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Abstract—Segmenting brain tumors in medical images plays a 

crucial role in diagnosis and monitoring of medical conditions. 

However, the segmentation process is still performed manually, 

consuming time and exhibiting variability among assessors. This 

research aims to develop the RSU U2-Net+ architecture for brain 

tumor multilabel segmentation in 3D images. The RSU U2-Net+ 

architecture consists of 9 interconnected blocks, employing 

broader connectivity in each block. The architecture is reinforced 

with the use of Residual U-blocks (RSU) to enhance image 

understanding across various scales without significantly 

increasing computational load. Testing on data reveals that the 

RSU U2-Net+ architecture performs well, as indicated by a dice 

coefficient score of 0.779, IoU of 0.6439, recall of 0.7541, and 

specificity of 0.9911. Evaluation is also conducted for each tumor 

label. Recall and specificity for edema are 0.8690 and 0.9851, for 

enhancing tumor are 0.7991 and 0.9956, and for non-enhancing 

tumor are 0.5942 and 0.9927. This research makes a significant 

contribution to the development of advanced medical image 

analysis technology. The achieved results have tangible benefits 

for medical practitioners and patients, with the potential to 

enhance the speed and consistency of brain tumor segmentation in 

3D medical images. 

Keywords-component; Computer Vision, Deep Learning, RSU 

U2 Net+, Brain Tumor 

I.  INTRODUCTION  

Brain tumors are one of the most threatening diseases to a 
patient's health and quality of life. Brain tumors occur due to the 
growth of abnormal cells within the brain that can be malignant 
or benign. Malignant brain tumors, such as gliomas, can cause 
serious and life-threatening symptoms, such as severe 
headaches, seizures, visual disturbances, and behavioral changes 
[1]. According to the International Agency for cancer research 
at WHO in 2020 reported that there were 168,346 male patients 
and 139,756 female patients suffering from brain tumors 
worldwide [2]. 

The disease is often difficult to diagnose early, and when 
detected, treatment is complex [3]. Segmenting brain tumors 
from 3D medical images, such as MRI (Magnetic Resonance 
Imaging) and CT (Computed Tomography) images, is a key step 
in diagnosis, treatment planning, and monitoring disease 
progression.  

In general, brain tumor segmentation is performed manually 
by radiologists, which is time-consuming and can have inter-
rater variations [4]. Therefore, in recent years, the development 
of automated segmentation technology using neural networks 
has become very attractive [5]. Artificial neural networks, 
particularly in the form of Convolutional Neural Networks 
(CNNs), have produced promising results in medical image 
segmentation tasks, including brain images [6]. 

One CNN architecture that stands out in semantic 
segmentation is the U-Net architecture. U-Net is an artificial 
neural network architecture developed specifically for semantic 
segmentation tasks in image processing and has been 
successfully applied in 2D medical image segmentation tasks 
with impressive performance [7]. This architecture was first 
introduced by Olaf Ronneberger, Philipp Fischer, and Thomas 
Brox in their paper entitled "U-Net: Convolutional Networks for 
Biomedical Image Segmentation" in 2015 [8].  

However, its use in the context of 3D medical images, which 
have additional dimensions and higher complexity, is still a 
challenge [9]. Brain tumor segmentation in 3D medical images 
requires the ability to identify and separate tumors from normal 
brain structures in three-dimensional space [10]. 

In this research, a RSU U2 Net+ architecture is developed for 
brain tumor segmentation in 3D medical images that will make 
a significant contribution to the medical world [11]. This 
architecture will be trained on the BraTS public dataset which 
stands for "Brain Tumor Segmentation" with 3D brain tumor 
segmentation images [12]. RSU U2 Net+ has a deeper 
architecture than the regular U-Net and applies residual blocks 
that allow the original information of the input to flow more 
freely through the neural network [13]. It also has better 
regularization techniques that help prevent overfitting and 
improve generalization to unseen data. The development of this 
architecture aims to improve accuracy and efficiency in the 
diagnosis process, assist in more targeted treatment planning, 
and enable better monitoring of disease progression [14]. In 
addition, by improving automation capabilities in brain tumor 
segmentation, it can reduce inter-rater variability and speed up 
the patient care process [15]. The results of this study will 
hopefully have a positive impact in the medical world, allowing 
medical professionals to better deal with the complexities of 
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brain tumors, and ultimately, improve the treatment and 
prognosis of patients suffering from this disease [16]. 

 

II. METHODS 

 

A. Data 

The dataset used comes from the BratTS 2017 3D MRI 
image dataset in Nifty format, which consists of 484 brain MRI 
scan images along with a segmentation mask that shows the 
border or area of brain tumor identification. This brain MRI scan 
image consists of several channels, namely flair, T1w, T1-Gd, 
and T2w. In this dataset, there is information about the brain 
tumor segmentation mask which is divided into several labels, 
namely edema, non-enhancing tumor, and enhancing tumor. 
Each 3D MRI image has a volume of 240 × 240 × 155 × 4 
and mask 240 × 240 × 155. 

 

IMAGE 

 

MASK 

 

 

Figure 1. Image and Mask in 2D and 3D Preview 

 
 
The researcher used one-hot encoding to provide binary 

representation for each mask, resulting in masks with their own 
vector dimensions of 240 × 240 × 155 × 3. After that, colors 
were assigned to the mask for each label: red for edema, green 
for non-enhancing tumor, and blue for enhancing tumor. The 
masks were then integrated into the 3D image. 

B. Preprocessing 

For data preprocessing, the researcher employed a patch 
approach to generate sub-volumes. This method randomly 
generates 5 sub-volumes for each 3D image and applies the 
criterion that only 10% of the tumor area will be selected. This 
approach is utilized to ensure that the model focuses on relevant 
pixels and guarantees that the data used in this research has a 
significant representation in important areas for analysis. 
Subsequently, this sub volume will be standardized to ensure 
uniformity pixel value that applied to the model. After 
generating sub volumes from 484 3D images, we will split the 
sub volume into 80% for training data, 10% for validation data, 
and 10% for testing data.   

 

C. Proposed Architecture 

The RSU U²-Net+ architecture consists of 6 interconnected 

U-Net+ blocks and 3 residual custom dilated blocks. Each U-

Net+ block employs broader connectivity inspired by U-Net++. 

Additionally, the architecture is reinforced with the use of 

Residual U-blocks (RSU) to enhance image understanding 

across various scales without significantly increasing 

computational load. Furthermore, Residual Custom Dilated 

Blocks are utilized to examine information at greater depths or 

wider receptive fields up to dilation 8. 

 

1) Phase 1: (RSU U-Net+ Block) 

 
Figure 2. 1 Blok 3D RSU U-Net + 

 

 

The first phase of the RSU U² Net+ architecture to be 

developed consists of 6 blocks with the same operational 

approach but varying numbers of layers per block. In the 

encoder section, a 3D image of a brain tumor is taken as input 

with dimensions of 160 x 160 x 16. Feature extraction is then 

performed using convolution layers (kernel size = 3×3×3), 

followed by Batch Normalization. Batch Normalization 

calculates the batch's mean and standard deviation, normalizing 

the data. The normalized data is then passed through ReLU 

activation. By using Batch Normalization before ReLU, it helps 

maintain the distribution of the convolution layer output, 
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making it more stable during training. Following that, there is a 

downsampling stage using maxpooling to reduce the spatial 

dimensions of the image data by half, aiding in extracting 

crucial features and allowing the U-Net network to learn 

increasingly complex features during subsequent convolution 

layers. 

 

Subsequently, after the encoder, there is a bridge section. The 

bridge is a key component in U-Net that facilitates the flow of 

information between the encoder and decoder. This bridge 

utilizes convolution layers, Batch Normalization, ReLU 

activation, and dilation of 2 to merge features extracted by the 

encoder with features to be used in the decoding process. 

Dilation of 2 at this stage is employed to allow the CNN 

network to access information farther from points in the input 

image. This is valuable in tasks like image segmentation, where 

the network needs to understand a broader context. Next, there 

is the final part in the U-Net architecture, which is the decoder. 

After the bridge, the decoding process is performed using 

Upsampling or Conv3D Transpose operations to restore the 

image resolution to its original size. In this section, Concatenate 

operations are also conducted, merging information from the 

bridge with skip connections (contextual information from the 

encoder). This is crucial to preserve the necessary details and 

context in producing accurate segmentation or reconstruction 

results. The researcher also introduces a modification to this 

concatenation operation, using two convolution layers to create 

an additional skip connection. This modification is designed to 

allow an additional flow of information and help preserve 

higher-level details in the image segmentation task. This 

modification is inspired by the U-Net++ architecture introduced 

in the paper titled "Unet++: A Nested U-Net Architecture for 

Medical Image Segmentation" [17]. However, in this study, the 

researcher opts for a U-Net+ variation due to computational 

burdens and a significant increase in parameter count in 3D 

image segmentation tasks. The final operation in this block is 

Addition. The researcher adds the result of this decoding 

process to the original features extracted at the beginning. This 

aims to retain the original details of the image that may be lost 

during the convolution and pooling processes in the encoder. 

 

2) Residual Custom Dilated Block 

 

 
Figure 3. Blok 3D Residual Custom Dilated 

 

 

The second phase of the RSU U^2 Net+ architecture consists 

of 3 blocks with the same operation and the same number of 

layers per block as the previous phase. These blocks utilize the 

same operations as in the previous phase. What sets this block 

apart is the use of dilation rates 4 and 8. This block is not a U-

Net architecture consisting of encoder, bridge, and decoder, but 

rather a Residual Custom Dilated Block used to examine 

information further or a wider receptive field up to dilation 8. 

The use of larger dilation in these convolutions has several 

potential advantages such as a larger receptive field and 

expanding contextual understanding. 

 

3) Full RSU U2 Net + 

 
Figure 4. RSU U2 Net + Architecture 

 

 

The illustration above depicts the full architecture of the RSU 

U2 Net+, consisting of 9 blocks until reaching the final output. 

Here are the numbers of convolutional kernels used in each 

block: 

 
TABLE I.  NUMBER OF KERNELS IN BLOCK 1 - 4 

𝐑𝐒𝐔 𝐔𝟐𝐍𝐞𝐭 +   Blok 1 Blok 2 Blok 3 Blok 4 

KN_1 32 64 128 256 

KN_2 32 32 64 128 

 

 

TABLE II.  NUMBER OF KERNELS IN BLOCK 5 - 9 

𝐑𝐒𝐔 𝐔𝟐𝐍𝐞𝐭 +   Blok 5 Blok 6 Blok 7 Blok 8 Blok 9 

KN_1 512 256 128 64 32 

KN_2 256 128 64 32 32 

 

    In this architecture as well, there are skip connections 

between blocks, allowing direct flow of information between 

different levels in the architecture, which helps maintain higher 

and lower-level feature information during the image 

segmentation process. For the final output, the researcher uses 

sigmoid activation to determine the regions that constitute 
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edema, non-enhancing tumor, and enhancing tumor. Sigmoid is 

used because brain tumor segmentation is a multilabel 

segmentation where certain areas can have multiple labels 

simultaneously, and each label is interpreted as an independent 

probability. 

 

The RSU U^2 Net+ architecture is a robust model for image 

segmentation, especially in the context of object segmentation 

tasks that require high precision and accuracy. With 

hierarchical convolutional layers, dilation techniques, and 

information fusion from various resolution levels, this model 

can retain significant detail in the images. The output results 

from this architecture have high resolution and are suitable for 

applications in 3D brain tumor image segmentation. 

 

D. Training  

The model training process with RSU U2 Net+ architecture 

will use training data and validation data. Validation data will 

be used to evaluate the model during the training process and 

monitor the model to measure how well the model work on the 

data that the model hadn’t never seen. The researcher will use 

soft dice loss as loss function to handle the multilabel 3D 

segmentation because soft dice loss leads to smoother 

optimization landscapes. The continuous nature of the soft dice 

loss allows for more stable and gradual updates to the model 

weights during training. This can result in more reliable 

convergence during the optimization process. For the soft dice 

loss formula: 

 

𝑆𝑜𝑓𝑡 𝐷𝑖𝑐𝑒 𝐿𝑜𝑠𝑠 = 1 − 
1

3
∑

2× ∑ 𝑝𝑖×𝑔𝑖+𝜀𝑁
𝑖=1

∑ 𝑝𝑖
2+ ∑ 𝑔𝑖

2𝑁
𝑖=1

𝑁
𝑖=1 +𝜀

3
𝑐=1  (1) 

 

Where: 
𝑝𝑖  : the predicted value generated by the model for each  

      pixel 𝑖 
𝑔𝑖  : the ground truth value for each pixel 𝑖 

𝑁 : the total number of pixels in the 3D image 

ε  : the epsilon value (0.00001) to avoid division by zero 

𝑐  : class (1,2,3) 

 

As the optimization algorithm, the researcher will use the 

Adam optimizer because this algorithm combines the 

advantages of two optimization methods, such as RMSprop and 

Momentum, making it very effective in finding the local 

minimum.  

E. Evaluation 

As the evaluation modeling we will use 4 evaluation matrix, 

such as soft dice score, jaccard index (IoU), sensitivity (recall), 

and specificity. The evaluation matrices of soft dice score and 

Jaccard index will be used to monitor the model training 

process and tune parameters. After the training process is 

completed, these four evaluation matrices will also be tested on 

the testing data. 

1) Dice score coefficient (DSC): This matrix calculates the 

overlapping portion between the predicted and ground truth 

areas, multiplied by 2 to place greater emphasis on the 

intersecting regions. It is then divided by the total number of 

elements in both areas. This matrix provides an insight into how 

well the model predictions align with the location and shape of 

the actual areas in the identified 3D brain tumor segmentation 

data. For the dice score coefficient formula: 

 

𝐷𝑆𝐶 =  
1

3
∑

2× ∑ 𝑝𝑖×𝑔𝑖+𝜀𝑁
𝑖=1

∑ 𝑝𝑖+ ∑ 𝑔𝑖
𝑁
𝑖=1

𝑁
𝑖=1 +𝜀

3
𝑐=1            (2) 

 

Where: 
𝑝𝑖  : the predicted value generated by the model for each  

      pixel 𝑖 
𝑔𝑖  : the ground truth value for each pixel 𝑖 

𝑁  : the total number of pixels in the 3D image 

ε  : the epsilon value (0.00001) to avoid division by zero 

𝑐  : class (1,2,3) 

 

2) Intersection of Union (IOU): The calculation of IoU 

dividing the intersecting area by the union area of the prediction 

and ground truth. The higher the IoU value, the better the brain 

tumor segmentation results of the model in matching the 

volume with the 3D ground truth. For the IoU formula: 

 

𝐼𝑜𝑈 =  
1

3
∑

∑ (𝑝𝑖×𝑔𝑖)𝑁
𝑖=1 +𝜀

∑ (𝑝𝑖+𝑔𝑖−𝑝𝑖×𝑔𝑖)+𝑁
𝑖=1 𝜀

3
𝑐=1                            (3)       

 

Where: 
𝑝𝑖  : the predicted value generated by the model for each  

      pixel 𝑖 
𝑔𝑖  : the ground truth value for each pixel 𝑖 

𝑁  : the total number of pixels in the 3D image 

ε  : the epsilon value (0.00001) to avoid division by zero 

𝑐  : class (1,2,3) 

 

3) Sensitivity (Recall): Sensitivity measures the model’s 

ability to correctly detect true positive areas among all actual 

positive areas. This matrix indicates the extent to which a model 

identity and map actual tumor areas in medical imags. For 

sensitivity formula: 

 

Sensitivity = 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
          (4) 

 

4) Specificity: Specificity measures the model’s ability to 

correctly identitiy true negative areas among all actual negative 

areas. This matrix reflects how well the model can accurately 

distinguish non-tumor areas. For the specificity formula: 

Specificity = 
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
          (5) 

III. RESULT AND DISCUSSION 

The data has dimensions of 240, 240, 155 with 4 channels 
including Flair, T1w, T1-Gd, and T2w, along with a mask sized 
240, 240, 155 containing 3 labels: edema, non-enhancing tumor, 
and enhancing tumor. Following data processing, the researcher 
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generated 1000 sub-volumes from 200 3D images that meet the 
specified criteria. These sub-volumes were then split into 800 
training data, 100 validation data, and 100 testing data. During 
the model training process using soft dice loss, the researcher 
utilized the training data for model training and the validation 
data for monitoring. The model's performance was assessed 
using testing data with evaluation metrics including dice score 
coefficient, IoU, recall, and specificity. The model training was 
conducted on Colab Pro using a paid version of GPU T4 with a 
16 GB GPU memory.  

A. Training Process 

A sub-volume with dimensions (160, 160, 16) was processed 
using the RSU U^2 Net+ architecture for model training. The 
training process was conducted with 800 training data and 100 
validation data to train the model and evaluate the performance 
of this architecture over 35 epochs, with a learning rate set to 
0.00001 and a batch size of 2. 

 
Figure 5. Training Process with RSU U2 Net+ Architecture 

 
 

This architecture is capable of learning patterns within the 
data and demonstrates consistent improvement from start to 
finish. The loss function values on the training set show a 
significant decrease from 0.4011 in the first epoch to 0.0814 in 
the last epoch (35 epochs), indicating effective learning and 
approaching convergence. Evaluation metrics such as mean 
Intersection over Union (mean IoU) and dice coefficient for both 
training and validation also exhibit consistent improvement 
throughout the training process. This suggests that the model 
becomes more proficient in understanding and generating object 
segmentation in previously unseen data. These changes indicate 
the model's success in recognizing more complex patterns and 
features over time, leading to overall performance improvement. 

 

 
Figure 6. Training Process with U-Net Architecture 

 
 

The U-Net architecture used as a comparison to the results 

of the training process with the RSU U2 Net+ architecture also 

exhibits commendable performance. The loss function on the 

training set decreases from 0.4619 in the first epoch to 0.0993 in 

the last epoch (35 epochs), indicating model convergence and its 

ability to reduce prediction errors. The mean Intersection over 

Union (mean IoU) and dice coefficient values consistently 

improve during training, especially on the validation set.  

 
TABLE III.  LOSS AND VALIDATION LOSS DURING MODEL TRAINING 

Architecture  Loss Val loss 

RSU U2Net + 0.0814 0.1320 

U-Net 0.0993 0.1357 

 

 
TABLE IV.  DSC AND IOU COMPARISON DURING MODEL TRAINING 

 Architecture DSC IoU Val DSC Val IoU 

RSU U2Net + 0.8497 0.7420 0.8007 0.6735 

U-Net 0.8269 0.7105 0.8045 0.6790 

 

 
TABLE V.  COMPUTATIONAL PERFORMANCE 

Architecture  GPU Training Time 

(minutes) 

Parameter 

RSU U2Net + T4 397.7 51.490.695 

U-Net T4 433.6 16.318.307 

 

Despite the RSU U² Net+ architecture having a larger 

number of parameters compared to U-Net, RSU U² Net+ 

manages to complete the training process in a shorter time. RSU 

U² Net+ requires approximately 397.7 minutes for training, 

while U-Net takes longer, around 433.6 minutes. Furthermore, 

RSU U² Net+ achieves competitive evaluation results, including 

Dice Coefficient, IoU, and loss on both training and validation 

data, when compared to U-Net. This indicates the efficiency and 

high performance of RSU U² Net+, making it a consideration for 

selecting an architecture for medical data segmentation tasks. 
 

B. Model Evaluation 

After the training process is completed, the model will 

undergo an evaluation process on 100 testing data using the 

Dice Score Coefficient, IoU, sensitivity (recall), and specificity. 

 
TABLE VI.  MODEL EVALUATION WITH DSC AND IOU  

Architecture Dice Score Coefficient IoU 

RSU U2Net + 0.7779 0.6439 

U-Net 0.7768 0.6424 

 

1) DSC and IoU RSU U2 Net+ Architecture 

Based on the evaluation using 100 testing data, the RSU U² 

Net+ architecture achieves a Dice Coefficient of 0.7779 and an 

Intersection over Union (IoU) of 0.6439. These evaluation 

results demonstrate the model's capability in accurately 

segmenting objects in the test data, with a high level of 

precision and similarity between the predicted results and the 

ground truth. 
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2) DSC and IoU U-Net Architecture 

Based on the evaluation using 100 testing data, the U-Net 

architecture also shows good results with a Dice Coefficient of 

0.7768 and an IoU of 0.6424, although it is still surpassed by 

the RSU U² Net+ architecture. 

 

 
TABLE VII.  MODEL EVALUATION WITH SENSITIVITY AND SPECIFICITY  

 𝐑𝐒𝐔 𝐔𝟐𝐍𝐞𝐭 + U-Net 

Label Sensitivity 

(Recall) 

Specificity Sensitivity 

(Recall) 

Specificity 

Endema 0.8690 0.9851 0.8566 0.9841 

Enhancing 

Tumor 

0.7991 0.9956 0.7262 0.9970 

Non-

enhancing 

Tumor 

0.5942 0.9927 0.5551 0.9951 

 Mean 0.7541 0.9911 0.7126 0.9921 

 

 

3) Sensitivity and Specificity RSU U2 Net+ Architecture 

Based on the evaluation matrix results, the RSU U² Net+ 

architecture demonstrates excellent performance in classifying 

three labels: Edema, Enhancing Tumor, and Non-enhancing 

Tumor. The highest sensitivity (recall) is obtained for the 

Edema label at 0.8690, followed by Enhancing Tumor with a 

value of 0.7991, and Non-enhancing Tumor with a value of 

0.5942. Overall, the average sensitivity reaches 0.7541, while 

specificity reaches 0.9911. These results indicate that RSU U² 

Net+ effectively recognizes the presence and location of the 

three types of lesions in medical images. 

 

 

4) Sensitivity and Specificity U-Net Architecture 

Based on the evaluation matrix results, the U-Net architecture 

also shows good results in classifying the three labels; however, 

the sensitivity values are lower compared to RSU U² Net+. The 

highest sensitivity is obtained for the Edema label at 0.8566, 

followed by Enhancing Tumor with a value of 0.7262, and Non-

enhancing Tumor with a value of 0.5551. The average 

sensitivity of U-Net reaches 0.7126, while specificity reaches 

0.9921. These results indicate that RSU U² Net+ is superior in 

recognizing the presence and location of the three types of 

lesions in medical images compared to U-Net. 

 

 

C. Predict and Vizualization 1 Image 3D and 2D View 

The trained and tested RSU U² Net+ model is used to 

observe the prediction results and visualizations for several 

brain tumor patients. In addition to displaying 3D predictions, 

the researchers also provide predictions and visualizations in 

the form of per-slice 2D with three different perspectives: 

sagittal (left-right), coronal (front-back), and transversal (top-

bottom) to gain a deeper understanding. 

1) Brain Tumor Patient 100 

 
Prediction                            Ground Truth 

 

 

Figure 7. Prediction and Visualization 3D and 2D Brain Tumor Patient 100 
Slice 110  

 

 
TABLE VIII.  3D PREDICTION RESULTS EVALUATION FOR PATIENT 100 

USING SENSITIVITY AND SPECIFICITY 

 Endema Non-Enhancing 

Tumor 

Enhancing 

Tumor 

Recall 0.8359 0.6508 0.9609 

Specificity 0.9513 0.9915 0.9591 

 

In the prediction and visualization of brain images for patient 

100, the model provides good results with a high recall rate for 

enhancing tumors and edema. However, in the non-enhancing 

tumor category, the recall is slightly lower. The high specificity 

rate indicates that the model tends to minimize the number of 

false positives or errors in segmenting non-tumor areas as 

tumors. This is a positive indication regarding the model's 

ability to identify non-tumor areas in brain images. Despite the 

decrease in performance in the non-enhancing tumor category, 

overall, the model can be considered effective in identifying 

various types of brain tumors for patient 100. 
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2) Brain Tumor Patient 10 

 
Prediction     Ground Truth 

 
 

 
Figure 8. Prediction and Visualization 3D and 2D Brain Tumor Patient 10 

Slice 100  

 

 
TABLE IX.  3D PREDICTION RESULTS EVALUATION FOR PATIENT 10 

USING SENSITIVITY AND SPECIFICITY 

 Endema Non-Enhancing 

Tumor 

Enhancing 

Tumor 

Recall 0.9265 0.0169 0.6067 

Specificity 0.9639 0.9958 0.9593 

 

In the prediction and 3D visualization for patient 10, the 

model shows quite impressive evaluation results, especially 

considering the relatively small size of the tumor (below 5% of 

the background) compared to the sizes of tumors in other 

patients. The model demonstrates a high ability to detect edema, 

as indicated by a recall of 92.65%, showcasing its capability to 

recognize areas genuinely affected by edema. However, in non-

enhancing tumors, the recall is very low (1.69%) with a high 

specificity rate of 99.58%, indicating the model's tendency to 

minimize errors in classifying non-enhancing tumor areas as 

non-tumor. For enhancing tumor types, the model achieves a 

recall of 60.67% with a specificity of 95.93%. These results 

provide an understanding that the model is effective in detecting 

edema but faces challenges in recognizing non-enhancing 

tumors. 

 

IV. CONCLUSION 

Based on the design of the RSU U2 Net+ architecture and 
the conducted evaluations, several conclusions can be drawn. 
The RSU U2 Net+ model successfully enhances efficiency and 
reduces segmentation variability among evaluators while 
achieving consistency in interpreting brain tumor images. The 
resulting architecture holds the potential for further development 
and integration into systems for automated segmentation of 
brain tumors. Optimized for effective segmentation of 3D 
medical images, particularly brain tumors, the RSU U2 Net+ 
architecture demonstrates promising evaluation results, 
highlighting its suitability for applications in the field, as 
explored in the research titled 'The Application of the RSU U2 
Net+ Architecture for Brain Tumor Segmentation in 3D Images. 

Although this study has made a positive contribution to the 
development of the RSU U2 Net+ architecture for brain tumor 
segmentation in 3D images, there are some limitations that could 
be addressed to enhance the quality of future research. 
Particularly, future studies could benefit from comparing the 
RSU U2 Net+ architecture with alternatives beyond U-Net. 
Recommendations for further research include obtaining a larger 
and more diverse dataset, implementing additional data 
augmentation techniques, and exploring variants of soft dice loss 
that are more sensitive to imbalanced labels in multilabel 
segmentation problems. These suggestions aim to refine and 
expand the capabilities of the RSU U2 Net+ architecture in future 
investigations. 
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