX– Issue XX, XXXXXXXX 201X 

 

www.ijcit.com    14 
 

 

Length of a program (N) = Ν1 + Ν2 

   = 52 + 25 

   = 77 

 

Estimated Length Ǹ = Ƞ1 log2 (Ƞ1) + Ƞ2 log2 (Ƞ2) 

   = 24 log2(24) +10 log2(10) 

   =110.039 + 33.219 

   = 143.258 

 

Truth Length =  

  = 143.258/77 

  = 1.86 

 

Program Volume (V)= (N1+N2) log2 (Ƞ1+ Ƞ2) or V= N log2 

(Ƞ) 

   = 77 log2 (34) 

   = 391.7346 

 

Program Difficulty (D)= ( ) *(  )   

   = (24/ 2) * (25/10) 

   = 12 * 2.5 

   = 30 

 

Program Effort (E) = D*V 

   = 30*391.7346 

   = 11,752.038 

 

Number of bugs (B)  =   

    = 391.7346/ 3000 

   = 0.1306 

 

Program Time (T)  =  

   = 11,752.038/18 

   = 652.891 sec.  

 
The fourth scenario shown in Figure 4 represents the same 

program scenario of checking Palindrome implemented using 

PHP Programming Language. The computation of Halstead 

Software Science base metrics was done and the results are 

shown in Table 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scenario 4: Program to check Palindrome in PHP 

Programming Language 

 

 

 

Figure 4.  Program to check Palindrome in PHP Programming Language 

 

 

 

 

 

http://www.ijcit.com/


 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)  

Volume XX– Issue XX, XXXXXXXX 201X 

 

www.ijcit.com    15 
 

 

 

TABLE 4.  HALSTEAD’S BASE METRICS FOR PHP PROGRAMMING 

LANGUAGE 

 

 

Operators Frequency Operands Frequency 

< 1 $number 3 

> 1 function 1 

? 2 php 1 

{ } 6 $temp 5 

( ) 3 $new 4 

= 6 0 2 

= = 1 floor 1 

% 1 $d 2 

* 1 1 1 

+ 1 10 3 

return 2 171 1 

while ( ) 1 $original 2 

if ( ) 2 n2=12 N2=26 

else 2   

echo 2   

“ ” 2   

; 10   

n1=17 N1=44   

 

Now the base metrics are used to compute the nine derived 

metrics, 

Program Vocabulary (Ƞ) = Ƞ1 + Ƞ2 

   = 17+12 

   = 29 

 

Length of a program (N) = Ν1 + Ν2 

   = 44 + 26 

   = 70 

 

 

 

 

Estimated Length Ǹ = Ƞ1 log2 (Ƞ1) + Ƞ2 log2 (Ƞ2) 

   = 17 log2(17) +12 log2(12) 

   =69.275 + 43.02 

   = 112.295 

 

Truth Length =  

  = 112.295/70 

  = 1.6042 

 

Program Volume (V)= (N1+N2) log2 (Ƞ1+ Ƞ2) or V= N log2 

(Ƞ) 

   = 70 log2 (29) 

   = 340.059 

 

Program Difficulty (D)= ( ) *(  )   

   = (17/ 2) * (26/12) 

   = 8.5 * 2.1667 

   = 18.417 

 

Program Effort (E) = D*V 

   = 18.417*340.059 

   = 6,262.877 

 

Number of bugs (B)  =   

    = 340.059/ 3000 

   = 0.1134 

 

Program Time (T)  =  

   = 6262.877/18 

   = 347.938 sec.  

 
The fifth scenario shown in Figure 5 represents the same 

program scenario of checking Palindrome implemented using 

PHP Programming Language. The computation of Halstead 

Software Science base metrics was done and the results are 

shown in Table 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.ijcit.com/


 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)  

Volume XX– Issue XX, XXXXXXXX 201X 

 

www.ijcit.com    16 
 

 

 

 

Scenario 5: Program to check Palindrome in PYTHON 

Programming Language 

 

 
 

Figure 5: Program to check Palindrome in PYTHON Programming Language 

 

 

TABLE 5: HALSTEAD’S BASE METRICS FOR JAVA PROGRAMMING 

LANGUAGE 

 

 

Operators Frequency Operands Frequency 

= 6 num 3 

( ) 3 int 1 

“ ” 3 temp 5 

! 1 0 2 

* 1 reverse 4 

+ 1 10 2 

% 1 n2=6 N2=17 

// 1   

= = 1   

: 3   

while 1   

else 1   

print ( ) 2   

input ( ) 1   

. 1   

if 1   

n1= 16 N1=28   

 

 

 

Now the base metrics are used to compute the nine derived 

metrics, 

Program Vocabulary (Ƞ) = Ƞ1 + Ƞ2 

   = 16+6 

   = 22 

 

Length of a program (N) = Ν1 + Ν2 

   = 28 + 17 

   = 45 

 

Estimated Length Ǹ = Ƞ1 log2 (Ƞ1) + Ƞ2 log2 (Ƞ2) 

   = 16 log2(16) +6 log2(6) 

   =64 + 15.51 

   = 79.51 

Truth Length =  

  = 79.51/45 

  = 1.767 

 

Program Volume (V)= (N1+N2) log2 (Ƞ1+ Ƞ2) or V= N log2 

(Ƞ) 

   = 45 log2 (22) 

   = 200.6744 

Program Difficulty (D)= ( ) *(  )   

   = (16/ 2) * (17/6) 

   = 8 * 2.833 

   = 22.664 

 

Program Effort (E) = D*V 

   = 22.664*200.6744 

   = 4,548.085 

Number of bugs (B)  =   

    = 200.6744/ 3000 

   = 0.0669 

 

Program Time (T)  =  

   = 4548.085/18 

   = 252.714 sec.  

 

 

IV. RESULTS 

A. Comparative Analysis of the Results 

Following directly from the Materials and Methods used in 

this study as discussed and elaborated in the immediate 

previous section. The results show that using Halstead 

Software Science, the complexity of different programming 

languages varies even if they are subjected to the same task. 

Table 6 gives the comparative analysis of the code complexity 

results evaluated by Halstead Software Science for the five 

programming languages viz C, C++, Java, PhP and Python 

when used to compute Palindrome number. 

 

http://www.ijcit.com/


 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)  

Volume XX– Issue XX, XXXXXXXX 201X 

 

www.ijcit.com    17 
 

 

TABLE 6: COMPARATIVE ANALYSIS OF THE RESULTS 

 

B. Summary and Illustration of the Findings 

This subsection gives the summary and illustration of the 

comparative analysis findings presented in Table 6. Here the 

various selected derived metrics of the Halstead metrics have 

been graphically presented to give a comparative analysis of 

the code complexity of the five programming languages based 

on these parameters-derived metrics. 

 

a. Comparative analysis based on Program Length 

Figure 6 shows the comparison of the complexity results of 

the program length of the five programming languages. C++ 

gave the highest complexity value of 86, followed by Java 

programming language which had the same length as C 

programming language giving a value of 77, then PHP was the 

third most lengthy programming language at 70, finally, 

Python was the shortest of the five giving a program length of 

45.  

 
Figure 6: Comparison Chart on Program Length (L) 

 

 

b. Comparative Analysis based on Program Volume 

Figure 7 shows the comparison of the complexity 

results of program volume of the five programming 

languages. C++ gave the highest complexity value of 

program volume at 437.5218, followed by Java 

programming language at 391.7346, the third in terms of 

volume was C programming language giving a value of 

381.47, then PHP programming language at 340.059, 

finally Python was the last of the five giving a program 

volume of 200.6744. 

 

 
Figure 7: Comparison Chart on Volume (V) 

 
c. Comparative Analysis based on Program Difficulty 

Figure 8 shows the comparison of the complexity results of 

program difficulty of the five programming languages. C++ 

gave the highest complexity value of program difficulty at 

34.5, and Java and C programming languages followed closely 

at 30 and 30.6 respectively. Python came forth in terms of 

program difficulty giving a difficulty value of 22.664 and 

finally, the less difficult programming language to learn 

among the five was PHP with a difficulty value of 18.417 

according to the code complexity experiment done in this 

study.  

 

 
 

Figure 8: Comparison Chart on Program Difficulty (D) 

 

 

 

http://www.ijcit.com/


 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)  

Volume XX– Issue XX, XXXXXXXX 201X 

 

www.ijcit.com    18 
 

 

d. Comparative Analysis based on Program Effort 

 
Figure 9 shows the comparison of the complexity results 

of program Effort required of the five programming 

languages. C++ gave the highest complexity value of program 

effort of 15,094.50, and C and Java programming languages 

followed closely at 11,672.98 and 11,752.04 respectively. 

PHP came forth in terms of program effort required giving the 

effort value of 6,262.88 finally the programming language 

with the least effort required among the five was Python with 

an effort value of 4,548.09 according to the findings 

experiment done in this study.  

 

 
 

Figure 9: Comparison Chart on Program Effort (E) 

 
e. Comparative Analysis based on Program Time 

 
Figure 10 shows the comparison of the complexity results 

of program Time of the five programming languages. C++ 

gave the highest complexity value of program time of 

838.58sec, followed closely by Java and C programming 

language at652.891sec and 648.488sec respectively, then PHP 

programming language at 347.938sec, finally, Python was the 

last of the five giving a program time of 252.714sec according 

to the findings of this study.  

 

 
 

Figure 10: Comparison Chart on Program Time (T) 

 

f. Comparative Analysis based on Program Bugs 

Delivered 

 
Figure 11 shows the comparison of the complexity results 

of program Bugs delivered among the five programming 

languages. The study findings showed that C++ gave the 

highest complexity of bugs value of 0.1458, followed by Java 

programming language with a bug value of 0.1306, the third in 

terms of bugs delivered was C programming language giving a 

value of 0.127, then PHP programming language at 0.1134, 

finally Python giving the least complexity value of number of 

bugs delivered at the value of 0.0669.  

 

 
 

Figure 11: Comparison Chart on Program Bugs Delivered (B) 

V. DISCUSSION 

The study findings graphically show six (6) most substantial 

derived metrics of the Halstead Software Science viz program 

length, volume, difficulty, effort, time and bugs delivered. The 

findings show that writing Palindrome programming coding in 

C++ is the lengthiest while code written in Python for the 

same is the shortest of the five programming languages used 

http://www.ijcit.com/


 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)  

Volume XX– Issue XX, XXXXXXXX 201X 

 

www.ijcit.com    19 
 

 

in this study. This implies that more lines of code will be 

employed when developing software using C++ compared to 

developing the same software using python. In terms of 

volume, the same observation was made, where when the five 

programming languages were subjected to code the same 

program, C++ gave the largest volume while Python gave the 

smallest volume, so this means that more work will be 

required by the developer using C++ in the development 

process than the developer implementing the same project 

using python. C++ continued to prove to be the most difficult 

programming language to learn compared to the other four 

programming languages, however, PHP was observed to be 

the least difficult. More programmer effort and time was 

observed to be needed when developing a project in the C++ 

programming language followed by the Java programming 

language, on the flip side, less programmer effort and time 

will be employed when developing a project using the Python 

programming language.  The study findings also revealed that 

fewer bugs will be generated when the developer implements 

a program in python while more bugs will be witnessed when 

the same project is implemented using C++ programming 

language.  

Being a comparative analysis, the findings of this study have a 

positive correlation with the previously published work. All 

the identified derived metrics have a one-on-one mapping with 

the findings of the previous study with very insignificant 

exceptions, showing that on the majority of the derived 

Halstead metrics, C++ and Java were leading in the code 

complexity while Python and PHP were the least complex, 

leaving C programming language to be moderate in terms of 

code complexity evaluation experiment when these five 

programming languages were subjected to run the same 

program of determining whether a number is a palindrome or 

not.  

VI. CONCLUSION AND FUTURE WORKS 

The findings of this study revealed that C++ is the most 

complex programming language compared to Java, C, PHP 

and Python. When developing a project in C++, more lines of 

codes, program volume, program difficulty as well as 

programmer effort and time will be required, more bugs will 

also be delivered when coding with C++ followed by Java, C, 

then PHP finally python. The findings of this study can help 

software developers to make important decisions regarding 

software costing, software quality assurance, and software 

maintenance, among others.  

In the future, more studies can be done by applying the 

Halstead software science technique to other programming 

domains like Aspect-oriented programming, besides 

modification of the Halstead can be done in the future to 

capture the complexity of a programming language by 

considering both inter-modular and intra-modular composition 

of operands and operations interactions in the program 

structure. 
 

REFERENCES 

 
[1] Vard Antinyan, Miroslaw Staron, and Anna Sandberg, (2017) 

“Evaluating code complexity triggers, use of complexity measures and 
the influence of code complexity on maintenance time”, Empirical 
Software Engineering, Vol. 22, No. 6, pp. 3057-3087,2017.  

[2] M. Madhan, I. Dhivakar, T. Anbuarasan, and Chandrasegar Thirumalai. 
(2017) “Analyzing complexity nature inspired optimization algorithms 
using 4.halstead metrics.” In 2017 International Conference on Trends in 
Electronics and Informatics (ICEI), pp. 1077-1081. IEEE. 

[3] Safa Omri, Pascal Montag, and Carsten Sinz. (2018)” Static Analysis 
and Code Complexity Metrics as Early Indicators of Software Defects”, 
Journal of Software Engineering and Applications 11, No. 04, pp. 153-
166. 

[4] Wilch, J., Fischer, J., Neumann, E. M., Diehm, S., Schwarz, M., Lah, E., 
... & Vogel-Heuser, B. (2019, October). Introduction and evaluation of 
complexity metrics for network-based, graphical IEC 61131-3 
programming languages. In IECON 2019-45th Annual Conference of 
the IEEE Industrial Electronics Society (Vol. 1, pp. 417-423). IEEE. 

[5] F. Fioravanti, P. Nesi, (2000 August 31). “A method and tool for 
assessing object-oriented projects and metrics management,” Journal of 
Systems and Software, Volume 53, Issue 2, Pages 111-136. 

[6] Madi, O. K. Zein, S. Kadry. (2013). On the Improvement of Cyclomatic 
Complexity Metric, vol. 7 no. 2, 

[7] Abdul Rehman Shaikh, “Applying Halstead Metrics in Your Programs”,  
https://www.academia.edu/23024048/Applying_Halstead_Metrics_in_Y 
our_Programs/ last accessed on 18 March 2020. 

[8] Abdulkareem, S. A., & Abboud, A. J. (2021, February). Evaluating 
Python, C++, JavaScript and Java Programming Languages Based on 
Software Complexity Calculator (Halstead Metrics). In IOP Conference 
Series: Materials Science and Engineering (Vol. 1076, No. 1, p. 
012046). IOP Publishing. 

[9] Balogun, M. O. (2022). Comparative Analysis of Complexity of C++ 
and Python Programming Languages. Asian J. Soc. Sci. Manag. 
Technol, 4, 1-12. 

[10] Chandrasegar Thirumalai, Shridharshan R R, Ranjith Reynold L, “An 
Assessment of Halstead and COCOMO Model for Effort Estimation ”, 
International Conference on Innovations in Power and Advanced 
Computing Technologies (i-PACT), April 2017.  

[11] Coimbra, Rodrigo Tavares, Antônio Resende, and Ricardo Terra. “A 
Correlation Analysis between Halstead Complexity Measures and other 
Software Measures.” In 2018 XLIV Latin American Computer 
Conference (CLEI), pp. 31-39. IEEE, 2018.  

[12] Govil, N. (2020, June). Applying Halstead Software Science on 
Different Programming Languages for Analyzing Software Complexity. 
In 2020 4th International Conference on Trends in Electronics and 
Informatics (ICOEI) (48184) (pp. 939-943). IEEE. 

[13] T Hariprasad, K Seenu, G Vidhyagaran and Chandrasegar Thirumala. 
(2017, May) “Software Complexity Analysis Using Halstead Metrics”, 
International Conference on Trends in Electronics and Informatics 
(ICEI) IEEE & 978-1-5090-4257-9. 

 

http://www.ijcit.com/

