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Abstract— The rapid growth of mobile devices and demand for 

mobile data have made maintaining capacity, high coverage, and 

data speed challenging. With the emergence of small cell 

networks, the Long-Term Evolution (LTE) system helped to 

address these issues, Femtocell technology is being deployed to 

provide improved indoor coverage. However, a major challenge 

is the frequent handover and unequal distribution of cell loads, 

which lead to a reduction in call and data rates. Small cells have 

changing and unplanned load distribution over time, resulting in 

certain cells suffering high user density and strong resource 

competition, while others have low user density and wasteful 

resources due to low consumption. This imbalance in cell load 

distribution greatly influences overall network performance and 

prevents Femtocells from realizing their full potential. Despite 

several efforts by researchers to enhance network 

communication, handover is still a challenging issue, many 

related works have been done in the field but still it needs 

improvement. This research proposes an Optimized Q-learning-

based Handover Decision Algorithm for Femtocells using Load 

Balancing in LTE-A Networks to improve overall network 

performance. The algorithm learns to prioritize and select cells 

with low load during target cell selection and not only provides 

good Quality of Service (QoS) but also has a low load, resulting in 

better traffic distribution across the cells. Several simulations 

were performed using LTE-Sim. Results proved the 

outperformance of the proposed algorithm over the existing 

algorithm in terms of QoS with a packet loss ratio for CBR 

packet transmission of 512 bytes with a rate of 8 packets/second 

intervals, 88.53%, and VoIP packet transmission of 32 bytes per 

20 ms/time interval, 89.24% respectively.  

Keywords- lte-a; q-learning; load balancing; macrocell; 

femtocell; cbr; voip  

I.  INTRODUCTION 

Cell handover has been considered one of the most 
challenging issues in the Long-Term Evolution-Advanced 
(LTE-A) Macrocell-Femtocell network [1], [2]. The 
exponentially increased evolution of cellular systems from 3G, 
4G LTE to the future 5G, and the high increase of end-user 
items, such as Handsets, Tablets, Laptops, and Machine-to-
Machine (M2M) nodes has become a major generator of 
mobile data traffic, which led to a reduction in signal quality 
for indoor users, and it requires tens of thousands of Base 
Stations (BSs) that are densely deployed in a variety of sizes 
and capacities to provide high coverage and mobility of 
connectivity [4], [5]. A new technology called Femtocell has 
emerged, its main purpose is to increase indoor coverage for 
mobile communication at high speed [6].  

Research Project groups like the 3rd Generation Partnership 
Project (3GPP) are of high interest in trying to reduce the data 
traffic from Macrocells which will provide relief to both 
operators and users [7]. There has been a high increase in 
mobile data users over the last few years and it is still 
increasing day by day [8]. To cope with such an increased 
number of users, there is an immense need for a high-speed 
network because the existing network cannot support such a 
huge number of users. New network topologies are required 
that can efficiently accommodate mobile users [9]. There exist 
different approaches to tackle this challenging issue of a huge 
number of users and indoor coverage, these include 
improvement in the formats of transmitting signals and 
bringing the transmitter and receiver close to each other. Both 
of these approaches were costly for the operators and hence 
discarded. Another approach is to introduce small cells within 
the coverage area of Macrocells.  
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Femtocell is one of the small cells that is the best solution 
for offloading the traffic from Macrocell and also for 
improving indoor network coverage. Its deployment is also 
economical for the operators, due to the small coverage area 
from 10m to 100m, the frequency reuse approach is used 
effectively [10]. Also, Femtocell technology is of high interest 
for mobile operators to extend the cell phone coverage range, 
providing high-quality and high bit-rate services for indoor 
users, and supporting the increasing demand for data traffic in 
wireless networks [11]. Compared to Microcells and Picocells, 
Femtocells are deployed in indoor environments such as 
homes, offices, shopping malls airports, etc. to extend the 
coverage and improve the capacity of a mobile network [12]. 
The Femtocell access point (FAP) can be classified into two 
types depending on the capacity and number of users. They are 
classified as home FAP which can support three (3) to five (5) 
users and enterprise FAP which can support eight (8) to sixteen 
(16) users [4]. The Femtocell operates in a licensed spectrum 
and communicates with the operator's network over a 
broadband connection such as a Digital Subscriber Line (DSL) 
and cable modem [11]. Also, Femtocells are operated with low 
transmission power (maximum of 20dBm) and this transmitted 
signal power defines the Femtocell coverage area [13].  

There are many advantages to the deployment of 
Femtocells to both users and mobile network operators. For the 
users, the use of a Femtocell within the home enables far better 
coverage and capacity to be enjoyed, and the battery life of 
User Equipment (UE) is also improved because of the low 
power radiation [8]. For the network operators, the cost of 
deploying extra infrastructure to increase capacity is 
substantially reduced, as there is no added cost in maintaining 
and running the Femtocells. It simply provides a cost-effective 
means of improving capacity and Macrocell reliability. Despite 
these advantages of Femtocell technology, there are challenges 
associated with its deployment. These include interference 
management, resource allocation, and seamless handover [14]. 

In mobile communication, the Handover (HO) technique 
can be viewed as allowing the connected User Equipment 
(UE’s) with Evolved Node-B (eNB) or Home Evolved Node 
Base (HeNB), to be handed off to the next HeNB without any 
disconnection [15]. 

To ensure equal resource utilization across all cells, load 
balancing is used to address the uneven distribution of traffic 
load across multiple cells. There will be a high QoS in all cells 
and for all users if resources are used equally. Since a small 
number of UEs are associated with small cells due to their low 
transmit power in comparison to Macrocell, load balancing is a 
significant problem in LTE networks. A low load in Femtocells 
and a high load in Macrocells will result from this [16]. 

II. LITERATURE REVIEW 

[17] Provide a unique technique for load balancing and 
resource allocation in the O-RAN system, employing 
reinforcement learning to dynamically distribute resources 
among multiple base stations. Simulations test the proposed 
algorithm's performance, indicating it produces a considerable 
increase in network throughput and fairness [17]. However, the 
performance may be influenced by network conditions, such as 
heavy interference or congestion. 

[18] Consequently, HO is one of the main aspects of HSTs 
to guarantee the seamless connectivity and communication of 
served UEs inside train carriages. In fact, in a high-speed 
moving CCMF environment, HO can occur more frequently, 
therefore, providing an effective HO procedure to mitigate the 
outage and dropping call probabilities were the main targets of 
this work. The proposed HO procedure considered the process 
of handing over the MF itself from one DeNB to another 
accompanied by a group UEs HO for all attached UEs to the 
serving MF. The achieved results showed a reduction in the 
outage and dropping call probabilities of the proposed HO 
scheme compared to the conventional HO scheme [18]. 
However, the work concentrates on dropping call probability to 
reduce the HO schemes, there is a need to further improve the 
Quality-of-service parameters as well as the energy 
consumption.  

[19] In this paper, it was found that most handover decision 
algorithms handled only one Femtocell one Macrocell scenario 
after looking at a wide spectrum of handover decision 
algorithms. In light of the current heavy and haphazard 
Femtocell deployment, this scenario is not plausible. The new 
decision algorithm that has been developed to address the 
difficulties raised above, including energy inefficiency, is the 
primary benefit of this paper. The proposed algorithm handles 
handovers of UEs that are members of the CSG and those that 
are not. Additionally, it addresses the problem of cell search by 
combining CSG and NCL. For UEs at medium and high 
mobility, the adoption of a time to trigger with a parameter of 5 
seconds has been found to have a massive decrease in the 
occurrence of duplicated handovers enabling the Advanced 
LTE system's energy efficiency to be improved, even though 
not all segments were simulated. Since RLF was reduced, the 
needless handover ratio decreased by almost 10%, and the 
installation of TTT boosted system energy efficiency by 30% 
[19]. However, further research can be carried out to improve 
the quality-of-service parameters, such as Throughput, End-to-
End Delay, Packet Delivery ratio, and Packet Drop as well as 
Energy consumption.  

[20] Present a new load-balancing approach based on deep 
reinforcement learning. The approach utilizes a Double Deep 
Q-Network (DDQN) to control two parameters: Cell Individual 
Offset (CIO) and eNodeBs' transmission power. By adjusting 
these parameters, the proposed model aims to achieve better 
load distribution in the network. The results demonstrate that 
the proposed approach improves the network's overall 
throughput by up to 21.4% compared to a baseline scheme and 
by 6.5% compared to a scheme that only adapts CIOs [20]. 
However, The Authors briefly mention existing load-balancing 
algorithms that rely on CIO adjustment but do not consider 
neighboring eNodeB utilization. 

[21] The system performance obtained from the proposed 
scheme indicates a lower percentage of control signaling rate 
and Packet Loss Ratio compared to the benchmarks used for 
this algorithm. The simulation results indicate that the 
suggested scheme based on the Q-learning methodology can 
help to improve the handover stage in LTE-A systems [21]. 
However, choosing appropriate factors to enhance the cell 
selection stage is still a challenge.  Further work is to be 
designed and implemented in this field, including load 
balancing, hybrid Femtocell schemes, and UE velocity. 
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[15] In this paper, the simulation result shows up some 
advantages of the new proposed HO mechanism as eliminating 
the unnecessary HO and ensuring the load balance of the target 
FAP and the entire network. Also, the serving cell takes into 
consideration the real capacity of the available survived target 
FAP. Note that, if the target FAP has a heavy UE capacity state 
around the threshold, the serving FAP will give up and will 
choose the next lighter load cell for the HO process. Finally, 
this mechanism can lighten the over-charge of resource usage 
by using the BW resources of selected target FAP only. The 
results demonstrate that using the proposed scheme to predict 
the best target FAP for HO, causes a better performance 
compared to the traditional procedure. Also, it improves the 
QoS in the entire network by decreasing the failure probability 
rate and reducing the effect of ping-pong at an almost stable 
level [15]. However, if the target FAP has a heavy UE capacity 
state around the threshold, the serving FAP will give up and 
will choose the next lighter load cell for the HO process, which 
further introduces a delay to the network as well as energy 
wastage due to time it takes before selection between lighter 
load and heavy. 

[22] This paper analyzed the handover performance in the 
Femtocell network by using two types of handover algorithms 
which are the standard A2-A4-RSRQ handover algorithm and 
the proposed prediction handover algorithm. The experiments 
were used to analyze the handover performance in terms of the 
number of handovers and the user throughput. The results show 
that predicting the best target cell and the best time for 
handover causes a better performance to compare if only 
relying on RSRQ value. The experiments also analyze the root 
cause of user throughput degradation [22]. Nevertheless, there 
is a need for further improvement on the aspect of mobility 
management in the Femtocell network and examining the 
interference level as well as energy consumption. 

[23] Introduced a handover algorithm based on calculating 
the equivalent received signal strength and dynamic margin. 
The algorithm determines when a handover from Macrocell to 
Femtocell or vice versa should occur based on these metrics. 
The results show improvements in two major performance 
parameters: reduction in unnecessary handovers and Packet 
Loss Ratio. The proposed algorithm achieves a reduction of 
55.27% and 23.03% in Packet Loss Ratio and a reduction of 
61.85% and 36.78% in unnecessary handovers at speeds of 120 
km/h and 30 km/h, respectively. [23]. However, this research 
does not explicitly address the algorithm's scalability and 
robustness in large-scale networks or the presence of dynamic 
network conditions. As the number of femtocells and mobile 
devices increases, the algorithm's efficiency and ability to 
handle network dynamics should be thoroughly investigated. 

[24] In this research work, an enhanced handover algorithm 
has been proposed for Macrocell to femtocell handover. 
Specifically, the algorithm takes into consideration the speed of 
the user as well as the signal level of the user to the Femtocells 
before making the handover decision. Calls from the high-
speed users are made to connect to the Macrocell whereas calls 
from the low-speed users were connected to the Femtocell. In 
addition, the potential Femtocells have been listed, and the 
algorithm further checks for the target Femtocell that can 
accommodate new users [24]. However, there is a need to 
determine the effect of the call admission control scheme on 

both the call blocking and call dropping probability as well as 
improvement in the quality-of-service parameters. 

[25] In this paper, the authors proposed a new algorithm to 
minimize the target FAPs and reduce the number of handovers 
by choosing the best target FAP among the neighbor FAPs list. 
During the handover procedure, the researchers choose the 
target FAP with optimum RSSI value and optimum Cell Load 
to avoid handover failure and frequent subsequent handovers. 
The handover takes place specifically to a UE as identified in 
the FAP’s list [25]. Despite that, there is a need for extra 
processing than the formal handover and also Femto should 
maintain a separate table for each UE attached to it, also it can 
be modified to maintain a unified table for all the UEs attached 
to the Femto. 

[26] The LTE integrated system is the optimal solution for 
the upcoming mobile networks, the mobility management of 
Femtocellular with Macrocellular networks presents an 
important part of the effective deployment of the Femtocell 
technology, offering LTE integrated system seamless and fast 
handover, minimizing unnecessary handover, and a minimum 
number of signaling during handover. [26]. However, there are 
still hard technical challenges to be studied as the optimization 
of the handover and interference management, extends the time 
spent by users attached to the Femtocells, also the whole 
solution for the mobility management in integrated systems is 
not considered. 

[8] In this paper, the researchers addressed the challenge of 
handover in an LTE Macrocell-Femtocell network consisting 
of one Macrocell and open-access Femtocells. A new 
Femtocell-to-Femtocell handover decision algorithm based on 
the UE’s velocity and the RSS which selects an appropriate 
target Femtocell among many possible candidates is proposed. 
The proposed scheme reduces the number of handovers by 
increasing the time interval between handover triggers during a 
call connection. To avoid unnecessary handovers initiated by 
high-velocity users, the algorithm hands over these users to the 
microcell [8]. 

[27] Offer a Q-learning-based handover (HO) method for 
high-speed railway (HSR) wireless communications. The 
proposed approach leverages Q-learning algorithms to optimize 
HO choices and decrease superfluous HOs, which enhances 
network performance. The suggested method addresses the 
movement of the HSR and applies to a dense 5G HSR 
deployment [27]. However, the performance of the method 
largely depends on the correctness of the channel model 
utilized. The algorithm only considers four parameters (HO 
cost, SINR, RSRP, and period of stay) as rewards, which may 
not be adequate to capture all the critical elements that 
determine the HO choice. The approach is computationally 
expensive and needs a substantial amount of memory to store 
the Q-table, which may restrict its applicability in resource-
constrained contexts. Also, the time interval between the 
handover interval that is being increased will cause delay and 
decrease throughput as well as energy consumption. 

[28] In this paper, the authors proposed a SON handover 
scheme to improve the efficiency of handovers in enterprise 
Femtocell networks. The proposed SON handover scheme uses 
UE positions and sub-regional information inside the building 
to intelligently reduce unnecessary handovers. In comparison 
with the [28] scheme, the proposed algorithm shows an 
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improvement of 2% in the throughput of UEs. [28]. However, 
the research work focused on throughput only, there is a need 
to consider the load balancing factor for handover decisions 
and achieving energy efficiency in UE during handovers 

[29] In this paper, the researchers proposed a new handover 
decision algorithm based on the prediction of the mobile user 
position in a two-tier Macro/Femto environment. Specifically, 
the researchers exploited the predicted direction of the mobile 
user to identify a list of FAPs candidates that are most likely to 
be visited. The research shows an improvement over the 
traditional on the aspect of Drop rate and signal strength [29]. 
However, the research did not take into account the FAP's 
power, which might cause another handover or even degrade 
the performance of the network by introducing packet drop into 
the network which might lead to low throughput as well as 
packet delivery ratio. 

[30] This research paper proposed a machine learning 
algorithm to improve handover performance between indoor 
Femtocells and external Macrocells for LTE. Based on 
experience, the algorithm builds a representation of the radio 
environment and seeks to suppress handover in regions where 
unnecessary handover has been executed previously. The 
algorithm, which runs on the Femtocell base station, requires 
no prior knowledge of the architecture of the building in which 
it is deployed; thus, it is fully consistent with the SON plug-
and-play requirement. It is demonstrated that the algorithm can 
reduce unnecessary handover by up to 70% [30]. However, 
there is a need to consider optimal tuning of the TTT and 
handover parameters in situations where handover is deemed 
necessary. As part of this investigation, the effects of external 
interference and the impact on Macrocellular load are supposed 
to be considered to support the analysis of call drop rates.  

[31] In this paper, a revised signaling procedure of 
handover is presented based on the Home eNodeB GW in 
Femtocell integrated LTE-Advanced network. A handover 
algorithm based on the UE’s mobility state has been studied 
and evaluated in terms of handover signaling. The comparison 
with the traditional algorithm shows that the algorithms 
proposed in this research have a better performance in 
handover signaling overhead, especially for the high proportion 
of high mobility users scenario [31]. However, the researchers 
focus on high mobility users only the signaling overhead on 
lower mobility users degrades the performance parameters as 
well as energy consumption. 

[32] In this paper, we have proposed a HO decision 
algorithm for the LTE-A Femtocell network, which jointly 
considers the impact of user mobility, interference, and energy 
efficiency. The proposed algorithm utilizes standard signaling 
quality measurements to sustain service continuity and reduce 
the mean UE transmit power. System-level simulations showed 
that compared to existing algorithms, the proposed algorithm 
significantly reduces the interference and energy expenditure 
[32]. However, the algorithm increases the network's core 
network signaling, degrading the network performance of delay 
and throughput.  

[33] In this paper, an effective algorithm to reduce 
unnecessary handovers in an indoor-outdoor scenario has been 
proposed. This self-optimizing algorithm uses kernel methods 
and neural networks to improve handover efficiency while 
retaining the required plug-and-play functionality of SON in 

LTE systems. By monitoring the location of the user when a 
handover trigger is made, the Kernel SOM algorithm can be 
used to analyze the situation and decide whether the mobile 
user is within a zone where handover should be permitted or 
prohibited. Within this work, the assumption is made that a 
mobile user generally will walk past a window and through a 
door but the Femtocell is given no prior knowledge as to where 
these locations are within the environment. In a situation where 
the system has incomplete knowledge about the number of 
permissive and prohibition zones, the algorithm is still an 
improvement over a typical LTE system. It may be possible to 
propose values for k by a cursory survey of the indoor area by 
noting the number of doors and windows [33].  However, the 
work was built under the assumption of knowing the k value, 
which will degrade the throughput of the network, delay as 
well as energy consumption due to the inaccuracy of knowing 
the k value. 

[34] The authors presented Prefetch-based Fast Handover, a 
modified handover procedure that aims to tackle the 
shortcomings in Legacy Handover procedures introduced by an 
increasing number of Femtocells in modern LTE cellular 
networks. They focus on fast-moving UEs in the network that 
may otherwise fail to hand over to quickly passing Femtocells 
on their path. By enabling such UEs to handover to a larger 
number of Femtocells, and by speeding the handover process, 
they allow fast-moving UEs to take maximum advantage of 
Femtocells in the network, rather than relying mainly on the 
Macrocell. They make small modifications to the message flow 
in the Legacy Handover procedure, without making any 
changes to the system architecture, to achieve this faster and 
more efficient handover [34]. Despite that, the algorithm is at 
the cost of higher consumption of wireline network resources. 
Due to the concentration of the higher-moving UEs, also the 
algorithm works well on fast-moving rather than slow-moving 
UEs.  

[35] proposed a modification of the adaptive Handover 
Mechanism (HM) to enable its easy implementation to the 
networks with Femto Access Points (FAPs). The adaptive HM 
reduces the number of redundant handovers while keeping the 
throughput gain of open/hybrid access Femtocells as high as 
possible. Compared to the former adaptive HM assuming exact 
knowledge of cell radius and MS-AS distance, the proposed 
technique needs information neither on the UE location nor on 
the FAPs positions that cannot be easily obtained. The 
proposed solution uses either RSSI or CINR ordinarily 
measured by a UE during the scanning of its neighborhood 
[35]. Despite the efforts of the researchers in trying to alleviate 
handover, another issue arises which is the dependency on the 
RSSI or CINR which might cause energy wastage as well as 
uncontrollable delay.    

III. PROBLEM FORMULATION 

In the presence of addressing various issues in network 
performance such as unnecessary handovers, signaling rate, 
end-to-end delay, packet drop, packet delivery, load balancing, 
and throughput, researchers have made significant efforts to 
identify and fill the existing gaps. Despite these endeavors, 
certain gaps remained unaddressed.  

To ensure equal resource utilization across all cells, load 
balancing is to be used to address the uneven distribution of 
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traffic load across multiple cells. There will be a high QoS in 
all cells and for all users if resources are used equally. Since a 
small number of UEs are associated with small cells due to 
their low transmit power in comparison to Macrocell, load 
balancing is a significant problem in LTE networks. 

Therefore, the major contribution to this work, is the 
Optimization of [21], based on the Q-learning Algorithm for 
load balancing, to improve the performance parameters of 
packet loss using CBR and VoIP applications. 

IV. STATEMENT OF THE PROBLEM 

The growing number of mobile users, along with the need 
for more reliable and rapid wireless networks, has made it 
challenging to maintain capacity, high coverage, and data 
speed. The usage of small cell networks is one feasible 
approach to address these challenges, specifically Femtocells, 
which are made up of several types of small cells. However, a 
crucial difficulty in Femtocells is the unequal distribution of 
cell loads during cell selection in the handover process which 
affects the effective use of the network resources. 

Small cells have changing and unplanned load distribution 
over time, resulting in certain cells suffering high user density 
and strong resource competition, while others suffer from low 
user density and wasteful resource consumption. This 
mismatch in cell load distribution has a great influence on 
overall network performance and prevents Femtocells from 
realizing their full potential 

To address this issue, a load-balancing algorithm that 
prioritizes cells with low load during target cell selection in the 
handover process UEs be developed. The algorithm is to 
improve the usage of small cells by reducing Packet Loss 
Ratio, while efficiently allocating the load among cells to 
maximize the benefit of Femtocells. 

V. SIMULATION ANALYSIS 

Simulation modeling was used in this research, among the 
various methods of performance analysis. In this research 
Network Simulator Version 3.35 (NS3.35) is the simulation 
environment that was used for the implementation and 
evaluation of the proposed algorithm. A network Simulator is a 
discrete event simulator that supports various types of Transfer 
Control Protocol (TCP), User Datagram Protocol (UDP), and 
different models of Unicast and Multicast communications, as 
well as different Multicast protocols. Also, supports mobile 
networking such as local and satellite networks. However, it 
supports applications like web caching. Network Simulator 
(NS) uses Network Animator (NAM), an animation tool, 
developed in Tcl/Tk, to visualize the simulation packet traces 
which are created by running Network Simulation (NS) scripts. 
Network Simulator (NS) and NAM could be used together to 
demonstrate different networking issues. 

VI. SIMULATION SETUP 

In this section, simulation setup, and working of the 
optimized algorithm have been discussed. Network Simulator 
NS3.35 has been used to test the performance of the proposed 
algorithm. The simulation used two Macrocells, with gradual 
numbers of femtocells configured as 30, 50, 70 and 90, a 

constant UE velocity of 30 kmph and gradual numbers of UEs 
configured as 15 and 30. A number of simulations were 
performed to test the performance of the optimized algorithm 
by changing the number of Femtocells and UEs. 

TABLE I.  SIMULATION PARAMETERS 

Parameters Value Value 

Simulation Area 1000 x 1000m 

Macrocell 2 

Femtocell 30-90 

UE 15-30 

Macrocell TX Power 46 dBm 

Femtocell TX Power 20 dBm 

Bandwidth 25 

Threshold 10 

UE velocity 30 kmph 

VII. OPTIMIZED (Q-LEARNING ALGORITHM) 

TABLE II.  LIST OF NOTATIONS 

Parameters 

Value 
Value 

Q Quality table 

T Current time step 

s Current state 

a Current action 

R Reward received for taking action a in state s 

𝛼 Learning rate 

𝛾 Discount factor 

𝜈 Next state 

b Next action 

T Threshold value 

L Cell Load 

P Priority queues for handover requests 

 

The contribution of this research is based on the 
Optimization of the Reinforcement Learning Algorithm (Q-
Learning Algorithm) to improve the performance parameters, 
giving more emphasis on Load Balancing which is the gap 
identified in the research paper [21] and it is incorporated in the 
previous algorithm as:  

 By identifying the Load of each Cell with unequal 
distribution of traffic load over multiple cells in such a 
way that there is an even resource utilization in all the 
cells. Thus, having an even resource utilization, there 
will be a high QoS in all cells and for all users. 

 Ability to prioritize handover with higher load cell 
over that with lower load during the handover process. 

The equation is a recursive formula for updating the Q-
table, which stores the expected reward for taking a particular 
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action in a particular state. 𝑄𝑡 (𝑠, 𝑎) = (1 − 𝛼) 𝑄𝑡−1(𝑠, 𝑎) + 𝛼 
(𝑅𝑡 (𝑠, 𝑎) + 𝛾𝑚𝑎𝑥𝑏 𝑄𝑡−1(𝜈, 𝑏)) Equation  

The equation can be broken down into the following steps: 

1) (1 − 𝛼) 𝑄𝑡−1(𝑠, 𝑎) is the previous estimate of the 

expected reward for taking action a in state s. 

2) 𝛼 (𝑅𝑡 (𝑠, 𝑎) + 𝛾𝑚𝑎𝑥𝑏 𝑄𝑡−1(𝜈, 𝑏)) is the new estimate of 

the expected reward for taking action a in state s. The new 

estimate is calculated by multiplying the following factors:  

 The 𝛼 is the learning rate. This controls how much 
weight is given to the new estimate. 

 𝑅𝑡 (𝑠, 𝑎) is the reward received for taking action a in 
state s. 

 𝛾 is the discount factor. This controls how much 
weight is given to future rewards. 

 𝑚𝑎𝑥𝑏 𝑄𝑡−1(𝜈, 𝑏) is the maximum expected reward for 
taking any action in the next state 𝜈. 

The Q-table is updated using the equation at each time step. As 
the algorithm progresses, the Q-table will converge to the true 
expected rewards for all actions in all states. 

VIII. RESEARCH FRAMEWORK 

The framework of the optimized algorithm is presented in 
this chapter as a form of chart in Figure 1 the enhancement 
starts by developing the algorithm, then the algorithm is 
simulated, and after that, the algorithm is implemented, a 
decision is made either evaluating the results or modifying the 
existing algorithm, and then evaluating the results of the 
algorithm. Finally, validating the algorithm. 

 

Figure 1.  A framework of the enhanced model 

IX. DETAILED STATES OF THE PROPOSED ALGORITHM 

1) Existing State (s) 

2) Select an action (a) depending on the decision-selection 

strategy. 

3) If the load of cell L(s) is greater than the threshold T(s), 

handover the user to the next best cell. 

4) Consider load-aware state information and priority 

queues 

5) Execute the selected action and observe the reward 

(Rt+1), the next state (St+1), and the load of the cell L(s). 

6) Update the Q-table using the Q-learning update rule, 

where α is the learning rate and γ is the discount factor. 

7) Set the state for the next iteration (st ← st+1)s. 

X. OPTIMIZED ONE TRAIL OF Q-LEARNING PROCESS 

s: existing state 

a: activity taken depending on the decision selection strategy 

R (s, a): reward as an output of activity (a) in state (s) 

𝑠𝑛: upcoming state after executing an activity (a) 

L(s): load of cell in state s 

T(s): Load threshold for cell in state s 

P: priority queues for handover requests based on load 

conditions 

Step 1: set the initial state (s) 

Step 2: select an activity (a) depending on the decision 

selection strategy 

Step 3: if L(s) > T(s):  handover the user to the next best cell 

Step 4: consider load-aware state and priority queues 

Step 5: a reward R (s, a) is obtained as a result 

Step 6: update 𝑄𝑡 (𝑠, 𝑎) = (1 − 𝛼) 𝑄𝑡−1(𝑠, 𝑎) + 𝛼 (𝑅𝑡 (𝑠, 𝑎) + 

𝛾𝑚𝑎𝑥𝑏 𝑄𝑡−1(𝜈, 𝑏)) 

 Step 7: 𝑠 ← 𝑠𝑛 
By applying Optimized reinforcement learning in LTE 

Networks using Q-Learning, agents can learn to make optimal 
decisions to maximize call quality, data transmission rates, and 
overall network performance. They can adapt their actions 
based on the rewards received from the environment, leading to 
improved user experience and efficient utilization of network 
resources. 

XI. RESULTS AND ANALYSIS 

The results obtained from the simulation were discussed in 
this chapter. The following results were based on the packet 
loss Ratio and Control Signaling Rate of different UE groups 
using varying numbers of Femtocells. 

A. Packet Loss Ratio 

Packet loss refers to the ratio of transmitted packets not 
successfully delivered to the intending receiver or destination. 
It usually occurs when the sending node is unable to transmit 
the packet to the intending receiver during the handover 
process. However, congestion due to a lack of Load Balancing 
is one of the main reasons for packet loss. 

1) CBR Application: Figures 2 and 3 below depict the 

packet loss concerning change in packet transmission. In the 
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proposed algorithm Load Balancing was used to avoid the 

occurrence of congestion, with varying Femtocell density from 

30 to 90 cells for each UE group 15 and 30 using the CBR 

application, packet loss has been remarkably reduced in the 

Optimized algorithm compared to the existing algorithm, for a 

CBR packet transmission of 512 bytes with a rate of 8 

packets/second intervals. 
 

Figure 2.  15 UEs Packet Loss Ratio Comparison using CBR Application 

Figure 3.  30 UEs Packet Loss Ratio Comparison using CBR Application 

The proposed algorithm reduced the Packet Loss Ratio in 
comparison to [20] handover for each of both UE groups for 
each femtocell density using the CBR application. In general, 
the proposed algorithm with CBR reduced the Packet Loss 
Ratio by 88.53% compared to [20] handover algorithm in all 
scenarios. 

2) VoIP Application: Figures 4 and 5 below depict the 

packet loss concerning change in packet transmission. In the 

proposed algorithm Load Balancing was used to avoid the 

occurrence of congestion, with varying Femtocell density from 

30 to 90 cells for eachUE group 15 and 30 using the VoIP 

applications, packet loss has been remarkably reduced in the 

Optimized algorithm compared to the existing algorithm, for a 

VoIP packet transmission of 32 bytes per 20 ms/time interval.  
 

Figure 4.  15 UEs Packet Loss Ratio Comparison using VoIP Application 

 

Figure 5.  30 UEs Packet Loss Ratio Comparison using CBR Application 

However, the proposed algorithm reduced the Packet Loss 
Ratio compared to [20] handover algorithm for each UE group 
and for each femtocell density using the VoIP application. 
Generally, the proposed algorithm combined with the VoIP 
application reduced the Packet Loss Ratio by 89.24% 
compared to the [20] handover algorithm in all scenarios. 

B. Discussion 

The proposed algorithm increased the Packet Loss Ratio 
from 0.00411 to 0.0348 seconds when the femtocell number 
increased from 30 to 90 and in the case of using 15 UEs. 
Meanwhile, with [20] algorithm the Packet Loss Ratio 
increased from 0.00425 to 0.04952 seconds with the same 

http://www.ijcit.com/


International Journal of Computer and Information Technology (ISSN: 2279 – 0764)  

Volume 13– Issue 3, September 2024 

 

www.ijcit.com    107 
 

change in femtocell number and the same number of UEs. In 
addition, in the case of 30 UEs, the proposed algorithm 
increased the Packet Loss Ratio from 0.00513 to 0.03942 
seconds, while the Femtocell number increased from 30 to 90. 
With [20] algorithm the Packet Loss Ratio increased from 
0.00656 to 0.05504 seconds with the same change in femtocell 
number using the same application. 

Nevertheless, the proposed algorithm reduced the Packet 
Loss Ratio in comparison to [20] handover for each of both UE 
groups for each Femtocell density using the CBR application. 
In general, the proposed algorithm with CBR reduced the 
Packet Loss Ratio by 88.53% compared to [20] handover 
algorithm in all scenarios. 

The proposed algorithm in the VoIP application increased 
the Packet Loss Ratio from 0.00025 to 0.00447 seconds when 
the Femtocell number increased from 30 to 90 and the number 
of UEs was 15. Meanwhile, with the [20] handover algorithm 
the Packet Loss Ratio increased from 0.0003264 to 0.0055872 
seconds with the same change in femtocell number. 
Additionally, in the case of using 30 UEs and the same change 
in Femtocell number, the Packet Loss Ratio showed variation 
in the results in comparison to the Packet Loss Ratio when 
using 15 UEs with both algorithms because of the effect of the 
number of UEs. The Packet Loss Ratio in the proposed 
algorithm increased from 0.00109 to 0.00482 seconds when the 
Femtocell number increased from 30 to 90. In addition, the 
Packet Loss Ratio increased from 0.001459 to 0.00729 seconds 
with the same change in femtocell number for [20] algorithm. 
However, the proposed algorithm reduced the Packet Loss 
Ratio compared to [20] handover algorithm for each UE group 
and for each femtocell density using the VoIP application. 
Generally, the proposed algorithm combined with the VoIP 
application reduced the Packet Loss Ratio by 89.24% 
compared to the [20] handover algorithm in all scenarios.  

Generally, the proposed algorithm shows the lowest Packet 
Loss Ratio for both applications when compared to the 
handover algorithm proposed by [20], across all UE groups and 
Femtocell distributions. This advantage in minimizing Packet 
Loss Ratio can be attributed to the efficiency of the Load 
Balancing integrated into the Q-learning algorithm.  

Additionally, it is notable that the Packet Loss Ratio 
increased for both algorithms as the UE number increased from 
15 to 30 for each femtocell density. This incremental trend is 
predictable and correlates with the rise in UE density, 
indicating the algorithm's sensitivity to network load. 
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