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Abstract— The study on deep learning models for crop diseases 

and pest classification looked at how these models may enhance 

agricultural practices, specifically for the purpose of more 

precise pest and crop disease classification. The research brought 

attention to the fact that agricultural diseases and pests pose a 

threat to global food security and that farmers need innovative 

solutions, like deep learning models, to combat these issues. The 

accuracy of the classification was tested using DenseNet and 

other deep learning models trained using secondary datasets 

sourced from the Kaggle website. The study compared DenseNet 

against many other models using a comprehensive evaluation 

technique. These models were AlexNet, EfficientNet, Visual 

Geometry Group, and Convolution Neural Network. In 

comparison to the other models, DenseNet achieved an 

outstanding accuracy score of 96.988% on the maize disease 

dataset and 96.9382% on the pests dataset. Due to DenseNet's 

enhanced performance, which was brought about by its ability to 

efficiently gather complex features and patterns within the visual 

input, resulted in more precise predictions. The study discussed 

the consequences of DenseNet's high accuracy, suggesting that its 

complex architecture made it ideal for pest and crop disease 

classification in agriculture. Also, the researcher looked at the 

possibility of integrating DenseNet into real-world agricultural 

systems, where its robust performance might significantly 

improve crop monitoring and disease management technologies. 

The research concluded with a list of potential areas for further 

research, including exploring the applicability of DenseNet to 

other crop types and investigating the possibility of hybrid 

models or transfer learning to enhance its performance. 

Keywords-Deep learning, convolution neural network, 

agricultural technology, machine learning, image 

recognition. 

 

I. INTRODUCTION 

Pests and diseases that harm crops significantly reduce 

agricultural production, which in turn threatens global food 

security and economic stability. Conventional methods for 

identifying pests and diseases in crops have included tedious, 

error-prone, and time-consuming human inspections. There 

are still long-term challenges, but recent advances in deep 

learning provide hope for a solution. The field of machine 

learning known as "deep learning" mostly deals with picture 

recognition but also employs multi-layered neural networks to 

automatically extract complicated features and patterns from 

large datasets. In the field of computer vision, deep learning 

models, namely convolutional neural networks (CNNs), have 

recently attained success in tasks such as object recognition. 

There has been a surge in interest in using deep learning 

algorithms for pest and disease classification in crops due to 

their ability to revolutionize traditional agricultural practices 

and decrease crop losses[1]. 

The agricultural sector may be forever changed if deep 

learning is used to combat pests and diseases. Experts in the 

industry are working to develop scalable systems that can 

identify and diagnose crop illnesses and pests early on, and 

then successfully manage them. These solutions will use 

computer algorithms and massive amounts of agricultural 

data. Proactively intervening to prevent major crop damage, 

decreased economic losses, and enhanced disease and pest 

identification are just a few of the possible advantages of 

moving towards data-driven solutions [2]. 

While progress has been made, agricultural pest and disease 

classification using deep learning models remains challenging. 

When trying to train reliable and accurate models, the 

accessibility and quality of labeled datasets provide a 

significant obstacle. A number of factors, including data 

variability and model robustness, need to be carefully 

evaluated before deep learning models can be applied to 

different crops, regions, and climatic conditions. The 

interpretability issue with deep learning models further hinders 

their usage in real-world agricultural settings [3]. This makes 

it hard to understand how the algorithms make decisions. 
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Despite these challenges, the use of deep learning has 

enormous promise for improving crop health management. A 

comprehensive review of the literature on the use of deep 

learning for the classification of agricultural pests and 

illnesses is the primary objective of this study. Our objective is 

to illuminate the benefits and drawbacks of using deep 

learning models to support sustainable agriculture and ensure 

global food security in the context of evolving environmental 

and socioeconomic factors. Researchers will do this by 

discussing possible future study topics, assessing performance 

measures, examining existing research, and discussing limits 

and impediments [4]. 

Following a short literature review in Section 2, the study 

methodologies are described in Section 3, the findings are 

offered in Section 4, and the research is summarized in 

Section 5 and that is how the entire paper is structured. 

 

II. RELATED WORKS 

Advances in deep learning techniques have brought about a 

huge change in recent years, particularly in the field of crop 

pest and disease classification. Despite agriculture being the 

bedrock of food security, crop losses due to pests and diseases 

remain a significant concern, putting lives and food supplies at 

risk worldwide. Traditional methods of disease and pest 

identification often rely on manual observation, which is both 

a time-consuming and error-prone process. But there are new 

deep learning algorithms that automate and enhance detection 

and classification processes using vast amounts of agricultural 

data, so there are some positive developments. This literature 

review delves into the current state of study in applying deep 

learning models for agricultural disease and pest classification, 

exploring the technique, advancements, difficulties, and future 

potential in this vital industry. Through a comprehensive 

analysis of the existing research, this literature review aims to 

illuminate the potential, limitations, and present status of deep 

learning techniques to agricultural pest and disease control. 

In regards to the FarmEasy app in particular, the study 

conducted by Pandey et al., 2023 [5] significantly advances 

the state of the art in deep learning models for plant disease 

detection. The authors thoroughly evaluate several deep 

learning architectures and methodologies utilized for plant 

disease detection, with a focus on convolutional and recurrent 

neural networks (CNNs and RNNs, respectively). Pandey et 

al. integrated the findings of many studies to illuminate deep 

learning models' ability to accurately identify plant diseases 

across different crop kinds and conditions. The authors 

highlight the need of large-scale datasets for training deep 

learning models. They discuss methods, such as ensemble 

techniques and transfer learning that might enhance these 

models' performance and make them more applicable to other 

situations. In their discussion of the practical implications of 

utilizing deep learning models in agriculture, Pandey et al. 

emphasize how easy-to-use tools may be provided by 

FarmEasy to help farmers identify and control diseases. The 

limitations of the paper—such as an imbalance in the classes, 

a lack of datasets, and problems with model interpretability—

need to be further investigated. Ultimately, the study 

conducted by Pandey et al. provides valuable insights into the 

present state of plant disease detection using deep learning 

models, as well as the challenges faced and possible solutions 

to these issues. This research lays the groundwork for further 

research in this vital area of agricultural technology. 

Rajeshram et al. 2023 study explores deep learning's potential 

in crop growth in length. This work fills certain gaps in our 

understanding of deep learning's potential applications to crop 

health management, but it also reveals others that need filling. 

It is critical to determine the efficacy of deep learning models 

in various agricultural contexts and with various crop 

varieties. According to the article, it is crucial to study how 

various agricultural practices affect the effectiveness of these 

models and how they function in various environmental 

situations. The lack of interpretability is another major issue 

with deep learning models used for disease prediction, pest 

detection, and pesticide prescription purposes. Additional 

research is needed to enhance the transparency of the model 

outputs, allowing farmers and agricultural practitioners—the 

end-users of these complex systems—to trust and understand 

them. A more inclusive and adaptable precision crop 

management system would be possible if these knowledge 

gaps could be filled and deep learning methods were used 

widely in agricultural contexts. 

In order to address the critical problem of the health of citrus 

crops, Song et al., 2023 used sophisticated detecting 

techniques. This work adds to the existing body of knowledge 

in the area by better identifying diseases and pests using the 

YOLOv8 architecture in conjunction with the Self-Attention 

mechanism. But it also shows where there are holes that have 

to be filled. A big issue that needs resolving is that not enough 

has been written regarding how well the idea works in 

different contexts and places. Critically, these characteristics 

affect how well citrus crops detect pests and diseases. An 

important part of using the Self-Attention YOLOv8 model in 

practical agricultural contexts is its interpretability, which is 

noticeably lacking from the article. Gaining end-user trust, 

especially from agronomists and farmers, requires 

acknowledging the model's flaws and decision-making 

process. The suggested approach needs more research into its 

scalability and resource efficiency before it can be used in 

agricultural environments with limited resources. If we want 

to improve the Self-Attention YOLOv8 model's capacity to 

detect citrus diseases and pests and completely comprehend 

deep learning solutions for precision agriculture, we need to 

fill up certain gaps in our current knowledge [6], [7]. 

The research conducted by Rathnayake et al. in 2023 

addresses a significant problem in Sri Lankan agriculture. 

Some questions remain unanswered, but overall, the study 

sheds light on how banana farmers may profit from mobile 

technology. The essay gets off to a good start by giving more 

context on the particular plant diseases and insect infestations 

that impact Sri Lanka's banana sector. In order to create 

efficient mobile solutions, it is necessary to comprehend these 
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challenges and their complexities. Among the socioeconomic 

elements that the authors investigate in their study on the 

banana producers' history are literacy rates, the cost of 

smartphones, and access to technology. Gaining insight into 

these contextual aspects may help in tailoring the mobile 

solution to meet the demands of the target audience. Solutions 

that rely on mobile devices have challenges with power supply 

and network connectivity, which affects their practicality and 

adoption. The technical infrastructure of rural locations may 

also be explored in the article. The authors might show how 

their mobile solution works in actual case studies and 

experimental projects, which would make their research more 

useful. If we want to know how the mobile solution can help 

Sri Lankan banana growers, we need to fill in these blanks [8]. 

Many issues remain unresolved, despite Parkavi et al., 2023's 

investigation on the use of Machine Learning and the Internet 

of Things in farming. One issue is that complicated agro-

management systems may not work in all agricultural 

contexts, as the demands of large-scale farmers vary from 

those of small-scale farmers with limited resources. It is 

critical that we focus on making these technologies usable and 

scalable at various agricultural sizes. Additional study on the 

social and economic effects of contemporary agricultural 

technology, such as the need to train farmers' skills and the 

possible upheaval to conventional farming methods, would 

strengthen this article. Energy consumption to power a 

network of interconnected devices in outlying agricultural 

regions and environmental consequences of the growing 

amount of electronic waste from Internet of Things (IoT) 

devices are two more potential gaps in the research on the 

proposed system's long-term viability. Without these specifics, 

the essay loses some of its value and the researcher can't 

assess the pros and cons of deploying complicated agro-

management systems via the use of Machine Learning and the 

Internet of Things [9]. 

In their 2023 publication, Mehta et al. highlight many 

substantial knowledge gaps in the field of crop disease 

identification and classification via the use of a Convolutional 

Neural Network trained using transfer learning. The first issue 

is the lack of exploration and optimization of transfer learning 

algorithms for agricultural disease diagnosis. This may be 

because there hasn't been enough research on possible 

transferrable feature selections, tuning tactics, or pre-trained 

model choices. Furthermore, details about the unique 

difficulties of crop disease datasets, including imaging 

parameter variability, a wide variety of plant species, and 

several phases of disease development, were lacking. To make 

their models more accurate and applicable to different 

agricultural settings, researchers need find out how to include 

domain-specific data, such agronomic knowledge, into the 

training process. A comprehensive analysis of the training 

data, including any biases, and the possible socioeconomic 

consequences of using this technology in farming would 

enhance the research. Filling up these gaps in knowledge 

would greatly improve the suggested Convolutional Neural 

Network's (CNN) disease classification capabilities in 

agriculture [10]. 

III. METHODOLOGY 

The methodology section of this research lays forth a 

systematic approach to developing a deep learning model for 

crop disease and pest classification. The increasing prevalence 

of agricultural pests and diseases threatens food security on a 

global scale, making accurate and timely detection crucial. 

Conventional methods of plant disease diagnosis may be time-

consuming and prone to mistakes. Consequently, using the 

capabilities of deep learning models might be a viable 

alternative for automating and improving the accuracy of 

disease and pest classification. 

The primary components of the proposed method are data 

collection, data preparation, model selection, training, 

evaluation, and deployment. Every step is meticulously 

prepared to address the specific challenges of agricultural 

picture classification in order to construct a robust and effective 

deep learning model. By considering both the theoretical and 

practical aspects of model construction, this method aims to 

optimize value for end-users, particularly farmers and 

agricultural professionals. 

The main data used in this research is derived from a diverse 

and extensive collection of crop photos that have been affected 

by various diseases and pests. In order to guarantee the model's 

functionality and generalizability, a diversified and top-notch 

dataset is required. Improving the picture quality and getting 

the dataset suitable for effective model training is the next 

stage in data preparation. Here, issues like varying picture 

resolutions and limited datasets are addressed by using 

techniques like resizing, normalizing, and enhancing photos. 

It is the correct choice to use the appropriate deep learning 

architecture for this research. When it comes to picture 

classification, Convolutional Neural Networks (CNNs) really 

shine due to its built-in ability to learn and automatically 

extract features from photos. By studying cutting-edge CNN 

designs and using transfer learning, the method may improve 

model performance even while working with sparse 

agricultural picture data. In order to train a model and prevent 

overfitting, the model is iteratively fine-tuned utilizing the test, 

validation, and training sets. 

It is crucial to assess the trained model's performance to ensure 

its efficacy in real-world scenarios. In order to provide a 

comprehensive assessment, this step employs a number of 

metrics, such as recall, accuracy, precision, F1-score, and 

AUC-ROC. The use of cross-validation ensures that the results 

are robust and unaffected by any one data split. Deploying the 

research entails making it practical by developing an easy-to-

use interface for the real-time classification of pests and 

diseases. 

In this study, we provide a method that systematically 

addresses the challenges of developing deep learning models 

for the classification of agricultural diseases and pests. Through 

the use of this systematic methodology, the research aspires to 

create a strong tool that might significantly improve the 
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accuracy and efficiency of agricultural diagnostics, resulting in 

better crop management and increased agricultural yields. 

i. Data Collection 

Gathering relevant data is the first stage in developing a deep 

learning model to classify pests and illnesses affecting crops. A 

model's performance is heavily dependent on the dataset's 

quality and diversity. Sources for the data used in this study 

include agricultural databases that are available to the public, 

research institutions, and agricultural extension agencies. 

Thanks to PlantVillage and Kaggle, the dataset is well-

founded; both databases provide vast quantities of tagged 

photos covering a wide range of crops, diseases, and pests. 

Collaborations with academic institutions and agricultural 

research institutes may also provide doors to specialized 

databases, enhancing the dataset's precision and breadth. This 

study's dataset was sourced from Kaggle. Table 1 displays the 

distribution of photos for tomato and maize crops throughout 

various diseases and healthy conditions. Among the 7,316 

maize photos, 1,908 depict Northern Leaf Blight, 1,907 

Common Rust, 1,859 healthy maize, and 1,642 Gray Leaf 

Spot. Many illnesses may affect tomatoes. Some examples are 

bacterial spot, early blight, healthy tomatoes, late blight, mold, 

spider mites, target spot, mosaic virus, and yellow leaf curl 

virus. For tomato, a grand total of 10,000 photos were used. 

 

 

Table 1. Distribution of Crop Images 

Crop Disease Number of 

Images 

Maize Northern Leaf 

Blight 

1908 

Common Rust 1907 

Healthy 1859 

Gray Leaf Spot 1642 

Total Images for 

Maize 

 7316 

Tomato Bacterial Spot 1000 

 Early Blight 1000 

 Healthy 1000 

 Late Blight 1000 

 Leaf Mold 1000 

 Septoria Leaf Spot 1000 

 Spider Mites 1000 

 Target Spot 1000 

 Mosaic Virus 1000 

 Yellow Leaf Curl 

Virus 

1000 

Total Images for 

Tomato 

 10000 

 

 

 

Figure 1. Sample of Maize Image Dataset 

Agricultural pests are included in Table 2, along with the 

number of images accessible for each kind of pest. In 

particular, you may see pictures of 390 earwigs, 405 snails, 

and 400 ants. A total of 394 images depict weevils and 316 

depict slugs. There are 331 pictures of beetles and 392 of 

wasps. Moths have 397 pictures while earthworms have 246. 

Furthermore, there are 405 bee photographs, 329 caterpillar 

pictures, and 390 grasshopper pictures. In Table 2, you can see 

an exhaustive visual representation of all the categories' 4,395 

images used to portray these common pests. 

Table 2. Distribution of Pest Images 

Pests Number of Images 

Ants 400 

Snail 405 

Earwig 390 

Slug 316 

Weevil 394 

Wasp 392 

Beetle 331 

Earthworms 246 

Moth 397 

Bees 405 

Caterpillar 329 

Grasshopper 390 

Total Images for Pests 4395 
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International Journal of Computer and Information Technology (ISSN: 2279 – 0764)  

Volume 13– Issue 4, December 2024 

 

www.ijcit.com    142 
 

 

Figure 2. Sample of Pests Image Dataset 

To make sure the dataset was diverse, the researcher included 

images of various crops, insect species, diseases, and stages of 

disease development. Including a wide range of examples is 

crucial when training a model to generalize. Annotating the 

data ensures that every picture is appropriately labeled, which 

helps the model understand the correlations between visual 

characteristics and their labels. The existing photos in the 

collection were enhanced using data augmentation techniques 

such as flipping, scaling, cropping, and rotation. By increasing 

the dataset's diversity and breadth, these techniques strengthen 

the model and decrease the probability of overfitting. This 

project aims to provide the groundwork for developing an 

effective deep-learning model for agricultural diagnostics by 

collecting and preparing a diverse dataset of high quality. 

ii. Feature Extraction 

Developing a deep learning model to classify agricultural 

diseases and pests relied heavily on feature extraction from raw 

image data. In doing so, it enabled the computer to interpret the 

data. In order to provide a solid foundation for training the 

model, every image was meticulously labeled with the 

appropriate disease or pest. As part of the preparation steps to 

ensure consistency, the photos were resized to a consistent size, 

contrast was increased, and pixel values were normalized. The 

photos were preprocessed to ensure they were all 224x224 

pixels in size, with contrast turned up and pixel values 

normalized to the interval [0, 1]. Then, the equation was used 

to standardize the images; 

 
 This preprocessing was crucial for reducing variations in 

image quality and ensuring that the deep learning model 

received consistent input data. 

Convolutional Neural Networks (CNNs) were used by the 

researcher for feature extraction; these networks excel in 

detecting complex patterns in images. A good place to start is 

using pre-trained convolutional neural network (CNN) models, 

such as VGG16 and ResNet50, which have been extensively 

trained on picture datasets like ImageNet. The secondary 

dataset was used to fine-tune these models so that they could 

account for the unique properties of crop-harming pests and 

illnesses. The convolution was performed using the following 

formula; 

 
A softmax layer equation; 

 
produced probability distributions for the various pest and crop 

disease categories, and dense layers with dropout regularization 

were used for this purpose. During the fine-tuning procedure, 

the function Dropout(x)=x⋅Bernoulli(p), where p is the dropout 

rate, was used to avoid overfitting. In lieu of the last 

completely linked layers, they were inserted into the pre-

trained CNNs. The training dataset was artificially enlarged 

and the model's robustness was enhanced using data 

augmentation techniques such as random flipping, rotating, and 

zooming. We took great effort in selecting the elements that 

would capture the essential visual patterns required for accurate 

categorization. Some of the measures used to evaluate the 

technique were F1-score, accuracy, precision, and recall. 

iii. Classification 

The last and most crucial step in developing a model was to 

have it classify each input image. The first characteristics 

employed by the researcher were those obtained from the 

convolutional and pooling layers of the CNN. Each of these 

features was passed on to the fully connected layer once they 

were reduced to a one-dimensional vector. After calculating a 

weighted total of their inputs, neurons in a dense layer added a 

bias term and an activation function. For a particular neuron, 

this activity was mathematically expressed as; 

 
 with z standing for the neuron's output, wi for the weights, xi 

for the inputs, and b for the bias. 

Classification was carried out by the softmax layer, the final 

layer of the network, which combined the outputs of the last 

fully connected layer into probabilities equal to one. Class i's 

input to the softmax function was zi, and there were a total of K 

classes. For the ith class, the softmax function was defined 
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as; 

 
Since the results were exponentiated and normalized, they may 

be seen as probabilities. Using backpropagation and 

optimization techniques such stochastic gradient descent, the 

model minimized a loss function during training, which is often 

the categorical cross-entropy loss.  

 
With pi representing the predicted probability for class i and yi 

representing the actual label, the cross-entropy loss in a single 

instance can be calculated using the mathematical equation 

above. 

The test data set was then used to evaluate the trained model's 

performance. Accuracy, recall, precision, and F1-score were 

some of the measures used to evaluate the model's performance 

in identifying agricultural pests and illnesses. The model's 

overall correctness was assessed by the accuracy score, the 

percentage of correctly predicted positive instances was 

determined by the precision score, the proportion of correctly 

predicted positive instances was determined by the recall score, 

and a harmonic mean of recall and precision was provided by 

the F1-score. Our classification approach substantially 

improved the accuracy and reliability of visual data recognition 

of various agricultural diseases and pests by using deep 

learning technologies. 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

The researcher demonstrated that deep learning models 

accurately identified a variety of crop diseases and pests in 

this study. The algorithms were trained using a large dataset 

that included annotated photos of crops that were impacted by 

pests or diseases. After calculating the percentage of correct 

predictions relative to the total number of forecasts using the 

method provided below, it was found that the models 

exhibited a high accuracy rate. 

 
A number of additional performance metrics were also 

considered, including recall, precision, and F1-score. By 

multiplying the total number of positive predictions by the 

total number of false positives, we may get the accuracy, or 

precision, of the positive forecasts.  

 
Recall, which measures the ability of the model to identify all 

significant features, is defined as; 

 
The F1-score, which is a harmonic mean of recall and 

accuracy, was determined by the equation; 

 
These metrics provide a reasonable evaluation of the model's 

performance, especially when there was a difference between 

the classes. 

All focus was on CNN and how its deep learning architecture 

made it so good at identifying complex visual features and 

patterns. Despite subtle visual differences, CNN generalized to 

a broad variety of diseases and pests because to its excellent 

accuracy and consistent performance across several criteria. 

Convolutional neural networks (CNNs) significantly 

outperformed these methods on massive picture datasets with 

high-dimensional feature spaces, proving their supremacy. 

The research also addressed future work and areas that may be 

improved. To strengthen the algorithm, one approach was to 

include a more diverse and representative group of photos in 

the training dataset. Another strategy for improving 

classification accuracy was to include more complex 

architectures, like EfficientNet. The research concluded that 

the model and dataset need ongoing modification to stay up 

with and improve upon real-world agricultural applications, 

despite the fact that the CNN-based approach showed 

encouraging results in crop pest and disease categorization. 

The structure was taught to detect plant diseases from pictures 

of leaves using CNN models. In our proposed study, we train 

the model using CNN, EfficientNet, DenseNet, and VGG, 

which are three separate CNN techniques. To train our model, 

we used the Plant and Pest Disease Dataset, which can be 

found on Kaggle. Included crops are maize, which has 18, 29 

validation photos and 7,316 training images associated with 

four distinct classes. There were several pictures of each sort 

of bug in the pests’ dataset. In specifically, 400 ant 

photographs, 405 snail images, and 390 earwig images were 

included. A total of 394 images depicting weevils and 316 

depicting slugs were included. Wasps have 392 pictures, 

whereas beetles have 331. The number of moth photographs 

was 397, whereas the number of earthworm images was 246. 

Also included were 329 images of caterpillars, 405 of bees, 

and 390 of grasshoppers. There were a total of 4,395 photos 

utilized for this all-encompassing graphic representation of 

these common pests. Reducing the picture size in the dataset 

to 224x224 accelerated the training process. 

The whole cleaned and resized picture dataset was used to 

train all four models. The study discovered that DenseNet 

offered the greatest degree of accuracy at 96.7332% by 

comparing the final accuracy of these three models. It was 

clear that all five models were working well. 
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Figure 3. Deep Learning Models' Accuracy on the Maize 

Dataset 

Several deep-learning models' accuracy percentages are 

compared in great detail in Figure 3, using the maize dataset. 

In terms of accurately detecting maize data, DenseNet is the 

model to beat with a remarkable 96.988% success rate. With 

an accuracy level of 96.9332%, the CNN model proved to be 

second to DenseNet in terms of generalizability and prediction 

accuracy. 

The VGG model was effective on the maize dataset, with an 

accuracy of 96.8784%. With a little lower accuracy of 

96.6594%, the AlexNet model was a good pick for this 

classification task. The EfficientNet model has been 

successful in other contexts and is widely used, however it 

only managed a 94.1420% accuracy rate in this test. Although 

EfficientNet is generally successful, it seems that it 

underperformed on this particular maize dataset when 

compared to the other models that were considered. Figure 3 

displays the overall performance of various models, with 

DenseNet at the top, CNN and VGG following, and 

EfficientNet at the bottom. 

 

 
Figure 4. Deep Learning Models' Accuracy on the Pest 

Dataset 

Figure 4 presents a detailed comparison of the accuracy 

percentages obtained from several deep-learning models that 

were applied to the pest dataset. DenseNet is very effective for 

pest data classification, as seen by its top-tier performance and 

accuracy of 96.9382%. With an accuracy of 96.9381%, the 

CNN model showed almost identical performance as 

DenseNet and proved its effectiveness in this setting, 

following closely behind. 

The VGG model also showed great competence with the pest 

dataset, with an accuracy of 96.9332%. Even though it was not 

as accurate as the top three models, AlexNet (with 96.9122%) 

is still a good pick for this classification task. On the other 

hand, EfficientNet was not as well-suited to this dataset as the 

other models, since its accuracy was the lowest at 94.4688%. 

Figure 4 shows that EfficientNet performed much worse than 

DenseNet and CNN on the pest dataset, but VGG and AlexNet 

both performed well. 

The study used a confusion matrix to evaluate the performance 

of the deep learning model for agricultural pest and disease 

classification. The matrix provided a thorough understanding 

of the model's projections by showing the overall number of 

right, wrong, true negative, and true positive predictions. The 

confusion matrix demonstrated the model's class 

discrimination capabilities and also highlighted cases of 

misclassification. By offering a comprehensive understanding 

of the model's effectiveness in recognizing various crop 

diseases and pests, the confusion matrix results verified the 

model's prospective usage in agriculture. 
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Figure 5. Confusion Matrix for DenseNet on Maize Dataset 

Figure 5 shows the DenseNet confusion matrix on the maize 

dataset. This matrix shows how well DenseNet can 

differentiate between healthy leaves, common rust, leaf spot, 

northern leaf blight, and other diseases that affect maize 

leaves. The diagonal matrix components, which represent the 

correctly classified cases, displayed the values for healthy 

leaves (463), common rust (476), leaf spot (372), and northern 

leaf blight (459). These figures demonstrated the model's 

ability to categorize several diseases; the two with the best 

results were common rust and northern leaf blight. The 

model's ability to correctly classify the majority of cases in 

each illness category, as shown by the diagonal distribution of 

these values, implies that it might be applicable in practical 

agricultural contexts. 

 
Figure 6. A DenseNet Confusion Matrix for the Pest Dataset 

Figure 6 displays the confusion matrix with the model's 

accuracy in classifying various pest species, which occurred 

after a DenseNet was trained to classify various agricultural 

pests. In the diagonal components of the matrix, which 

represent appropriately classified occurrences, there are 97 

ants, 92 bees, 63 beetles, 85 caterpillars, 67 earthworms, 62 

earwigs, 88 grasshoppers, 95 moths, 73 slugs, 94 snails, 100 

wasps, and 87 weevils. Based on these parameters, the model 

was most accurate in identifying wasps, ants, moths, and 

snails. An analysis of the distribution of accurate 

classifications along the diagonal revealed that the model 

could distinguish between various pest species. For effective 

pest management in farming, this is a crucial aspect. 

An essential measure for evaluating and enhancing the CNN's 

performance in this work was the model loss. The difference 

between the actual target values and the model's predicted 

outputs was used to quantify the loss in the model. To improve 

the model's prediction accuracy, we trained it to minimize this 

loss as much as feasible. This study used categorical cross-

entropy, a loss function that excels at problems requiring 

multi-class classification. 
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For a singular instance, categorical cross-entropy loss was first 

defined in mathematics as; 

The sum of all 𝑖 is equal to 1, and 𝐎 is the logarithm of (𝑝). 

The following equation represents the limit; 

 
Where yi represented the binary indicator (0 or 1) for class 

label i that was the right classification for the input, the total 
number of classes was K, pi was the predicted probability for 

class i and L was the loss. To penalize inaccurate predictions, 

particularly those with high confidence, more severely, the 

logarithm function was applied to the anticipated probability. 

Iteratively minimizing the loss function was the goal of 

updating the model's weights throughout training. Stochastic 

gradient descent (SGD) and its variations, including Adam, 

were often used to accomplish this optimization. As part of 

gradient descent, the following is the rule for updating the 

weights w; 

 

Where η denoted the learning rate and  was the gradient of 

the loss function concerning the weights, and wnew and wold 

denoted the updated and prior weights, respectively. 

For each training session, the researcher checked the loss to 

make sure the model was picking up new information 

correctly. The model effectively reduced the mistake since the 

training loss plotted against the number of epochs as shown in 

Figure 7 showed a decreasing trend. To identify overfitting a 

situation in which the model excels on training data but fails 

miserably on new data the researcher also monitored 

validation loss. If the training and validation losses were to fall 

and converge, it would indicate that the model was well-

generalized. 

To guide the training process of the deep learning model, the 

model loss function was ultimately critical. Reducing this loss 

via iterative optimization significantly enhanced the model's 

accuracy in crop disease and pest classification, leading to a 

reliable and high performance in real-world applications. 

 
Figure 7.Train and Test loss for Densenet 

Two important variables, train accuracy and test accuracy, 

were used to examine the performance of the deep learning 

model. The generalizability and efficacy of the model in 

learning from the training data were illuminated by these 

metrics. In Figure 7, the x-axis typically displayed the total 

number of epochs, while the y-axis displayed the accuracy 

values. 

The proportion of training dataset samples correctly classified 

was referred to as the training accuracy. To monitor the 

model's progress, it was calculated at the conclusion of each 

training phase. The train accuracy formula was; 

; 

  
The output is the function Atrain, where A is the number of 

training samples. 

The mathematical formula for train accuracy is; if there were 

N samples in the training dataset and the model accurately 

predicted the labels for Ncorrect of those examples, then; 

The value of Atrain is equal to the product of Ncorrect and N. 

 
Since the model was not trained on the test dataset, test 

accuracy was determined as the proportion of test dataset 

samples correctly recognized. This statistic was critical for 

assessing the generalizability of the model. Not much changed 

between the train accuracy formula and the test accuracy 

formula Atest; 

Atest is equal to the product of the total number of test samples 

and the fraction of the number of valid predictions on the test 

set. 
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The model was considered to have achieved test accuracy if it 

correctly predicted the labels for Mcorrect out of the M samples 

that were part of the test dataset. 

The output was Atest equal to the division of Mcorrect and M. 

 
Training the model included continuously monitoring its test 

and training accuracy to prevent overfitting and ensure 

effective learning. Overfitting occurs when a model performs 

very well on training data but disastrously on test data. This 

was shown by a significant disparity between the excellent 

accuracy during training and the subpar accuracy while 

testing. When regularization, early stopping, and dropout were 

used, overfitting was much decreased. 

 
Figure 8. Train and Test Accuracy for Densenet 

In order to visually compare the test and train accuracies, the 

model's accuracy was computed and recorded after each 

training phase. Afterwards, the data was plotted on a graph, as 

seen in Figure 6, which clearly demonstrated the progression 

of the model's performance over time. 

The training accuracy curve showed how the model's 

performance improved over time on the training data. If the 

model is successfully learning from the training data, this 

curve should ideally show a gradual climb, approaching 100% 

as the number of epochs increases. 

The accuracy testing curve proved that the model could 

correctly forecast fresh data. The development and closeness 

of this curve to the training accuracy curve were of paramount 

significance. When the accuracy during training remained 

high but the accuracy while testing remained stable or 

decreased, this phenomenon is known as overfitting. 

Both the training and test accuracy were 95% and 97% after 

17 epochs, respectively, as shown in Figure 8. If this is the 

case, it means the model performed well on both the training 

and test sets of data. It is possible that the lack of overfitting 

and the model's good generalizability are both indicated by 

this disparity. 

At last, seeing the training and test accuracy throughout 

epochs was a helpful tool for diagnosing the training process, 

evaluating the performance of the model, and making 

improvements to enhance the training and generalization 

capacity. 

Finally, while evaluating the deep learning model's capacity to 

detect agricultural diseases and pests, the train and test 

accuracies were crucial performance measures. Indicators like 

these brought attention to the model's capacity for learning 

and generalization, which in turn boosted its overall 

performance. 

A. Discussion 

The researcher evaluated and compared the performance of 

several deep learning models, including CNN, VGG, 

EfficientNet, DenseNet, and AlexNet. In classification tasks, 

DenseNet outperformed the other models in terms of accuracy 

and resilience. With a remarkable 96.988% accuracy on the 

maize dataset and 96.9382% on the pest dataset, DenseNet 

outperformed AlexNet, EfficientNet, CNN, and VGG. 

Because it promotes feature reuse via dense connections 

between layers, the DenseNet architecture improved gradient 

flow and made learning more efficient, leading to greater 

performance. 

In addition to basic accuracy, the evaluation factors included 

train and test loss alongside test and train accuracy. Train loss 

and test loss were critical metrics for evaluating the model's 

capacity to learn and generalize. Figure 7 shows that the 

model learned well from the training data because the training 

loss reduced steadily across the epochs. Since the test loss 

leveled off after dropping in the outset, it seemed that the 

model generalized well with little overfitting. Training and 

testing accuracy metrics lent credence to these findings. As 

seen in Figure 8, DenseNet consistently achieved near-

flawless train accuracy and maintained a very high test 

accuracy that closely paralleled the train accuracy curve. More 

pronounced differences in train-test accuracy were seen in the 

other models due to overfitting and inadequate generalization. 

Dataset biases, such as an imbalanced distribution of crop 

diseases or pests, might have compromised the study's 

accuracy by influencing the model. Furthermore, the study 

acknowledged that changes in soil type, temperature, and crop 

species affected the model's predictive power. The results 

showed that the architectural modifications of DenseNet were 

helpful in classifying agricultural diseases and pests. The 

dense connection pattern simplified the process of learning 

complex patterns and traits required for accurate classification. 

Agricultural settings place a premium on accurate and reliable 

pest and disease identification, and the model's ability to 

maintain high test accuracy is further proof of this. The study 

also recommended that future research look into more 

advanced structures and techniques like ensemble methods 

and transfer learning to boost classification performance even 

more and solve the remaining issues in the sector. The 

remarkable performance of DenseNet, a significant 

advancement in the use of deep learning for agricultural 
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diagnostics, guaranteed better management and mitigation of 

pests and diseases in crops. 

 

V. CONCLUSION AND FUTURE WORK 

The results proved that DenseNet was the superior model 

compared to others, including EfficientNet, CNN, VGG, and 

AlexNet. In comparison to competing models, DenseNet 

achieved a remarkable 96.988% accuracy on the maize dataset 

and 96.9382% on the insect dataset. An excellent model for 

practical agricultural applications, DenseNet's crop disease 

and pest categorization is very accurate. The research 

examined a variety of metrics, including train-test accuracy 

and train-test loss, among others. It seems like DenseNet 

learnt a lot from its training dataset as its train loss went down 

during the epochs. The test loss, which had been reducing, 

eventually plateaued, indicating good generalization without 

significant overfitting. On top of that, DenseNet maintained a 

nearly flawless train accuracy as well as a robust test accuracy 

that was very close to the train accuracy curve. These results 

demonstrated the model's ability to learn and generalize well 

from the data, which improved its reliability for real-world 

deployment. Researchers found that DenseNet's dense 

connections and other architectural advantages helped it beat 

competing models on tasks including the categorization of 

agricultural diseases and pests. With its impressive accuracy 

and effective learning and generalization capabilities, the 

model proved to be a valuable tool for improving agricultural 

diagnostics. Through demonstrating that deep learning models 

can accurately classify agricultural illnesses and pests, the 

study paved the way for quicker and more accurate danger 

detection in crops. This AI-driven method, as proposed in the 

paper, may help farmers and agricultural professionals 

monitor crop health more accurately than relying on expert 

knowledge and physical inspections alone. With these models, 

farmers will be able to more accurately administer pesticides, 

which will lessen their negative effects on the environment 

and promote the adoption of greener pest control strategies. 

This study was critical in bridging the gap between theoretical 

and practical aspects of modern agricultural technology, which 

has the potential to completely alter current methods of 

disease and pest prevention. 

Research in the future should look at more advanced 

techniques, such as ensemble methods and transfer learning, to 

enhance classification performance even more. The promising 

results of this work pave the way for the development of 

deeper learning models that are both more accurate and more 

reliable for use in agricultural applications. 
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