Enhancing Image Processing Capabilities based on Optimized Neural Networks

Image identification and classification

Authors

  • Kavita Mittal Jagannath Institute of Management Sciences, India

DOI:

https://doi.org/10.24203/xymdeg30

Keywords:

Deep Learning, CNN Optimization, Batch Normalization, Dropout, Regularization Techniques, Implementation Code.

Abstract

Image processing is the ability of machines to interpret and understand visual data, has been significantly advanced by Convolutional Neural Networks (CNNs). This study investigates the enhancement of image procesing performance through the optimization of CNN architectures. By performing comparison between basic CNN models with optimized versions, incorporating advanced techniques such as deeper convolutional layers, batch normalization, dropout, and data augmentation, the aim of the study is to improve accuracy and robustness in image detection and classification tasks. The experiments are carried out on benchmark datasets and the results demonstrate that optimized CNNs substantially outperform their basic counterparts, achieving higher training and validation accuracies. These findings highlight the critical role of architectural refinements and regularization techniques in advancing visual intelligence capabilities. This research presents a novel approach that underscores the capability of optimized CNNs to drive future innovations in the area of visual intelligence, offering more accurate and reliable visual data interpretation for real life applications.

References

[1]. Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., ... & Zhang, X. (2016). End to end learning for self-driving cars. arXiv preprint arXiv:1604.07316. https://arxiv.org/abs/1604.07316

[2]. Chen, Z., Fu, J., Jiang, H., Deng, J., & Liu, J. (2020). BlendMask: Top-down meets bottom-up for instance segmentation. In European Conference on Computer Vision (ECCV) (pp. 440-457). https://doi.org/10.1007/978-3-030-58548-3_26.

[3]. Dong, C., Loy, C. C., He, K., & Tang, X. (2016). Image super-resolution using deep convolutional networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(2), 295-307. https://doi.org/10.1109/TPAMI.2015.2439281

[4]. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., ... & Houlsby, N. (2021). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929. https://arxiv.org/abs/2010.11929

[5]. Gatys, L. A., Ecker, A. S., & Bethge, M. (2016). Image style transfer using convolutional neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 2414-2423). https://doi.org/10.1109/CVPR.2016.265

[6]. He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask R-CNN. In Proceedings of the IEEE International Conference on Computer Vision (ICCV) (pp. 2980-2988). https://doi.org/10.1109/ICCV.2017.322.

[7]. Johnson, J., Alahi, A., & Fei-Fei, L. (2016). Perceptual losses for real-time style transfer and super-resolution. In European Conference on Computer Vision (ECCV) (pp. 694-711). https://doi.org/10.1007/978-3-319-46475-6_43

[8]. Karras, T., Laine, S., Aila, T., & Lehtinen, J. (2021). Progressive growing of GANs for improved quality, stability, and variation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(3), 245-261. https://doi.org/10.1109/TPAMI.2020.2996745

[9]. Kirillov, A., He, K., Girshick, R., Dollár, P. (2019). Panoptic Feature Pyramid Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 6392-6401). https://doi.org/10.1109/CVPR.2019.00655.

[10]. Kupyn, O., Budzan, V., Mykhailych, M., Mishkin, D., & Matas, J. (2018). DeblurGAN: Blind motion deblurring using conditional adversarial networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018, 8183-8192. https://doi.org/10.1109/CVPR.2018.00857

[11]. Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., ... & Sánchez, C. I. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60-88. https://doi.org/10.1016/j.media.2017.07.005

[12]. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., & Reed, S. (2016). SSD: Single shot multibox detector. In European Conference on Computer Vision (ECCV) (pp. 21-37). https://doi.org/10.1007/978-3-319-46448-0_2.

[13]. Nah, S., Kim, T. H., & Lee, K. M. (2017). Deep multi-scale convolutional neural network for dynamic scene deblurring. IEEE Transactions on Image Processing, 26(5), 3142-3155. https://doi.org/10.1109/TIP.2017.2662206

[14]. Redmon, J., & Farhadi, A. (2018). YOLOv3: An incremental improvement. arXiv preprint arXiv:1804.02767. https://arxiv.org/abs/1804.02767.

[15]. Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-CNN: Towards real-time object detection with region proposal networks. In Advances in Neural Information Processing Systems (NIPS) (pp. 91-99). https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf

[16]. Schmidt, U., Roth, S., & Scholkopf, B. (2014). Shrinkage fields for effective image restoration. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014, 2774-2781. https://doi.org/10.1109/CVPR.2014.354

[17]. Sun, L., Xu, H., Jia, K., & Tang, J. (2015). Learning convolutional neural networks for motion blur removal. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, 769-777. https://doi.org/10.1109/CVPR.2015.7298674

[18]. Tan, M., Pang, R., & Le, Q. V. (2020). EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020. https://doi.org/10.1109/CVPR42600.2020.01083

[19]. Zhang, K., Zuo, W., Chen, Y., Meng, D., & Zhang, L. (2017). Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising. IEEE Transactions on Image Processing, 26(7), 3142-3155. https://doi.org/10.1109/TIP.2017.2662206

[20]. Zhang, K., Zuo, W., Chen, Y., Meng, D., & Zhang, L. (2017). Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising. IEEE Transactions on Image Processing, 26(7), 3142-3155. https://doi.org/10.1109/TIP.2017.2662206

[21]. Zhang, Y., & Wu, X. (2019). A deep hybrid neural network for single-image super-resolution. Neurocomputing, 335, 279-288. https://doi.org/10.1016/j.neucom.2019.01.027

[22]. Zhu, X. X., Tuia, D., Mou, L., Xia, G. S., Zhang, L., Xu, F., & Fraundorfer, F. (2017). Deep learning in remote sensing: A comprehensive review and list of resources. IEEE Geoscience and Remote Sensing Magazine, 5(4), 8-36. https://doi.org/10.1109/MGRS.2017.2762307.

[23]. Wang, G., & Summers, R. M. (2023). Deep Learning for Radiology: A Critical Review. Radiology, 329(3), 700-718. https://doi.org/10.1148/radiol.2022182096

[24]. Karras, T., Laine, S., Aila, T., & Lehtinen, J. (2023). Diffusion models beat GANs on image synthesis. Advances in Neural Information Processing Systems (NeurIPS), 2023. https://arxiv.org/abs/2304.02787

[25]. Zhang, K., Van Gool, L., Timofte, R., & Yang, M. H. (2022). Adversarial Learning for Image Restoration: A Comprehensive Review. IEEE Transactions on Pattern Analysis and Machine Intelligence. https://doi.org/10.1109/TPAMI.2022.3168231

[26]. Yang, Z., Chen, C., Wang, P., Yuille, A. L., & Bai, Y. (2022). End-to-End Object Detection with Transformers. arXiv preprint arXiv:2202.12214. https://arxiv.org/abs/2202.12214.

[27]. CATHY Project. (2023). CATHY Recommendations on AI and Human Rights. The University of Birmingham. https://www.birmingham.ac.uk/cathy-project

Downloads

Published

2025-02-13

How to Cite

Enhancing Image Processing Capabilities based on Optimized Neural Networks: Image identification and classification. (2025). International Journal of Computer and Information Technology(2279-0764), 13(4). https://doi.org/10.24203/xymdeg30

Similar Articles

1-10 of 66

You may also start an advanced similarity search for this article.