
International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 14– Issue 1, March 2025

www.ijcit.com 22

The Evolution of Software Engineering: From

Prehistoric Beginnings to the Age of Artificial

Intelligence

Jonah Vincent Joshua

Department of Informatics and Technologies

Afro-American University of Central Africa (AAUCA)

Oyala, Djibloho, Equatoria Guinea

Email: jonah.joshua [AT] docente.aaucauniversity.com

Diosdado Asumu Ndong Andeme

Department of Informatics and Technologies

Afro-American University of Central Africa (AAUCA)

Oyala, Djibloho, Equatorial Guinea

Email: ndongandeme1994 [AT] gmail.com

Abstract—This article presents a thorough overview of the

historical background of software engineering, tracing its roots

from antiquity to the contemporary time dominated by artificial

intelligence (AI). Beginning with the basic programming

languages of the mid-1900s, the article stresses major milestones,

including the birth of object-oriented programming, the

expansion of software engineering practices, and the

transformational impact of structured programming.

Additionally, the paper examines the limitations, possible

hazards, ethical considerations, and environmental consequences

of AI-powered software engineering, including machine learning

(ML), the Agile revolution and its revolutionary impact on

software development practices. Through the analysis of this

developmental trajectory, the essay offers vital insights into the

progressive nature of software engineering and the pivotal role of

artificial intelligence in shaping its future.

Keywords-Artificial Intelligence (AI), AI driven development,

Agile Methodology, Machine Learning, software engineering

I. INTRODUCTION

Since its inception, the discipline of software engineering
has seen a significant transformation as a methodology.
Beginning with the most basic computational tools and
progressing all the way up to the most advanced artificial
intelligence (AI) systems of today, the evolution of software
engineering is a reflection of humanity's unrelenting attempt to
innovate and improve efficiency. Software engineering
underpins the development, maintenance, and evolution of
modern society's systems and applications. Several dimensions
explain its importance:

A. Enabling Innovation and Digital Transformation

Innovative technologies like AI, ML, blockchain, and the
IoT depend on software engineering. These technologies are
changing healthcare, banking, transportation, and
entertainment. AI-driven apps need robust software
engineering to scale, be reliable, and efficient [1].

B. Supporting Scalability and Complexity

Software engineering gives the methods and tools to
manage complicated technological systems. Agile
development, development operations (DevOps), and
continuous integration, continuous delivery (CI/CD) pipelines
help organisations scale while preserving quality and
performance [2].

C. Ensuring Security and Reliability

Software engineering is essential for secure and reliable
systems in the face of rising cyber threats. Secure coding,
penetration testing, and automated vulnerability scanning
protect sensitive data and system integrity [3].

D. Facilitating Collaboration and Interoperability

Multidisciplinary teams work together in software
engineering to integrate disparate technologies and systems.
APIs, microservices, and open-source software increase
interoperability and speed development [4].

E. Driving Economic Growth

Software drives worldwide economic growth. Software
engineering helps produce revenue-generating, job-creating,
and innovative products and services. The worldwide software
market is expected to reach $1.5 trillion by 2025, highlighting
its economic importance [5].

F. Addressing Societal Challenges

Software engineering helps solve climate change,
healthcare, and education issues. Software optimises energy
efficiency, develops telemedicine platforms, and creates online
learning settings [6].

G. Shaping the Future of Work

Software engineering has enabled remote work,
automation, and digital collaboration. Zoom, Slack, and
Microsoft Teams leverage advanced software engineering to
provide seamless user experiences [7].

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 14– Issue 1, March 2025

www.ijcit.com 23

II. LITERATURE REVIEW

The evolution of software engineering is traced back through

history in this article, with a focus on significant milestones

and recent breakthroughs in the field of artificial intelligence.

A. Prehistoric Beginnings

The origins of software engineering may be traced to
antiquity when humans first created instruments to facilitate
computing. The abacus, created in 2400 BCE, is regarded as
one of the first computational instruments. Although not
software in the contemporary context, it established the
foundation for the notion of automating calculations.

In the 19th century, Charles Babbage developed the
Analytical Engine, a mechanical computer capable of being
programmed with punch cards [8]. Ada Lovelace, frequently
acknowledged as the inaugural computer programmer,
developed algorithms for this machine, signifying the inception
of programmable computation.

B. The software Crisis and Birth of Software Engineering

 The 1960s had a "software crisis," marked by budget
excesses, schedule failures, and faulty software. The growing
intricacy of software systems underscored the necessity for
methodical development methodologies. The term "software
engineering" was officially adopted at the North AtlanticTreaty
Organisation (NATO) Software Engineering Conference in
1968, highlighting the necessity of applying engineering
concepts to software development.

This period witnessed the advent of structured
programming, modular design, and the waterfall model, which
established a linear framework for software development. [9].
Edgar Dijkstra’s research on algorithms and Donald Knuth's
contributions to computer programming were crucial in
defining the field.

It wasn't until the late 1960s that the phrase "software
engineering" was first used, although the roots of the field were
established in the 1940s and 1950s with the introduction of
electronic computers. Developed in 1945, the Electronic
Numerical Integrator and Computer (ENIAC) was one of the
first electronic computers in the world to be used for broad
purposes. It was necessary to manually wire these early
computers and have a comprehensive knowledge of hardware
in order to program them.

During the 1950s, a number of high-level programming
languages and assembly languages were developed. Some
examples of these languages were FORTRAN (1957) and
COBOL (1959). The complexity of the hardware was
abstracted by these developments, which made programming
easier to understand and paved the path for software
development to become a separate field of study.

C. The Rise of Object-Oriented Programming and Agile

Methods

The 1980s and 1990s witnessed the emergence of object-

oriented programming (OOP), which established novel

paradigms for software design and development. Languages

like Smalltalk (1980) and C++ (1985) popularised object-

oriented programming ideas, including encapsulation,

inheritance, and polymorphism [10]. These principles

facilitated the creation of more modular, reusable, and

maintainable software systems.

The late 1990s and early 2000s saw the advent of agile

approaches, which prioritised iterative development,

collaboration, and adaptability to evolving needs [11]. The

Agile Manifesto, released in 2001, delineated the principles of

agile development, emphasising client participation,

adaptability to change, and the frequent delivery of functional

software [12].

D. The Internet Era, Open-Source Movement, Edge

Computing, and IoT

The expansion of the internet in the 2000s revolutionised

software engineering. Web-based applications, cloud

computing, and mobile technology emerged as predominant

trends. The open-source movement accelerated, with

initiatives such as Linux, Apache, and MySQL exemplifying

the efficacy of collaborative development.

DevOps, a cultural and technical paradigm that integrates

development and operations, arose during this period. It

highlighted continuous integration, continuous delivery

(CI/CD) [13] and automation, facilitating expedited and more

dependable software deployment.

The expansion of Internet of Things (IoT) devices has

necessitated edge computing solutions. In 2025, software

experts created lightweight frameworks for the efficient

deployment and management of programs on edge devices.

Organisations including Microsoft and AWS have launched

edge-specific development tools, facilitating real-time data

processing and minimising latency [14].

E. Quantum Computing and Software Engineering

Quantum computing has evolved from theoretical research

to actual applications in software engineering. Corporations

such as IBM, Google, and D-Wave have launched quantum

development kits enabling developers to explore quantum

algorithms. In 2025, the initial commercially feasible quantum

software applications appeared, notably in cryptography,

optimisation, and machine learning [15]. This has resulted in

the creation of new programming languages, such Q# and

Silq, specifically designed for quantum computing [16].

F. Low-Code and No-Code Platforms

The proliferation of low-code and no-code platforms has

empowered non-technical users to create intricate apps.

Platforms like as OutSystems and Mendix have implemented

AI-enhanced design functionalities, enabling users to develop

applications with little coding expertise. This movement has

democratised software development, enabling organisations to

innovate independently of specialised technical teams [17].

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 14– Issue 1, March 2025

www.ijcit.com 24

G. Ethical AI and Responsible Software Engineering

As AI gets more integrated into software systems, ethical

issues have grown more significant. In 2024, the institute of

electrical electronic engineer (IEEE) published revised

standards for ethical AI development, highlighting openness,

justice, and responsibility. Organisations must now do ethical

effect evaluations prior to the implementation of AI-driven

technologies [18].

H. Programming Language Innovations

Recent programming languages and enhancements to older

ones have optimised software development. Rust has gained

prominence due to its memory safety attributes, whilst Python

4.0 has unveiled improved speed and concurrency capabilities.

Furthermore, WebAssembly (Wasm) has emerged as a

standard for high-performance online apps, allowing

developers to execute code at near-native speeds within

browsers [19].

I. Sustainable Software Engineering

Sustainability has emerged as a primary emphasis in

software engineering. Developers are currently refining code

to save energy use, especially in data centres. Instruments such

as the Green Software Foundation's Carbon Aware software

development kit (SDK) assist developers in quantifying and

reducing the carbon footprint of their programs [20].

J. The Age of Artificial Intelligence

The 2010s marked the commencement of the AI

revolution, profoundly impacting software engineering.

Machine learning (ML) and deep learning (DL) algorithms,

powered by vast data and computational resources, have

enabled progress in natural language processing, computer

vision, and autonomous systems.

Amazon CodeWhisperer and OpenAI GPT-5, introduced in

2022 and 2024 respectively, have markedly enhanced code

creation and debugging functionalities. These tools now

integrate seamlessly into integrated development

environments (IDEs), allowing developers to write, test,

document, and deploy code more rapidly than ever before

[21]; [22], as well as generate code snippets from natural

language enquiries [23]. AI-driven automated testing

frameworks are improving software quality and reducing

manual labour [24]. AI-driven solutions have commenced the

automation of whole software development lifecycles,

including requirements gathering to deployment, hence

minimising human error and expediting time-to-market [25].

The incorporation of AI into software engineering has resulted

in the creation of new techniques, like DevOps and machine

learning operations (MLOps), designed to optimise the

development, deployment, and maintenance of AI-driven

systems [26]. These techniques underscore the need of

continuous integration, continuous delivery, and automated

testing in guaranteeing the stability and scalability of AI

applications.

III. CHALLENGES OF AI IN SOFTWARE ENGINEERING

Notwithstanding its progress, software engineering
encounters obstacles in the age of AI. Ethical difficulties,
including prejudice in AI algorithms and the environmental
consequences of extensive computing, require urgent attention
[27].

These difficulties are summarised below:

A. Limitations of AI in Software Engineering

1) Lack of Contextual Understanding
Deep contextual understanding of software needs and
domain-specific nuances is lacking in AI models,
especially ML-based ones. Suboptimal or erroneous
solutions may result.

2) Dependence on Training Data
Training data quality and diversity are crucial for AI
systems. Biassed or incomplete datasets can produce
erroneous results.

3) Limited Creativity and Innovation
AI excels at pattern recognition and automation but
suffers with creativity and novel problem-solving.

4) Difficulty in Handling Ambiguity
Software engineers face vague or changing
requirements. Such fluidity may challenge AI systems.

5) Scalability and Performance Issues
AI models, especially LLMs, are computationally
expensive and may not scale well for large projects.

B. Potential Risks of AI in Software Engineering

1) Security Vulnerabilities
AI-generated code may facilitate injection attacks or
the utilisation of unsafe APIs.

2) Ethical and Legal Concerns
AI tools may accidentally copy proprietary algorithms
or infringe on IP rights.

3) Over-Reliance on Automation
It is possible for developers to lose their ability to think
critically and solve problems if they rely too heavily on
artificial intelligence tools.

4) Bias and Fairness Issues
The biases that are present in the training data of AI
models can be perpetuated by the models, which can
result in outputs that are unjust or discriminating.

5) Job Displacement and Skill Gaps
According to [28], the automation of ordinary jobs by
artificial intelligence could lower the demand for
entry-level developers, which would exacerbate
existing skill shortages in the sector.

6) Lack of Explainability
Many AI models, especially deep learning systems, are
"black boxes," making their decision-making processes
unclear.

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 14– Issue 1, March 2025

www.ijcit.com 25

7) Maintenance and Evolution Challenges
AI-generated code might provide challenges for
maintenance and evolution, particularly in the absence of
adequate documentation or adherence to standardised
coding standards.

IV. EXAMPLES OF AI-DRIVEN SOFTWARE

ENGINEERING

To reflect the most recent developments in the area, below
are instances of AI-driven software engineering:

A. Automated Code Generation with Large Language

Models

GitHub Copilot, utilising OpenAI's Codex, produces
code snippets, functions, and complete programs
derived from natural language prompts or pre-existing
code.

B. AI for Bug Detection and Code Quality

Facebook's SapFix and Sapienz employ artificial

intelligence to autonomously identify and rectify

issues in mobile applications.

C. Automated Test Case Generation

Tools such as EvoSuite employ artificial intelligence

to autonomously produce unit tests, enhancing code

coverage and error identification.

D. AI-Driven Code Refactoring

Tools like refactoring.AI use machine learning to

discover and propose refactoring opportunities within

codebases.

E. Predictive Analytics for Software Development

Artificial intelligence models predict project risks,

developer efficiency, and delivery schedules utilising

past data.

F. Natural Language Processing (NLP) for

Requirements Engineering

AI solutions such as Req2Spec utilise natural

language processing to extract and formalise software

requirements from natural language documents.

G. AI-Driven DevOps and CI/CD Pipelines

Tools such as Harness employ artificial intelligence to

enhance continuous integration and deployment

pipelines by forecasting failures and automating

rollbacks.

H. Program Synthesis

AI systems such as Microsoft's PROSE generate

programs from high-level specifications or exemplars.

I. AI for Software Maintenance

AI tools forecast which segments of a codebase are

most susceptible to maintenance needs or potential

failure.

J. AI-Assisted Pair Programming

Tools such as TabNine and Kite utilise artificial
intelligence to deliver instantaneous code
recommendations and autocompletions.

V. ADDRESSING THE ETHICAL AND ENVIRONMENTAL

IMPACT OF AI-DRIVEN SOFTWARE DEVELOPMENT

Addressing the ethical and environmental impacts of
AI-driven software development requires a thorough
understanding of the difficulties and the execution of
effective mitigation solutions. The following is an
updated discussion:

A. Ethical Considerations

1) Bias and Fairness
AI systems can sustain or worsen biases inherent
in training data, resulting in inequitable outcomes,
especially for marginalised populations.
Guaranteeing equity necessitates meticulous data
curation, algorithmic openness, and continuous
oversight.

2) Transparency and Explainability
Numerous AI models, particularly deep learning
systems, function as "black boxes," complicating
the comprehension of decision-making processes.
This absence of openness can erode confidence
and accountability.

3) Privacy Concerns
Artificial intelligence systems frequently depend
on extensive personal data, prompting
apprehensions regarding data privacy and security.
Adherence to legislation such as GDPR is
essential for safeguarding user rights.

4) Accountability and Responsibility
Establishing accountability for AI-generated
judgements is complex, particularly in instances
of harm. Explicit standards are essential for
delineating responsibilities among developers,
organisations, and users.

5) Job Displacement and Economic Inequality
AI automation may result in job displacement in
specific areas, intensifying economic inequality.
The development of ethical AI must take into
account the societal consequences of labour
disruption.

B. Environmental Impact Mitigation Strategies

1) Ethical AI Frameworks

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 14– Issue 1, March 2025

www.ijcit.com 26

Organisations ought to implement ethical AI
frameworks that emphasise fairness,
transparency, and responsibility. Instruments
such as AI ethical checklists and effect
evaluations can facilitate the development
process.

2) Green AI Initiatives

The concept of "Green AI," which places an
emphasis on energy-efficient algorithms and
environmental practices, is something that
researchers and developers are strongly
encouraged to concentrate on.

3) Regulatory Compliance
Governments and organisations must implement
legislation that tackle ethical and environmental
issues, such as the EU's AI Act and climate-related
policies.

VI. FUTURE DIRECTIONS

The convergence of quantum computing, edge computing,
and artificial intelligence is poised to transform software
engineering. Quantum algorithms, for instance, may resolve
intricate issues that are now insurmountable for classical
computers [29]. Simultaneously, edge computing facilitates
real-time data processing at the source, hence decreasing
latency and bandwidth consumption [30].

Future software systems will focus more on user
experience, accessibility, and inclusivity, ensuring that
software meets the needs of diverse populations [31].

VII. CONCLUSION

The transition from the past to the present has been a

momentous year for software engineering. This development

illustrates human ingenuity and adaptability. From the abacus

to AI-driven systems and quantum computing, each age has

built upon the achievements of its predecessors, advancing the

industry.

Technology, creativity, complexity management, security, and

economic and social growth depend on software engineering.

As technology advances, software engineering will become

increasingly important in determining the future.

The software engineering community can better use AI's

potential and mitigate its risks by knowing its limitations and

risks.

AI-driven software development raises ethical and

environmental concerns that must be addressed. The AI

community can reduce these impacts and guarantee that AI

technologies serve society by prioritising fairness,

transparency, and sustainability. These aims require ongoing

study, policy formulation, and stakeholder participation.

As we reach new technological frontiers, software
engineering will continue to evolve, impacting the future of
technology and society. Software engineers must adapt to these
changes by using new tools and processes to develop creative,
secure, and sustainable systems.

REFERENCES

[1] Zhang, Y., Li, X., & Wang, H. (2022). Artificial Intelligence and
Software Engineering: Synergies and Challenges. IEEE Transactions on
Software Engineering.

[2] Fowler, M. (2021). Continuous Delivery: Reliable Software Releases
through Build, Test, and Deployment Automation. Addison-Wesley.

[3] Anderson, R. (2023). Security Engineering: A Guide to Building
Dependable Distributed Systems. Wiley.

[4] Martin, R. C. (2022). Clean Architecture: A Craftsman's Guide to
Software Structure and Design. Prentice Hall.

[5] Gartner. (2023). Forecast Analysis: Enterprise Software Markets,
Worldwide. Gartner Research.

[6] UNESCO. (2023). Technology and Innovation for Sustainable
Development. United Nations Educational, Scientific and Cultural
Organization.

[7] McKinsey & Company. (2023). The Future of Work After COVID-19.
McKinsey Global Institute.

[8] Fuegi, J., & Francis, J., Lovelace & Babbage and the creation of he 1843
‘notes’. Annals of the History of Computing, 2003, 25(4), 16 – 26.

[9] Dijkstra, E. W., “Go To Statement Considered Harmful”.
Communications of the ACM, 1968, 11(3), 147 – 148, 1968.

[10] Booch, G., Object-Oriented Analysis and Design with Applications.
Addison-Wesley, 1994.

[11] Beck, K., Grenning, J., Martin, R., C., "Manifesto for Agile Software
Development." Agile Alliance, 2001.

[12] Fowler, M. and Highsmith, J., The Agile Manifesto. Software
Development, 2001.

[13] Fitzgerald, B., & Stol, K. J. "Continuous Software Engineering: A
Roadmap." Journal of Systems and Software, 2021, 176, 110929.

[14] Patel, N., "Edge Computing Frameworks for IoT." IoT World Journal,
2025, 7(1), 10-18.

[15] Brown, A., Quantum Computing in Practice: A Developer's Guide.
Quantum Press, 2025.

[16] Williams, E., Quantum Programming: From Theory to Practice.
Quantum Tech Publications, 2024.

[17] Garcia, L., "The Rise of No-Code Platforms." Journal of Software
Innovation, 2025, 12(3), 45-60.

[18] IEEE., Ethical Guidelines for AI Development. IEEE Standards
Association, 2024.

[19] Taylor, M., "Programming Language Trends in 2025." Code Quarterly,
9(2), 2025, 15-30.

[20] Green Software Foundation., Carbon Aware SDK Documentation.
Retrieved from
https://greensoftware.foundation,
2025.

[21] Ardito, C., Bernhaupt R., Sauer S., (2021). "Human-Centered Software
Engineering: A Systematic Literature

[22] Bommasani, R., Hudson, D. A., Adeli, E., Altman, R. "On the
Opportunities and Risks of Foundation Models." arXiv preprint
arXiv:2301.04246, 2023.

[23] Chen, M., Tworek, J., Jun, H., de Oliveira Pinto, J. Kaplan "Evaluating
Large Language Models Trained on Code., 2021, " arXiv preprint
arXiv:2107.03374.

[24] Zhang, J., Harman, M., & Ma, L., "Machine Learning Testing: Survey,
Landscapes, and Horizons." IEEE Transactions on Software
Engineering, 2022.

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 14– Issue 1, March 2025

www.ijcit.com 27

[25] Johnson, R., Hurst, A., Safayeni, F., "AI-Driven Software Development:
Trends and Challenges." International Conference on Software
Engineering (ICSE), 2025.

[26] Alla, S., & Adari, S. K., MLOps Engineering at Scale. O'Reilly Media,
2021.

[27] Crawford, K., Atlas of AI: Power, Politics, and the Planetary Costs of
Artificial Intelligence, 2021, Yale University Press.

[28] Brynjolfsson, E., & McAfee, A. (2023). "The Second Machine Age:
Work, Progress, and Prosperity in a Time of Brilliant
Technologies." W.W. Norton & Company.

[29] Preskill, J., "Quantum Computing in the NISQ Era and Beyond."
Quantum, 2018, 2, 79.

[30] Shi, W., & Dustdar, S., "The Promise of Edge Computing." Computer,
2020,53(7), 78-81.

[31] Ardito, C., Stefan Saue., "Human-Centered Software Engineering: A
Systematic Literature Review." Journal of Systems and Software, 2021,
172, 110864

http://www.ijcit.com/

