
International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 12– Issue 01, March 2023

www.ijcit.com 20

 Development of Content Security Policy Detection

and Reporting Web Application

Mahwish Naz

Dept. of Computer Science and Engineering

Seoultech University

Seoul, Korea

Email: mahwishnaz488 [AT] gmail.com

Kilhung Lee (Corresponding Author)

Dept. of Computer Science and Engineering

Seoultech University

Seoul, Korea

Email: khlee [AT] seoultech.sc.kr

Abstract—Attacks detection and prevention is becoming

progressively challenging, in Web Application. The Web

Applications requisite attack detection interface that can check

about the services, analyzed obviate studies, and perform real

time monitoring to secure the web applications. There are

esteemed threats use for data hack and website defacement such

as XSS (Cross-Site Scripting), XSRF (Cross-Ste Request

Forgery), XEE (XML External Entity), Code Injections,

DOS(Denial of Services) etc. The number of XSS has been

increasing with high intensity, so it is compulsory to develop

solutions that can detect and report attacks as well as analyze for

prevention of modern web applications. Based on this situation

this paper proposed a method which is Content Security Policy

for detection and reporting vulnerable web applications. Content

Security Policy also prevents the exploitation of cross-site

scripting vulnerabilities.

Keywords-Content Security Policy, Features/Permission Policy,

Web Application Security.

I. INTRODUCTION

 In view of the fact that the rapid development of technology,

many activities related to daily life are introducing to the web

environment, due to such situation the chance of hacking of

web application has increased[1].

During this era, attack detection and prevention is becoming

more and more challenging in web applications. The Web

Applications requisite attack detection interface that can check

about the services, analyzed obviate studies, and perform real

time monitoring to secure the web applications. Web Security

is a system of protection that protect our websites from

attackers.

In this paper we developed a Content Security Policy

detection and reporting system which detect and generate

reports of vulnerable websites and shows the results in tables

using browser as well as we make test scenarios to show how

our system restrict vulnerable web application URLs and

violate reports. After perform testing we did analysis between

the results of our tests using graphs and pie charts. Also add

some real time monitoring which helped us to identify actual

reporting time as well as the type of violation.

The basic goal of this system is to secure websites from

attackers when they put different types of attacks on any web

application like Cross-site scripting and cross site request

forgery. We detect and block attacks using different policies

of Content Security Policy, Features/ Permission policies.

According to these policies we can allow or restrict

different Web URLs or images for specific browsers. Our

System will test web application URLs and if it found XSS or

XSRF threats it will generate JSON report and save results to

our database and then make analysis between these results to

check which web application has high possibility of attacks or

which has low and will show the results in Bar graphs and Pie

charts using different colors to makes it efficient.

Cross-Site Scripting attack has the capability to inject

inline scripts into the web pages of web applications. This

could be complicate in the procedure of detecting and

preventing XSS attack. To address these attacks new method

is needed to deal with huge quantity of data from many web

users. There are three major types of cross-site scripting

attack, which is Reflected XSS, Stored XSS, Dom based

XSS[1]. Content Security Policy is a Web program procedure

which is designed to mitigate Cross-site scripting[2].

Today Content security policy is excellent protector against

cross-site scripting. It is a suggestive policy procedure which

allow website developers to determine which type of user side

information can be loaded and executed by the browsers. The

main purpose of CSP is to restrict website abilities to load and

execute malicious code[2]. We include Content-security

policy HTTP header to enable a CSP. The CSP policy contain

single or many directive, and use semicolon to separate these

directives such as the listed directive will allow only scripts to

be loaded from the same origin as the page itself: script-src

‘self’ as well as the following directive will allow scripts to be

loaded from a specific domain like https://example.com.

http://www.ijcit.com/
https://example.com./

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 12– Issue 01, March 2023

www.ijcit.com 21

Basically, CSP execute the same origin policy to ensure that

the browser only execute material from authenticate sources.

We can also configure a policy by using meta elements.

<meta http-equiv =“Content-Security-Policy”

 Content = “script-src ‘self’; default-src ‘none’;”/>

II. RELATED RESEARCH

In this section we will include reviews of previous

researches. Firstly, we will discuss some common threats,

secondly, some work that aim to protect web applications

from threats using CSP policies. In this research there are

different methods are used to detect and prevent websites from

different attacks. Here we will review threats that can attacks

in web applications. Although Cross-site scripting

vulnerability is less common than past while in the web

directions are still uncontrolled. The interaction of users with

web application is increasing with the passage of time, the

opportunities for XSS vulnerabilities also increasing in web

application[3].

According to the research [4] a method is proposed by the

authors which is WAF(Web Application Firewall). By using

this methods packets can be filter as well as block danger

HTTP requests. The implementation of WAF on web

applications is depend on the installation of Mod Security

module on a Reverse proxy device. In [5] authors proposed

that they can control the content upload on their websites by

content restrictions applied on websites. They also propose an

implementation regarding content security policy will enable

application developers to check the content loading rule for

their web applications. Furthermore, we reviewed the Content

Security Policy and found it is the last line of defense.

A. Web Security

Web Security is also known as cyber security. It basically

means that protecting a web application by detection,

preventing and responding to web attacks or

Threats. Web security based on same origin policy which

prevents the content loading from outside of origin. The goal

of web security to prevent content from

attackers. Web security is an application that secure web

applications from unauthorized logins, use as well as editing.

Here is the list of some popular technical solutions for testing,

building and preventing threats:

Black Box Testing use to finding the input/output validation

errors. The Fuzzing Tools(Fuzz is realtime software testing

method to find software errors, White Box Testing tools is a

type of testing which use for conformation of executed code,

web Application Firewall control undesirable traffic in a

network, Security or vulnerability scanners use to search and

reports vulnerabilities in an organization, and password

cracking tools.

 OWASP:The Open Web Application Security Project is an

organization that helps to provide high security to

software, tools and resources community, Networking

education and Training without any self benefit.

 OWASP Web Security Testing Guide: This project produce

the leading web security testing resources for the

developer of web applications. Its all about testing like

what is testing, why perform testing, when to test, what to

test. Testing techniques: Manual inspections and

Reviewers, Threat Modeling, Code Review, Penetration

Testing.

 Web Attacks: Top Vulnerabilities for all web applications

includes XSS, XSRF, XEE, SQL injections, Code

injections, Command injections, DOS and Distributed

DOS. This paper concentrate XSS and little bit of XSRF.

There are many ways to protect from Web Applications

from different types of attacks but CSP protect security

behavior well.

B. Cross-site Scripting

In these days cross-site scripting is most popular

vulnerability throughout the internet, and effect numbers of

users interactions to the web applications[11]. It is such type

of threats which assure hackers to attacks any victim account

accounts with vulnerable pages of websites. It is a high level

of risk able threat[23]. How does XSS work: Vulnerable Web

Application will effect by the cross site scripting when the

user will load the page. Attackers inject code in vulnerable

web application and send link to authenticate user through any

message or email. When the user click link and login on

his/her valid account then attacker can see, delete or modify

account and steal information on the behalf of victim.

Basically, victim does not know about the attack.

XSS proof of concept: In this research we confirm that most

kind of XSS attacks occure due to execution of javascript and

HTML tags by our own browsers.

 Types of XSS: XSS threat categories into three types:

1. Stored: In this type the data will store in database.

2. Reflected: The code will not store in database, reflect

by server.

3. DOM-based: Code will store as well as execute in the

browser.

There are two another types in cross-site scripting

1. Server XSS: Generate an answer when any

unauthorized user send data.

2. Client XSS: Show when any unauthorized

send data for update.

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 12– Issue 01, March 2023

www.ijcit.com 22

C. Cross-Site Request Forgery

Furthermore, this study related to CSRF attack damage the

trust relationship between a browser and authorized client as

well as a web server. Basically the browser trust the actions

performed by the user device on the behalf of victim[10]. In

this type of attack user cannot understand what type of action,

victim has to execute unwanted action on authenticated web

application which is sent by attacker. When end user click link

then attackers can work on the behalf of end user with

authenticated account and can do anything, like transfer fund

or delete history etc.

D. Content-Security Policy

Content-security policy is a browser security mechanism that

purpose to protect web application from different attacks[11].

It is the last line for defending against cross-site scripting. If

XSS prevention fail then we can use CSP for protection by

using multiple directives and security headers. For better

security W3C web application security recommended by

users. It is also supported by modern web browsers.

In 2004 Robert Hansen was a person who deploy a method

for restriction of web application contents. This method was

firstly executed by Firefox 4 and then other browser also

started to execute. In 2012 version1 was published as W3C

candidate recommendation and quickly with further versions.

In 2014 level 2 was published as well as in 2015 level 3 was

developed with the new features.

III. DEVELOPMENT OF CSP REPORTING AND ANALYSIS

SYSTEM

A. Implementation

Security in web applications is an issue that needs attention.

There are several solutions that can be done to implement

security services on web applications. Even though this is not

completely perfect, it is a preventive measure from unwanted

things. One solution that can be applied is to implement a CSP

Policy.

CSP is preventing the exploitation of cross-site scripting

vulnerabilities. When an application uses a strict policy, an

attacker who finds an XSS bug will no longer be able to force

the browser to execute malicious scripts on the page. To

achieve our target we implemented CSP, FP, and PP

approaches to generate a report and restrict the attacks against

web Applications. The two types of attacks used to test attacks

are based on a list which is very wild threats in web

applications approved by OWASP Top Ten Web Application

Security Risks.

Testing: The current research proposed that the

implementation of CSP in a web application may improve

security functions, so as to prevent damage from attacks that

may occur against web application. Testing conducted in this

research were determined to be performed under such

conditions like by using directives or security headers of CSP,

FP/PP which URL can be blocked or which access web

applications.

Analysis: After testing, the next step was the analysis to see

whether if there were different result between the different

conditions like using different directives as well as the security

headers. In our analysis According to use of the list of these

security headers we use different example websites for the

testing like 'http://site.example/scripts.js',

'http://example.com/foo/bar/'. we found CSP (Content Security

Policy) is the best. It provides best security.3.

Conclusions: With the help of CSP, FP, and PP secure the web

Applications from the attacks of attackers. These all works

with the directives. For generating the violation reports using

these policies make some test scenario. And then make some

analysis between the results of them. Add realtime monitoring

also to show the actual time of reporting. And also show

which type of security http header block different API or

browser with malicious codes.

B. Security Headers

HTTP Headers are a great booster for web security with easy

implementation. Proper HTTP response headers help to

prevent security vulnerabilities. An HTTP header is a response

by a web server to a browser that is trying to access a web

page. Here is the list of Security headers:

1. X-Frame-Options: The X-Frame-Options security header

helps stop click-jacking attacks. This type of security header

can be used to show that browser should load or execute a

page or not. Mostly web application uses this type of security

header to save from different attacks. Syntax: X-Frame-

Options: DENY.

2. Cross-Site Scripting Protection (X-XSS): X-XSS header

helps protect websites against script injection attacks. When

an attacker injects malicious JavaScript code into an HTTP

request for accessing confidential information such as session

cookies, at that time HTTP X-XSS-Protection header can stop

the browsers from loading web pages. XSS is a very common

and effective attack. Syntax: X-XXS-Protection: 1; node-block

3. X-Content-Type-Options: X-Content-Type-Options

response header prevents the browser from MIME-sniffing

attack a response away from the show content type. A MIME-

sniffing vulnerability allows an attacker to inject a malicious

resource, suppose an attacker changes the response for an

innocent resource, such as an image. With MIME sniffing, the

browser will ignore the declared image content type, and

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 12– Issue 01, March 2023

www.ijcit.com 23

instead of rendering an image will execute the malicious

script. Syntax: X-Content-Type-Options: nosniff

4. Strict-Transport-Security: The Strict-Transport-Security

Header is also called the HTTP Strict Transport Security

header (HSTS). Many websites only have a 301 redirect from

HTTP to HTTPS. But that's not enough to keep the website

secure because the website is still vulnerable to a man-in-the-

middle attack. HSTS prevents an attacker from downgrading

the HTTPS connection to an HTTP connection which then

allows the attacker to take advantage of insecure redirects.

Syntax: Strict-Transport-Security: max-age=<expire-time>

5. Content-Security-Policy: A content security policy (CSP)

helps to protect a website and the site visitors from Cross Site

Scripting (XSS) attacks and from data injection attacks. By

using HTTP Content-Security-Policy response header web

application administrators can control all resources like they

can set any page should be load or not. Syntax: Content-

Security-Policy: <policy-directive>; <policy-directive>

6. Cross-Origin-Embedder-Policy: The HTTP Cross-Origin-

Embedder-Policy (COEP)

response header prevents a document from loading any cross-

origin resources that don't explicitly grant the document

permission (using CORP or CORS). Syntax: Cross-Origin-

Embedder-Policy: unsafe-none | require-corp

7. Content-Security-Policy-Report-Only: By using the HTTP

Content-Security-Policy-Report-Only response header web

application administrators can evaluate with different policies

by observing their results. Through HTTP POST request we

can send these violation reports consist of JSON documents.

Syntax: Content-Security-Policy-Report-Only: <policy-

directive>; <policy-directive>

8. CSP-violation: By using the HTTP Content-Security-

Policy-Report-Only response header web application

administrators can evaluate with different policies by

observing their results. Through HTTP POST request we can

send these csp-violation reports consist of JSON documents.

CSP Violation reports occurred where high possibility of XSS

attacks.

C. Reporting API

The Reporting API provides a generic reporting mechanism

for web applications to use to make reports available based on

various platform features (for example Content Security

Policy, Feature-Policy, or feature deprecation reports) in a

consistent manner. In this research we generate different

reports by Reporting API.

1. Document-policy-violation: Document Policies can be set

in the HTTP response headers of a resource. It sets the policy

on the document that it's served with. It's possible to create

restrictions on image sizes, compression ratios, lazy loading of

frames, use of sync API calls, etc. Document Policy is an

extension of Permissions Policy and allows to fine-tune a

policy for the structure of a document. Document Policies is

an extension of Permissions Policy, violations can easily be

tracked in URI ports.com account under the section

Permissions Policy.

2. Document-policy-violation: Document Policies can be set

in the HTTP response headers of a resource. It sets the policy

on the document that it's served with. It's possible to create

restrictions on image sizes, compression ratios, lazy loading of

frames, use of sync API calls, etc. Document Policy is an

extension of Permissions Policy and allows to fine-tune a

policy for the structure of a document. Document Policies is

an extension of Permissions Policy, violations can easily be

tracked in URI ports.com account under the section

Permissions Policy.

TABLE I. REPORTING API

3. Deprecation: Deprecation report Indicates that a Web API

or other browser feature being used in the website is expected

to stop working in a future release. Indicated by a Report.body

property with a Deprecation Report Body return value.

4. Intervention: Intervention report Indicates that a request

made by the website has been denied by the browser, e.g. for

security or user annoyance reasons. Indicated by a Report

body property with a Intervention Report Body return value.

Directive Controlled Resources types

Blocked-uri The URI of the resource that was blocked

from loading by the Content Security Policy.

Document-

uri

The URI of the document in which the

violation occurred.

Effective-

directive

The effective- directive is the directive

which enforcement caused the violation.

Original-

policy

 Content-Security-Policy-Report-Only HTTP

header identify the Original policy.

Referrer In referrer violation occurred like as

document-uri.

script-

sample

It is inline script which is injected by

attacker in any vulnerable web applications.

Status-code Resources has global object was instantiated

HTTP status code.

Violated-

directive

It is a name of the such type of policy which

can violated in policy section.

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 12– Issue 01, March 2023

www.ijcit.com 24

D. Content Security Policy

Content-Security-Policy is a web program procedure which

is designed to mitigate cross-site scripting (XSS), that is the

top security vulnerability in modern websites [2]. Today,

Content Security Policy is highest promising corrective

against cross-site scripting. Content security policy is a

demonstrative policy procedure which allows websites creator

to define which type of client-side material can be loaded and

executed by the different type of browsers. By rejected inline

scripts and allowing only believe able domains as a origin of

external scripts, CSP goals to restrict a website abilities to load

and execute malicious code. Content security policy has goals

to make the websites secure by block the misuse of the errors

the attacker should not be able of loading inline malicious

code without controlling a believe able host. Content security

policy is the last line of defense against cross-site scripting. If

XSS prevention fails, we can use CSP to mitigate XSS by

restricting what an attacker can do.

Implementing the CSP algorithm:CSP is the best tool that web

developers could utilize to restrict their web applications in

many ways to mitigating the dangerous of code injection

vulnerabilities such as XSS attack and minimizing the entitled

with where their applications will be run[1]. CSP is proposed

as the first tool of defense against code injection

vulnerabilities. A web developer using CSP to build a trusted

web application with safe list allowed resources and their

origins. In other words, scripts codes that are wanted to

execute the web application are allowed from specific origins

path. Otherwise, CSP blocks them as shown in Fig. 1.

Figure 1. (CSP detection and prevention structure system)

CSP detection and prevention structure system explanations:

Step 1: The attacker injects malicious scripts code into web

applications to exploit client-side

Step 2: User request web page to the web server that attacker

already injected scripts code

Step 3: When the server response to the users, the page loaded

on the user browser and show the report on the browser

Step 4: If CSP detects malicious code Alert for XSS attacks to

the browser.

To deploy CSP we include an HTTP response header called

Content-Security-Policy-Report-Only.Content-Security-

Policy-Report-Only: policy" as an HTTP header to specify our

policy. The violation reporting mechanism has been designed

to reduce the risk that a malicious website could use violation

reports to investigate the performance of other servers and set

to the report-uri directive. An example CSP is as follows:

default-src 'self'; script-src 'self'; object-src 'none'; frame-src

'none'; base-uri 'none'; For examples the malicious website

"https://example.com/foo/bar" allowing as a sourse of example

which uses the following policies by disallowing everything

from http://evilhackerscripts.com with CSP HTTP header

"Content-Security-Policy: default-src 'self'; report-uri csp-

hotline.js; csp-reports" as in Fig. 2.

Figure 2. (CSP test headers and contents)

The violation report may be consisted careful data which is

in the loaded web application page. If violation reports fully

blocked URL such as session identifiers, IP address as

identities. For this objective, the web browser consists only

such type of URL that has the real request not the loaded page.

This is shown at Fig. 3.

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 12– Issue 01, March 2023

www.ijcit.com 25

Figure 3. (CSP violation report)

E. Content Security Policy HTTP headers

The Content-Security-Policy header allows how browsers

can restrict different resources such as JavaScript, CSS, or

anything which is the loaded by browser. CSP is

the name of HTTP response header that modern browser uses

to enhance the security of web applications, The Content-

Security-Policy header has more directives, and all the

directives are separated with a semicolon; CSP can be

configured in Report-Only mode. In report-only mode, the

browser will monitor the policy and report violations but

without actually enforcing the restrictions. The owner of web

application can receive information through report-uri

directive. Although, we can configure a policy by using meta

element. <meta http-equiv="Content-Security-Policy"

content="default-src 'self'; img-src https://example.com; child-

src 'none';">.

F. CSP directives

The Content Security Policy directives are divided into 4

types:

 Fetch directives: Content-Security-Policy header use the

content-security-policy fetch directives, CSP meta tag or

some other html headers. All fetch directives fallback to

default-src. That means, if a fetch directive is absent in

the CSP header, the user agent (browser) will look for the

default-src directive and and take the rules from it.

 Document Directives: Content-Security-Policy header

use the content-security-policy document directives, or

CSP meta tag. Document directives don't fall back to the

default-src directive.

 Navigation directive: Content-Security-Policy header use

the content-security-policy navigation directives, or CSP

meta tag, and govern to which location a user can

navigate to or submit a form to.

 Reporting directive: Content-Security-Policy header use

the content-security-policy reporting directives and it

also restrict the reporting procedure of CSP violations.

Reporting directives don't use default-src directive as a

fall back.

G. Content Security Policy level 2

Content security policy is the last line of defense against

cross-site scripting. If XSS prevention fails, we can use CSP

to mitigate XSS by restricting what an attacker can do. As we

can see that in level 2 there are some changes from Level 1,

and it also contribute many support many new directives and

abilities which are followed below:

1. These summarized changes are here:

1) The result of loaded pages will be ignored.

2) Only a secure data has ability to load in web application

and it will be controlled by child-src.

2. The summarized directives are new in level 2.

TABLE II. CSP LEVEL 2 DIRECTIVES.

Directives Controlled resource type

base-uri The capability of secure resources is control

by this directive.

child-src child-src instead of script-src is use in CSP

level 2.

Form-

action

This directive allows the secure resource’s

capability to submit contents.

SourceFile SourceFile mostly same like as document-

uri.

LineNumb

er

The number of line where attackers injected

the malicious code to hack this website.

ColumnNu

mber

The number of column where attackers

injected the malicious code to hack this

website.

H. Content Security Policy level 3

Content Security Policy (CSP) is an implement that can be

used by website creators to restrict their web applications in

different ways, to mitigating the risk of injection of different

vulnerabilities like as cross site scripting(XSS), as well as

reduce the freedom with that their applications execute.

I. Feature Policy

The specification of Feature Policy defines a mechanism that

allows developers to selectively enable and disable use of

various browser features and APIs. Feature Policy is similar to

the Content Security Policy but controls feature of browser

instead of security behavior. Feature Policy contains directives

with indicate the keys and list of sources which limit the use

http://www.ijcit.com/
https://www.w3.org/TR/CSP2/#protected-resource

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 12– Issue 01, March 2023

www.ijcit.com 26

of features controlled of these directives.Syntax: Feature-

Policy: <directive> <allowlist>

J. Permission Policy

Feature Policy is renamed to Permissions Policy. But as of

May 2021 no browser supports the Permissions Policy,

browsers continue to support Feature Policy. Permissions

Policy is also similar to the Content Security Policy but

controls features of browser instead of security behavior.

Feature-Policy: Feature-Policy: geolocation 'none'

Permissions-Policy:Permissions-Policy: geolocation=()

IV. SYSTEM TEST AND REPORTING DATA ANALYSIS

The Content Security Policy(CSP) system tests were

performed to show the violation reports, analysis as well as

realtime monitoring to check vulnerabilities in different web

links using CSP, FP/PP security headers as well as directives

and source lists. By using these http security headers with

Report-Only we monitor the policy and report violations but

without actually enforcing the restrictions.

We test our CSP system as shown in Fig. 4, We use many

websites URLs like " https://blog.bluetriangle.om", ttps://

ww.google.com","csp-hotline.js", "https:// vilhackers.om",

https://crashtest-security.com", and "https://csplite.com" as

input for the testing our CSP system to check whether the

Cross-Site Scripting(XSS) attacks can be allowed in these web

application or not. Reports will be generated in the same

origin because we use directive default-src self.

A. CSP System Test and Reports

Here performed test and get csp-violation report as in Fig. 4.

 Figure 4. (CSP violation test)

After the implementing of the system we found some

reports has been generated by our CSP system. The results are

shown in Fig. 5 which shows that CSP violation in

"https://blog.bluetriangle.com", "https://crashtest-security.

com", and "https://csplite.com" web applications has been

occured which is due to injection of Cross-Site-Scripting

attack by any attacker as well as our CSP System block some

website URLs contents to load in the browser like

"https://evilhackers.com". This website contents have been

blocked by our system.

Figure 5. (CSP violation Report)

The report-uri directive used to send violation reports to

inform the application's owner of incompatible markup. When

report-uri is enabled the browser send a JSON blob whenever

the browser detects a violation from the CSP. That JSON blob

is the report. In the Fig. 5 is random violation reports from

different upper mentioned websites.

B. CSP Results

Fig. 6 shows the results of the web applications tests that

how much possibility of XSS injection in these URLs or to

test whether this website is vulnerable or not like attackers

attacked this web URL for their specific purposes. There are

some tests performed to show that how our CSP system

violate reports. Because here is attackers inject Cross-Site-

Scripting attacks. In this test scenario violation occurred in

different URIs which shown in bar graph and Pie chart. The

results showed that risk of injection malicious codes in these

web URLs between 0 to 120 using different colors for

convenient output.

http://www.ijcit.com/
https://blog.bluetriangle.om/
https://crashtest-security.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 12– Issue 01, March 2023

www.ijcit.com 27

Figure 6. (Document-uri CSP Report)

a) CSP List

CSP List shows that in which documents or web links

violation has been occurred or which web URL has been

blocked by our CSP system. In the case of CSP Lists we can

see that the violation reports are occurred in different web

application URLs which we used as a input for the testing our

CSP system like "https://google.com", "https://blog.

bluetriangle.com", "https://examples.com/foo/bar", "https://

crashtest.com", "https://evilhackerscript.com", "https://

csplite.com", and "https/owasp.org" in the same origin

because we use default-src self.

Our system showed the results of CSP violation reports in the

table form rather than the JSON form as well as Our System

blocked the loading content from different web application

links such as "https://example.com/foobar", "https://localhost:

58080/test/test1" etc in these test scenarios. In this list of

vulnerable web applications attackers can easily inject any

type XSS like stored, reflected, or Dom-based XSS using

malicious code like inline Javascript, CSS, any inner HTML

tages, images and video etc to damage these websites.

b) CSP Extended Lists

CSP Report Data Summary

Figure 7. (CSP Extended Lists)

Fig. 7 shows that in which documents or web links violation

has been occurred or which web URL has been blocked by our

CSP system. In the case of CSP Extended Lists we can see

that the violation reports are occurred in

"https://examples.com/foo/bar","https://localhost:58080/test/te

stback","https://localhost:58080/test/test0","https://localhost:5

8080/test/test1", "https://localhost:58080/test/test2" in the

same origin because we use in our system default-src self. As

well as Our System block the loading content from different

web application links such as "https://evilhackerscripts.com",

"https://google.com" etc in these test scenarios. Here we use

many directives of Content-Security-policy to control the

behaviour of browser.

c) CSP Full List

Figure 8. (CSP Full List)

In Fig. 8, we can see that the full reports which is violated by

our CSP system. Here CSP report is occurred in JSON form

where document-uri where the CSP violation is occurred

because "https://example.com/foo/bar" web application is

vulnerable web application. CSP violation is also occurred in

the "https://www.google.com/" in the same origin because

violated-directive is default-src is self. we set orignal-policy

report-uri in our system which is specified by the Content-

Security-Policy-HTTP security header as well as our system

blocked the resources such as javascript, innerHTML tages,

images, videos etc of web application

"https://evilhackerscripts.com".

C. FP/ PP Test and Results

Figure 9. (FP/PP Test)

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 12– Issue 01, March 2023

www.ijcit.com 28

Figure 10. (FP/PP Test Report)

Fig. 9 shows that the scenario for the testing of FP/PP policy

to generate the violation reports and blocked urls which has

some malicious code injected by the attackers. Fig. 10 shows

the results of the violation reports of the web application

"https://example.com/foo/bar" There are many type of reports

are generated like document-policy-violation, Corp and Coep

etc which showed that the Attacker injected Cross-site-

Request-forgery (CSRF) attacks to hack this website. where

document-write is not allowed in this document due to the

document-policy violation and it block the url

"https://site.example/img.jpg". In this case we can say that in

line number 12 attackers injected the malicious code to hack

this website.

a) FP/PP Data List

FP/PP Data List shows that in which documents or web

links violation has been occurred or which web URL has been

blocked by our FP/PP policy using many directives as well as

source lists. Our results of this policy shows that in web

applications "https://site.example", "https://www.example",

"https://site.example/foo/bar","https://csplite.com","https//ww

w.owasp.com","https://www.csp.com","https://www.fp/pp.co

m" attacker attack the Cross-site-scripting.

b) FP/PP Extended and Full Data List

FP/PP Extended and Full Data List shows that the FP/PP

violation reports occurred in different web application which

we use as a input for the testing using different types of

browsers like Mozilla and chrome etc. FP/PP violation is

occurred in the URL " https://site.example", as well as FP/PP

block the contents of "https://site2.example/scripts.js.

D. Realtime Monitoring of CSP/FP/ PP

The HTTP Content-Security-Policy-Report-Only response

header allows web developers to experiment with policies by

monitoring (but not enforcing) their effects. These violation

reports consist of JSON documents sent via an HTTP POST

request to the specified URI. We get some results by realtime

monitoring the violation occurred reports as well as blocked

URIs using horizontal bar graph as well as the pie chart bu

using different colors for web application links to elaborate in

efficient way.

a) Realtime CSP Monitoring Reports

In Fig. 11, we use real-world websites examples to test our

system to see whether our system generate the reports against

XSS or CSRF attacks. We found that here in website URLs

"https://www.google.com/" and

"https://blog.bluetriangle.com" CSP violation has been

occurred in 4:21:59 and 4:22:50 respectively. Also our system

blocked the "https://evilhackerscripts.com" in both reports. In

this case we can see that when we test any web application

URLs then we found new reports of web application where

there are some chances to attacks from attackers. Our CSP

system generate realtime reports when system found

vulnerabilities in web applications.

Figure 11. (CSP Realtime Monitoring)

Figure 12. (CSP Realtime Monitoring)

Fig. 12 shows the results when analyzing the violated reports,

blocked vulnerable APIs due to the security header restriction

according to the number of tests as well as according to the

actual time. We can clearly notice that every violated reports

is shown with the violation actual time as well as violation

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 12– Issue 01, March 2023

www.ijcit.com 29

date in the form of vertical bar graph using the same color

which is red.

b) Realtime FP/PP Monitoring Reports

We found that here in website URLs https://site.example/

img.jpg, FP/PP violation report has been occurred in 7:39:52

and 7:42:46 respectively as well as our system blocked the

"https://evilhackerscripts.com" in both reports. In this case we

can see that when we test any web application URLs then we

found new reports of web application where there have some

chances to attacks from attackers. We can clearly notice that

the CSRF attacks or malicious code has been injected in line

number 11 in both reports.

Realtime FP/PP Monitoring Reports shows that the analysis

between these reports that which web application URLs has

allow to attacker to inject malicious code.

"http://3.35.205.158", has the high possibility of Cross-site-

scripting(XSS) attacks which is 0 to 80 percent while

"http://localhost", has low rate of cross-site-scripting(XSS)

attack. Here is only 0 to 10 percent chance to inject malicious

code from attackers and load contents to web browsers in both

bar graph and pie chart.

E. Analysis of Reporting Data with Web Security

 Figure 13. (CSP Analysis of Report Violations)

The author in [8] selected img-src for Images, script-src for

JavaScript, XSLT, style-src for Stylesheets (CSS), connect-src

for Targets of XMLHttpRequest, default-src for Contents w/o

explicit directives. The syntax of CSP allows the inclusion of

multiple directives for the same content type (e.g., script-src)

in the same header. However, we observed in all the tested

browsers a weird, unexpected difference in the treatment of

inline scripts between the following two policies:

1. img-src www.example.com;

2. img-src www.example.com; default-src *.

Their experiments revealed that the first policy allows the

execution of inline scripts, but the second one does not. On the

other hands we use many directives to mitigate the risk of XSS

attacks and violate reports. We use document-uri, referrer,

violated-directive, orignal-policy, blocked-uri, client-ip as

well as count and show all results in the form of Json, tables,

and graphs.

CONCLUSION

 In this research paper, a CSP system was developed for the

generating reports and blocking the contents loading of

vulnerable web applications. For generating the violation

reports we used many of CSP directives and source lists to

allow or blocks the web application. We performed some test

to check our CSP system that our system violates the reports

or not as well as block the vulnerable websites or not and

showed all data in the form of tables. And after tests we make

analysis between the results of them and showed the results of

web applications in horizontal bar graph and also using Pie

Charts. The results showed that the used web applications

URLs as an input to check the threats are vulnerable by XSS

as well as by CSRF.

We also set the real-time monitoring to show the actual time

of violation reports and blocked URLs and saved all data to

our database. We also use FP/PP policies to secure web

application from the hackers. By implementing CSP approach

we got more expected results. Finally, we can say that the

Content Security Policy is the last line to mitigate Cross-Site-

Scripting (XSS) and defense from attacks and secure the web

applications.

ACKNOWLEDGEMENT

This research was supported by Basic Science Research

Program through the National Research Foundation of

Korea(NRF) funded by the Ministry of Education (Grants No.

NRF-2020R1A6A1A03042742).

REFERENCES

[1] Chen, H.-C., Nshimiyimana, A., Damarjati, C., & Chang,

P.-H. (2021). Detection and prevention of cross-site

scripting attack with combined approaches. 2021

International Conference on Electronics, Information, and

Communication (ICEIC).

[2] Weichselbaum, L., Spagnuolo, M., Lekies, S., & Janc,

A. (2016). CSP is dead, long live CSP! on the insecurity of

Whitelists and the future of content security policy.

Proceedings of the 2016 ACM SIGSAC Conference on

Computer and Communications Security.

[3] Hoffman, A. (2020). Web application security:

Exploitation and countermeasures for modern web

applications. O'Reilly Media.

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 12– Issue 01, March 2023

www.ijcit.com 30

[4] Muzaki, R. A., Briliyant, O. C., Hasditama, M. A., &

Ritchi, H. (2020). Improving security of web-based

application using ModSecurity and reverse proxy in web

application firewall. 2020 International Workshop on Big

Data and Information Security (IWBIS).

[5] Stamm, S., Sterne, B., & Markham, G. (2010). Reining

in the web with content security policy. Proceedings of the

19th International Conference on World Wide Web -

WWW '10.

[6] Lavrenovs, A., & Melon, F. J. (2018). HTTP security

headers analysis of top one million websites. 2018 10th

International Conference on Cyber Conflict (CyCon).

[7] Lepofsky, R. (2014). Web application vulnerabilities and

countermeasures. The Manager's Guide to Web

Application Security: 47-79.

[8] Calzavara, S., Rabitti, A., & Bugliesi, M. (2016). Content

security problems? Proceedings of the 2016 ACM

SIGSAC Conference on Computer and Communications

Security.

[9] Stamm, S., Sterne, B., & Markham, G. (2010). Reining in

the web with content security policy. Proceedings of the

19th International Conference on World Wide Web -

WWW '10. https://doi.org/10.1145/1772690.1772784

[10] Johari, R., & Sharma, P. (2012). A survey on web

application vulnerabilities (SQLIA, XSS) exploitation and

security engine for SQL Injection. 2012 International

Conference on Communication Systems and Network

Technologies.

[11] Sahin, M., & Sogukpinar, I. (2017). An efficient firewall

for web applications (EFWA). 2017 International

Conference on Computer Science and Engineering

(UBMK).

[12] Shrivastava, A., Choudhary, S., & Kumar, A. (2016).

XSS vulnerability assessment and prevention in web

application. 2016 2nd International Conference on Next

Generation Computing Technologies (NGCT).

[13] Yusof, I., & Pathan, A.-S. K. (2014). Preventing

persistent cross-site scripting (XSS) attack by applying

pattern filtering approach. The 5th International

Conference on Information and Communication

Technology for The Muslim World (ICT4M).

[14] Babiker, M., Karaarslan, E., & Hoscan, Y. (2018). Web

application attack detection and forensics: A survey. 2018

6th International Symposium on Digital Forensic and

Security (ISDFS).

[15] Huang, H.-C., Zhang, Z.-K., Cheng, H.-W., & Shieh, S.

W. (2017). Web application security: Threats,

countermeasures, and Pitfalls. Computer, 50(6), 81-85.

[16] Hadpawat, T., & Vaya, D. (2017). Analysis of prevention

of XSS attacks at client side. International Journal of

Computer Applications, 173(10), 1-4.

[17] Some, D. F., Bielova, N., & Rezk, T. (2017). On the

content security policy violations due to the same-origin

policy. Proceedings of the 26th International Conference

on World Wide Web.

[18] Patil, K., & Shah, R. (2018). A measurement study of the

sub resource integrity mechanism on real-world

applications. International Journal of Security and

Networks, 13(2), 129.

[19] S.Choudhary, A., & L. Dhore, M. (2012). CIDT:

Detection of malicious code injection attacks on web

application. International Journal of Computer

Applications, 52(2), 19-26.

[20] Mitropoulos, D., Louridas, P., Polychronakis, M.,

& Keromytis, A. D. (2019). Defending against web

application attacks: Approaches, challenges and

implications. IEEE Transactions on Dependable and

Secure Computing, 16(2), 188-203.

[21] Yadav, D., Gupta, D., Singh, D., Kumar, D., &

Sharma, U. (2018). Vulnerabilities and security of web

applications. 2018 4th International Conference on

Computing Communication and Automation (ICCCA).

[22] Products - content security policy. Report URI. (n.d.).

Retrieved May 14, 2022, from https://report-

uri.com/products/content_security_policy

[23] OWASP, "OWASP Top Ten," OWASP, 2020. [Online].

Available: https://owasp.org/www-project-top-ten/.

[Accessed 31 07 2020].

http://www.ijcit.com/
https://owasp/

